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MOTIVATION

The main assumption made in variational and ensemble data 
assimilation is that the state variables and observations are Gaussian 
distributed

Note: The difference between two Gaussian variables is also a 
Gaussian variable.

Is this true for all state variables?

Is this true for all observations of the atmosphere?
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State Variables

Miles et al 2000, lists cloud variables that are not Gaussian

Dee and Da Silva, 2003, humidity

Most positive definite variables!!

Observations

Stephens et al 2002, many of the CLOUDSAT observations, non-
Gaussian:
i.e. Optical depth, Infra red flux differences

Sengupta et al 2004: Cloud base height, Liquid water path.

Deblonde and English 2003, Boukabara et al. 2007: Humidity retrievals.
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REAL LIFE EXAMPLES

THIS DATA IS COLUMN WATER VAPOUR 
CLIMATOLOGIES FROM THE OKLAHOMA ARM SGP SITE 
FROM 1997 – 2000 WHERE THE DATA ARE OBSERVED 
FOR DAYS WITH BOUNDARY LAYER CLOUDS.

THE DATA HAS BEEN BROKEN DOWN BY SEASON AS 
WELL AS FOR THE WHOLE FOUR YEARS.  THE DATA 
WAS COLLECTED FROM A MICROWAVE RADIOMETER
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ANOTHER REAL LIFE EXAMPLE FROM
SENGUPTA ET AL. (2004)

Here we using liquid water path where there the plots 
consist of model outputs form ECMWF and the MOLTS 
models.  This for the same data sets just shown. 
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Current Techniques used with non-Gaussian Variables

1) Transform by taking the LOGARITHM of the original state variable.  
This then makes the new variable ALMOST GAUSSIAN. Minimize 
the cost function with respect to this variable, TRANSFORM BACK
and initialize with this state. STATE FOUND IS A NON-UNIQUE 
MEDIAN OF THE ORIGINAL VARIABLE, Fletcher and Zupanski 
2006a, 2007.

2) Assumed Gaussian assumption and BIAS CORRECT.

3) Another Technique, employed in other fields, is to use a GAUSSIAN 
SUM FILTER.

4) A recently suggested technique for meteorological applications is a  
MAXIMUM ENTROPHY FILTER.

5) Using a Markov-Chain Monte-Carlo approaches (Posselt et al. 2008)
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PROBLEMS ASSOCIATED WITH CURRENT 
TECHNIQUES

ASSUMED GAUSSIAN:

IMPACT 1: WRONG PROBABILITIES ASSIGNED TO THE 
OUTLIERS.

IMPACT 2: PROBABILITIES ASSIGNED TO UNPHYSICAL 
VALUES.

IMPACT 3: WRONG STATISTICS USED TO APPROXIMATE 
THE VARIABLE’S DISTRIBUTION.
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EXAMPLE WITH THE LORENZ’63 MODEL

THE MODEL CONSIST OF THE COUPLED SYSTEM OF THREE NON-
LINEAR PDES
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LOGNORMAL DATA ASSIMILATION

We start by consider which statistic to use to best represent the 
underlying analysis pdf.

The three descriptive statistics are the mode ‘most likely state’,
median ‘unbiased state’ and the mean ‘minimum variance’.

Unlike with the Gaussian distribution and other symmetric 
distributions these three statistics are not identical so which one to 
use?
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PROPERTIES OF THE MULTIVARIATE 
LOGNORMAL DISTRIBUTION

PROPERTY 1: Median is non-unique.

PROPERTY 2: Moments do not determine the distribution uniquely.

PROPERTY 3: Mean is independent of covariances, and is 
unbounded with respect to the variances. 

PROPERTY 4: Mode is bounded and finite with respect to the 
variances and covariances. 

PROPERTY 5: MODE IS UNIQUE!!!



CSU/CIRA   Dr. Steven J. Fletcher                                                   JCSDA SEMINAR APRIL 21st 2009    25

LOGNORMAL DATA ASSIMILATION
FLETCHER AND ZUPANSKI (2006a; 2007)

By following Lorenc (1986) and extending the error definition 
from Cohn (1997) we can define a cost function for lognormal 
background and observational errors as

Where the ERRORS are defined by
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MISCONCEPTIONS ABOUT LOGNORMAL DATA 
ASSIMILATION

1) The theory holds as the background solution is independent 
of the true solution, it is only an approximation and 
statistically has no information about the true solution.

