

STAR Algorithm and Data Products (ADP) Beta Review

Suomi NPP Land Surface Temperature EDR Product

Yunyue Yu LST EDR Lead Dec. 19, 2012

- Ivan Csiszar (NOAA/NESDIS/STAR) STAR Land EDRs Chair, management
- Jeff Privette (NOAA/NESDIS/NCDC) product validation Lead
- Yunyue Yu (NOAA/NESDIS/STAR) STAR LST EDR lead, product monitoring and validation; algorithm development, project management
- Yuling Liu (NOAA Affiliate, UMD/ESSIC) product monitoring and validation ; algorithm development
- Zhuo Wang (NOAA Affiliate, SciTech/IMSG) algorithm development
- Donglian Sun (GMU/Geography and GeoInformation) *Product evaluation*
- Youhua Tang (NOAA Affiliate, SciTech/IMSG) ADL verification
- Pierre Guillevic (NOAA Affiliate, NCSU/CICS) product validation
- Michael EK (NOAA/EMC/NCEP) user readiness
- Jesse Meng (NOAA Affiliate) user readiness

Background of LST Product

- Land Surface Temperature (LST) is produced as Environmental Data Record (EDR).
- Represents continuity with NASA EOS MODIS and NOAA POES AVHRR LST production, also with international missions such as (A)ATSR.
- VIIRS design allows for full resolution LST measurements over global land covers, under clear, probably clear and probably cloudy conditions.
- Product is expected to be used by weather forecasting models, Agriculture monitoring, drought prediction and monitoring, ecosystem monitoring; climate studies etc.

L1RD Requirements

Land Surface Temperature							
Attribute	Threshold	Objective					
LST Applicable Conditions: Clear only							
a. Horizontal Cell Size	4 km	1 km					
Nadir	(800 m)	(500 m)					
 b. Mapping Uncertainty, 3 Sigma 	1 Km at Nadir <i>(800 m)</i>	1 km at Edge of Scan (500 m)					
c. Measurement Range	213 — 343 К	183 — 343 К					
d. Measurement Precision(1 sigma)	2.5 K	1.5 К					
e. Measurement Accuracy (bias)	1.4 K	0.8 К					
f. Refresh	At least 90% coverage of the globe every 24 hours (monthly average)						

Major Users of LST product (Point of Contact)

- U. S. Users:
 - NOAA National Weather Service Environmental Modeling Center (Michael EK, Jesse Meng, Weizhong Zheng)
 - USDA Agricultural Research Services (Martha Anderson)
 - USDA Forest Service (Brad Quayle)
 - NOAA/NESDIS Center for Satellite Applications and Research (Jerry Zhan)
 - NOAA/NESDIS National Climate Data Center (Peter Thorne)
 - Academy -- University of Maryland (Konstantin Vinnikov, Shunlin Liang, Cezar Kongoli)
 - Army Research Lab (Kurt Preston)
- Foreign Users (coordinated by Earth Temp Network and GlobTemp User Consultation Network): Edinburgh, UK , 2012
 - ESA/ESRIN, Italy (Simon Pinnock & Olivier Arino)
 - Univ. Of Edinburgh, UK (Chris Merchant)
 - OBSPM, and LSCE, France (Catherine Prigent & Carlos Jimenez, and Catherine Ottlé)
 - Universitat de les Illes Balears, Spain (Maria Antonia Jimenez Cortes)
 - eLEAF, The Netherlands (Henk Pelgrum & Wim Bastiaanssen)
 - Centre for Ecology and Hydrology, UK (Rich Ellis)
 - Institute of Geodesy and Cartography, Poland (Katarzyna Dabrowska-Zielinska)

- LST is a full resolution product for each granule
- LST value is produced for each land surface pixel under cloud conditions of clear, probably clear, probably cloudy
- Since 10 August 2012, the baseline has been a split window algorithm. The previous baseline was a duel split window algorithm.
- This release has met the beta version product requirements:
 - Early release product
 - Initial calibration applied
 - Minimally validated and may still contain significant errors (additional changes are expected)
 - $\circ\,$ Available to allow users to gain familiarity with data formats and parameters
 - Product is not appropriate as the basis for quantitative scientific publications, studies and applications
- Several issues have been solved in the recent build (Mx6.2).
 - Split window algorithm is used for baseline production.
 - The LUT has been updated : corrections for water body surface type
- Assumption of the LST validation: VIIRS SDR is calibrated

