Global Precipitation Measurement (GPM) Mission and Falling Snow Retrievals

Gail Skofronick Jackson
Arthur Hou
NASA Goddard Space Flight Center

JCSDA
March 11, 2009
Presentation Outline

• Motivation
 – Global Water and Energy Cycles

• GPM Mission
 – GPM Science and Mission Concept
 – Core Instrument Capabilities
 – Constellation Sampling and Performance
 – GPM Algorithms and Products

• Snow Retrievals
 – Falling Snow Field Campaign
 – Falling Snow Detection Process
 – Detection Results

• Future Work
 – Surface emission studies

• Summary
Accurate global precipitation measurement is required for better prediction of freshwater resources, climate change, weather, and the water cycle because precipitation is a key process that links them all….

Falling snow and ice that melts into rain are important components of precipitation.
GPM: A Science Mission with Integrated Application Goals

Science Objectives

- New reference standards for precipitation measurements from space
- Better understanding of precipitation physics, water cycle variability, and freshwater availability
- Improved numerical weather prediction skills
- Improved hydrological prediction capabilities for floods, landslides, and freshwater resources
- Improved climate modeling and prediction capabilities

GPM will make data accessible to stakeholders beyond the traditional scientific community to support societal applications, policy planning, and outreach:

- Freshwater Utilization and Resource Management
- Natural Hazard Monitoring/Prediction
- Operational Weather Forecasting
- Climate Change Assessment
- Agriculture Policy and Planning
- Education and Outreach
Global Precipitation Measurement (GPM) Reference Concept
An international satellite mission specifically designed to unify and advance global precipitation measurements from dedicated and operational satellites for research & applications

GPM Low-Inclination Observatory (40°)
GMI (10-183 GHz)
LRD: Nov. 2014
• Enhanced “asynoptic” (non-Sun-synchronous) observations
• Improved sampling for near realtime monitoring of hurricanes and midlatitude storms

GPM CORE Observatory (65°)
DPR (Ku-Ka band)
GMI (10-183 GHz)
LRD: July 2013
• Precipitation physics observatory
• Reference standard for inter-calibration of constellation precipitation measurements

Next-generation global precipitation products through
advanced active & passive microwave sensor measurements
a consistent framework for inter-satellite calibration (radiance & rain rates)
international collaboration in algorithm development and ground validation
Core Observatory Measurement Capabilities

Dual-Frequency (Ku-Ka band) Precipitation Radar (DPR):

- Increased sensitivity (~11 dBZ) for light rain and snow detection
- Better measurement accuracy with differential attenuation correction
- Detailed microphysical information (DSD mean mass diameter & particle no. density) & identification of liquid, ice, and mixed-phase regions

Wide-Band (10-183 GHz) Microwave Imager (GMI):

- High spatial resolution
- Improved light rain & snow detection
- Improved signals of solid precipitation over land (especially over snow-covered surfaces)
- 4-point calibration to serve as a radiometric reference for constellation radiometers

Combined Radar-Radiometer Cloud Database

- DPR & GMI together provide greater constraints on possible solutions to improve retrieval accuracy
- Improved a-priori cloud database for constellation radiometer retrievals

Skofronick-Jackson, JCSDA, 11 March 2009
GPM: A consistent framework to unify a heterogeneous constellation of radiometers using GMI and DPR measurements

• Calibration of Level-1 constellation radiometric data using GMI as reference: GMI is designed to ensure greater accuracy and stability by employing
 - Encased hot load design to minimize solar intrusion
 - 4-point calibration for nonlinearity removal under nominal conditions and backup calibration during hot-load anomalies

• Calibration of Level-2 rainfall data using DPR+GMI measurements: Making combined use of GMI and DPR measurements to provide a common cloud/hydrometeor database for precipitation retrievals from the GPM Core and Constellation radiometers.