2) The theory holds for the observational component as the 
observations are independent of the observations operator 
and vice-versa.

3) If two solutions have a relative error of 50% then we are still 
out by a factor of two in both cases no matter what order of 
magnitude.
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HYBRID DISTRIBUTION 
FLETCHER AND ZUPANSKI (2006b)

Can define a hybrid normal-lognormal multivariate probability 
density function of the form

WHERE
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CORRELATED
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HYBRID ASSIMILATION
FLETCHER AND ZUPANSKI 2006b, 2007

From the distribution defined in (3) it is possible to defined a cost 
function following the maximum likelihood approach as set out in 
Lorenc (1986).  Therefore the associated cost function for hybrid 
background and observational errors is

Where
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Example with the Lorenz 1963 model

The three non-linear differential equations are given by (Lorenz 1963)

zxyz
yxxzy

yxx

β
ρ
σσ

−=
−+−=

+−=

&

&

&
 28AND 10,

3
8

=== ρσβ

5606.22  AND  4841.5,4458.5 000 =−=−= zyx

Going to assume x and y components and the associated obs are 
Gaussian, z is lognormal

(Fletcher and Zupanski 2007)
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Experiments

1) Different standard deviations: σ2 = 0.25, 1

2) Different assimilation window lengths: 50, 100, 200 
time steps.
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SUMMARY OF 3D VAR RESULTS

For many observations with small variance then the transform 
approach is no different than the hybrid approach.

For larger time between observations then the hybrid approach is 
more reliable.

When the time between observations is long and the observations 
are less accurate then the hybrid approach out performed the transform 
approach.

Some observations were ignored by the transform approach even 
though they are on the correct attractor.

NOTE: The z component of the Lorenz’63 model is neither Gaussian 
nor lognormal but that the lognormal distribution does capture the first 
mode.
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4D LOGNORMAL DATA ASSIMILATION
Unlike with the three dimensional version of variational data 
assimilation, the four dimensional version is defined as a weighted 
least squares problem. 

The Gaussian weighted least squares approach to 4D VAR 
is defined through a calculus of variation problem with initial 
conditions found through the adjoint.

This weighted least squares approach can be defined for a 
lognormal framework, which is defined by the following inner product
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As with the Gaussian case we know that the first variation of the functional 
defined on the previous is equivalent to
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The solution is a median and not the mode and hence is independent 
of the variance.

We need to define the functional as
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Current Gaussian approach

Improved Transform technique

New Lognormal 4D VAR approach:
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PROBABILITY APPROACH
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Taking the negative logarithm of the circled pdf in the 
previous slide results in  
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This can now be used to derive a 4D VAR system for any 
distributed random variable
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Results with the Lorenz 1963 model
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Plots of the differences in the 
trajectories with many 

accurate obs with short 
assimilation windows

Note: transform and 
hybrid approach 

quite similar

BEST CASE 
SCENERIO 



CSU/CIRA   Dr. Steven J. Fletcher                                                   JCSDA SEMINAR APRIL 21st 2009    49

When assimilation window is 
large (1000ts) with fewer and 

less accurate obs, hybrid 
approach is more accurate

Transform approach 
converges quickly to 
the wrong solution
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Conclusions, Implications and Further Work
Careful which statistic to use to analyses 
Mode is closer to the true trajectory in the Lorenz 63 model
Possible to assimilate variables of mixed types simultaneously 
Incremental version???
Combine other distributions?? i.e. Gamma, Normal, Lognormal
Faster method for finding positive definite variables
No need to change background error covariance matrix
Improved moisture fields
More reliable forecasts, less likely to issue false warnings
Better prediction of clouds and dust storms as the moisture field is 

more accurate
Better prediction of dust storms, hurricane intensity, super cells.
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Conclusions, Implications and Further Work

Implement the hybrid cost function into the MLEF at CIRA

Implement the hybrid cost function into the Weather, Research and 
Forecasting (WRF) 3D VAR.

Develop a new version of humidity/temperature retrievals from 
brightness temperature with the hybrid method

Develop an incremental version similar to the operational centres

Derive new variational schemes for other distributions.
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