Physical precipitation retrieval: Matching observed T_b with those simulated from a prior cloud database within a statistical framework

Simulated T_b

Observed T_b

TRMM uses a model-generated database
GPM uses a combined DPR+GMI database

Simulated vs. observed TMI T_b
Baseline GPM Constellation Performance

GPM Core Launch

Average Revisit Time (hr)

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropics</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Extratropics</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Globe</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropics</td>
<td>3.1</td>
<td>2.5</td>
<td>3.2</td>
<td>3.9</td>
<td>4.9</td>
</tr>
<tr>
<td>Extratropics</td>
<td>3.2</td>
<td>2.6</td>
<td>2.1</td>
<td>2.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Globe</td>
<td>3.1</td>
<td>2.5</td>
<td>2.7</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Land and Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropics</td>
<td>2.6</td>
<td>2.2</td>
<td>2.7</td>
<td>3.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Extratropics</td>
<td>2.3</td>
<td>1.9</td>
<td>1.6</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Globe</td>
<td>2.4</td>
<td>2.0</td>
<td>2.1</td>
<td>2.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>

1-2 hr revisit time over land

Baseline GPM Constellation

Performance

GPM Core Launch

Over Land

Prime Life Extended Life Additional partners possible: Brazil, Russia, China

Lin & Hou (2008)

GPM (2015)

(< 3h over 92% of globe)

Radiometers + METOP-1 + NPP + NOAA19 + NPOESS-C1 (land)
Improved Temporal Sampling with observations from non-Sun-synchronous orbits

Monthly Samples as a Function of the Time of the Day (1° x 1° Resolution)

SKOFRONICK-JACKSON, JCSDA, 11 March 2009

GODDARD SPACE FLIGHT CENTER
Provisional GPM Products

• Level-1 DPR reflectivity products
• Level-1 Inter-calibrated Core and constellation radiometric products
• Level-2 DPR precipitation products
• Level-2 DPR+GMI combined precipitation products
• Level-2 Radar-enhanced constellation radiometer products
 – Constellation radiometer retrievals using the DPR+GMI combined cloud database
• Level-3 Multi-satellite MW global precipitation products
• Level-3 Multi-satellite MW+IR global precipitation products
• Level-4 Model+observation assimilated global precipitation products
 – NWP global precipitation forecasts
 – 4D global “dynamic precipitation analyses”
 – High-resolution (1-2 km) model-downscaled regional precipitation products

Levels-1 & 2 are instantaneous orbital products
Levels-3 & 4 are grid-averaged products
Provisional GPM precipitation products for nowcasting

- IFOV intercalibrated Tb and rain products for GMI within 1 hour of data collection
- Merged constellation radiometer precipitation products at several latency levels:
 1. Precipitation estimates based on data collected within past 1 hr (fast but incomplete space coverage)
 2. Precipitation estimates based on data collected within past 2 hrs
 3. Precipitation estimates based on data collected within past 3 hour
 4. Precipitation estimates based on data collected within past 6 hours (globally complete)

Merged products updated with more observations every hour

(Model-downscaled HR precipitation analysis is also under planning)
Provisional Algorithm Management & Organization

NASA/JAXA Joint Algorithm Team
Co-Leads: A. Hou, K. Nakamura

Radar Only Algorithm
JAXA Lead: T. Iguchi

Combined Algorithm
JAXA Co-Lead: H. Masunaga
NASA Co-Lead: W. Olson

PMR-RE Algorithm
NASA Leads: C. Kummerow & G. Jackson

JAXA WG team:
S. Seto (U. Tokyo)
H. Hanado (NICT)
N. Yoshida (JAXA)

JAXA WG team:
M. Hirose (Meijo U.)
F. Furuzawa (Nagoya U.)

JAXA WG team:
K. Aonashi (JMA/MRI)
S. Shige (Osaka Pref. U.)
N. Takahashi (NICT)
S. Satoh (NICT)
Eito (JMA/MRI)
T. Kubota (JAXA)

NASA WG team:
R. Meneghini (NASA)
J. Kwiatkowski (NASA)
L. Liao (UMD)
S. Durden (JPL)
S. Tanelli (JPL)
L. Tian (UMD)
Chandra (CSU)

NASA WG team:
Z. Haddad (JPL)
M. Grecu (UMD)
G. Liu (FSU)
B. Johnson (UMD)
L. Tian (UMD)

NASA WG team:
G. Petty (U. Wisconsin)
G. Liu (FSU)
R. Ferraro (NOAA)
D. Staelin (MIT)
N.-Y. Wang (UMD)
K. Hilburn (RSS)

Currently 8 GPM working groups supporting pre-launch algorithm development (e.g., land surface emissivity, mixed phase, ground validation, etc.)
US-Based GPM Falling Snow Radiometer Algorithm Retrieval Methodologies

Physically-Based
March 2001

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

US-Based GPM Falling Snow Radiometer Algorithm Retrieval Methodologies

Physically-Based
March 2001

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)

Physically-Based

5.5mm/hr
(Melted)

Ocean

NASA Goddard/U. Wash.
Skofronick-Jackson, et al TGRS 2004,
Kim JGR 2008

FSU, Liu & Noh, 2004, 2005
Wakasa Bay, Japan data

Neural Networks

March 2001

Polar Retrievals

25 January 2004

Empirical Approach

NOAA, Kongoli, et al
Geophys Res. Letters 2003
& Ferraro et al TGARS 2005

Snow Detection

Retrieved (@1.5km)
Radar (1/14/01)
Challenges in Estimating Snow over Land

Frozen Particle Variability

19 August 1999

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Temperature (°C)</th>
<th><100</th>
<th>400-600</th>
<th>>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPI in situ images, Andy Heymsfield

Surface Variability

Non-Linear and Under-Constrained Relationships between physical characteristics of ice particles and microwave observations
Canadian CloudSat/Calipso Validation Project (C3VP)

EC Centre for Atmospheric Research Experiments (CARE) site located ~70km north of Toronto

Instrument array: multi-freq. (C,X,Ku,Ka,W) radars, profiler, disdrometers, gauges, radiometers, lidars, and radiosonde

Four aircraft IOPs:
- **IOP-1:** Oct. 31 – Nov. 9; **IOP-2:** Nov. 30 – Dec. 11;
- **IOP-3:** Jan. 17 – Jan. 28, NASA PMM/GPM; **IOP-4:** Feb. 18 - March 1

IOPs include C580 aircraft carrying extensive microphysical instrumentation. Regional Modeling System output (EC and WRF) during entire field campaign.

Satellites: A-Train (AMSR-E, CloudSat/CALIPSO), NOAA (AMSU-A, AMSU-B)
Estimating Surface Emissivity & Detecting Falling Snow

1) Use forest cover in each AMSU-B/MHS footprint to obtain average forest fraction, \(f \).

2) For forest fraction, use emissivity: \(\varepsilon_1 \).

3) For \((1- f)\) use emissivities for different snow depths
 a) If snow depth at Egbert ground station = 0 cm; \(\varepsilon_{avg} = f \varepsilon_1 + (1-f) \varepsilon_2 \)
 b) When snow depth < 30cm; \(\varepsilon_{avg} = f \varepsilon_1 + 0.5(1-f)(\varepsilon_2 + \varepsilon_3) \)
 c) When snow depth > 5cm; \(\varepsilon_{avg} = f \varepsilon_4 + (1-f) \varepsilon_3 \)

\(\varepsilon_1 \) = emissivity of winter open forest
\(\varepsilon_2 \) = emissivity of grass
\(\varepsilon_3 \) = emissivity of deep dry snow
\(\varepsilon_4 \) = emissivity of snow in close forest

\(\varepsilon \) from Hewison and English 1999, & Hewison 2001

4) Compute \(TB \) using surface emissivity and radiosonde profiles and assuming clear air

5) Take the Difference:
 \[TB_{AMSU-B} - TB_{computedClearAir} \]

6) Multiple channel differences less than zero = snow detection
20 Jan 2007/Lake Effect Snow/Ground Obs

Skofronick-Jackson, JCSDA, 11 March 2009
5°x5° Detection: 20 Jan 2007: Lake Effect Snow

NOAA-17 AMSU-B Overpass at 02:45 UTC (150 GHz)
20 – 30 cm snow accumulation from 0300 to 1000 UTC at C3VP site

AMSU-B TB

Calculated TB

Emissivity

TB Differences (AMSUB-Calc)

King City Radar

Dark Red = TB Differences are Negative at 89, 150, 183±3, ±7 GHz

Skofronick-Jackson, JCSDA, 11 March 2009
22 Jan 2007/Synoptic Snow/Ground Obs

Surface T, RH, AMSU-B
- 89 GHz
- 150 GHz
- 183+/-1 GHz
- 183+/-3 GHz
- 183+/-7 GHz
- Surf Temp
- Rel Humid

Parsivel
- Lowest T_B
- Highest snow rate

2DVD
- 2DVD Data

King City C-Band
0653 UTC

CARE Site

0000UTC
Skofronick-Jackson, JCSDA, 11 March 2009

1000UTC
$5^\circ x 5^\circ$ Detection: 0642UTC 22 Jan 2007: Synoptic Snow

AMSU-B Overpass at 06:42 UTC (150 GHz)

4-6 cm snow accumulation at C3VP site

- **AMSU-B TB**
- **Calculated TB**
- **Emissivity**

TB Differences (AMSUB-Calc)

- **King City Radar**
- **Dark Red = TB Differences are Negative at 89, 150, 183\pm3, \pm7 GHz**

Skofronick-Jackson, JCSDA, 11 March 2009
Detection: 0823UTC 22 Jan 2007: Synoptic Snow

AMSU-B Overpass at 08:23 UTC (150 GHz)

AMSU-B TB

Calculated TB

Emissivity

TB Differences (AMSUB-Calc)

King City Radar

Dark Red = TB Differences are Negative at 89, 150, 183±3, ±7 GHz
Passive versus Active Snow Detection: 22 Jan 2007

CloudSat, 0733 UTC, Active Detection

0642 UTC, Passive Detection

0823 UTC, Passive Detection
Sensitivity to Surface Temperature: 21 Jan 2007 (Clear Air)
NOAA-15 AMSU-B Overpass at 11:31 UTC (150 GHz)

TB Differences when surface emission (temperature) changes.

WRF modeled temperature Differences using WRF T
Differences using fixed T
Sensitivity to Surface Emissivity: 21 Jan 2007 (Clear Air)

NOAA-15 AMSU-B Overpass at 11:31 UTC (150 GHz)

Differences when surface emission (emissivity) assumptions change.

Non-forested areas=
Deep Dry Snow ε (fixed depth)
Wet Snow ε (fixed depth)
Deep Dry ε (WRF variable depth)
Future Work: Explore Surface Emissivity

- **Investigate sensitivity of brightness temperature (10-183 GHz) to changes in surface emission**
 - Theoretical analysis
 - C3VP analysis for clear air days before and after rain and snow events

- **Evaluate methodologies for obtaining surface emission**
 - Comparison study underway for GPM Land Surface Characterization working group
 - Estimation from satellite observations (Slide to follow)
 - Derived from land surface models (Slide to follow)
 - Using measured emissivities (e.g., Hewison & English)
 - Using numerical models (e.g., F. Weng)
 - Other methods (climatology, empirical relationships, etc.)

- **Test GPM snow detection and estimation algorithms under common global emission (or emissivity and temperature) database**
 - Static global database
 - Dynamic database
Emissivity Estimated from AMSU-B Observations

Preliminary results courtesy of James R. Wang

- Retrieved from multiple AMSU-B overpasses per day
- Retrieved emissivity directly over the C3VP site

Future work:

1) Use clear-air overpasses only
2) Improve TP3000 TPW retrievals
3) Use a multi-layer cloud model to obtain 183 GHz emissivities
Emissivity Derived from Land Surface Models

WRF Modeled Fields

Need to adjust surface emission for variability in surface state.

Surface Temperature (K)
Vegetation Type
Surface Snow Depth (cm)

Urban cropland deciduous evergreen/mixed water
Summary

- GPM Mission Discussion
- Snow Detection
- Surface Emissivity

QUESTIONS?