LST Processing Chain

Figure 1. VIIRS LST OAD 474-00070 RevA 20120127

AND ATMOSPH

LST Retrieval Flow Chart

AND ATMOSPA NOAA

ARTMENT OF

History of Algorithm changes/updates

NASA

Date	Update/D R#	Reason	Status
02/28/12	DR 4608	Split-window algorithm - Baseline Coefficient files. LUT update #2 (same as"Updated LUT" in slides): DR 4608/CCR 12-0355: Corrects errors for both dual split window and split window.	Closed . Split Window algorithm turned to be baseline on 10 Aug, 2012.
02/15/12	DR 4582	LST Day Night Land Water Misidentification, The LST EDR appears to have a coding error that may have incorrectly mixed up the Day/Night flag with the Land/Water and Surface Type QA Flag within the QF Byte 3 of the LST EDR This same Day/Night flag is being correctly encoded in the bit3 of QF Byte1 of the LST EDR.	closed EDR team does not observe such error. Plan to close this DR.
09/14/11	DR 4353	snow/ice field is always "no snow" at night if the Quarterly Surface Type does not indicate so. "temporal snow" can only be directed daytime by snow/ ice EDR	Open snow/ice team is proposing a change for the nighttime snow detection for the next builder.
02/14/11	DR 4203	The OPS LST code, both v1.5.00.48 and v1.5.03.00, do not verify that the value for the Surface Type input falls within the valid range prior to calculating LST	Closed EDR team does not observe such error in the operational data. Plan to close this DR.

- VIIRS LST LST data evaluation
- VIIRS LST quality flag and metadata check
- > Upstream (SDRs, EDRs and IPs inputs) data check
- Evaluation is performed at levels of
 - Single granule map
 - Granule aggregation map
 - Regional LST map
 - Global LST composite map

NASA

Suomi NPP VIIRS LST Maps

VIIRS LST: May 30, 2012 320 33 310 301 291 -100 -115 282 -112 -110 -108 272 262 253 243

Regional VIIRS LST, 30 May 2012 08:45 UTC (Nighttime)

Suomi NPP VIIRS LST Maps

VIIRS LST: VLSTO_npp_d20120523_t1536538_e2226331_b02959

Aggregated daytime VIIRS LST, 23 May 2012,

Suomi NPP VIIRS LST Maps

Daytime VIIRS LST Global Composite. 26 August 2012

Suomi NPP VIIRS LST Maps

- There are 3 bytes pixel-level quality flag in total. Every bit in each byte is retrieved and compared with the value from the original input file. The result shows that the quality flag is correctly generated from input data.
- Granule level quality flag and metadata are checked and the result shows that they are correctly generated
- The internal evaluation reveals no issues with upstream SDRs, EDRs and IPs.

- Inter-comparison with MODIS LSTs
- Validation against ground truth data
 - Traditional in-situ data validation
 - Pixel-station correction data validation
- Near real time monitoring of LST product

MODIS-Nighttime

Index	Date (AQUA)	Time (AQUA)	AQUA Lat,Lon	Date (NPP)	Time (NPP)	NPP Lat,Lon	Distance(km)	Time Diff (sec)
2	01/30/2012	08:07:59	49.94, -88.35	01/30/2012	08:10:04	50.44, -90.78	181.29	125

Comparisons to MODIS data: Nighttime

293 283

MODIS LST: 01/30/2012 0810 UTC

Sample of the VIIRS-MODIS LST comparisons: Nighttime case

NOAA

Comparison Detail

LST Range	Samples	BIAS	STD	RMSE
260-270	263	0.326	1.794	1.82
270-280	21082	0.262	1.389	1.413
280-290	883	1.488	1.849	2.373

IGBP_Type	Samples	BIAS	STD	RMSE	MIN_DIFF	MAX_DIFF
1	397	-0.359	1.805	1.838	-8.316	8.059
2	325	-0.719	1.421	1.59	-9.999	3.196
4	1160	0.085	1.663	1.665	-6.335	8.05
5	1264	-0.142	1.755	1.76	-8.301	8.845
6	40	0.756	1.773	1.906	-2.568	5.498
7	1429	0.82	1.45	1.665	-4.216	8.451
8	2446	-0.192	1.42	1.432	-6.532	7.491
9	606	0.033	1.402	1.401	-4.704	6.804
10	8092	0.574	1.26	1.385	-7.621	8.351
11	9	2.498	3.781	4.353	-1.198	8.01
12	3982	0.394	1.271	1.331	-5.879	9.557
13	192	0.536	1.419	1.513	-2.3	6.173
14	2068	0.098	1.314	1.318	-6.741	9.37
16	89	0.881	1.528	1.756	-5.451	6.761
17	129	0.124	3.188	3.178	-8.178	9.018

MODIS-Daytime

Comparisons to MODIS data: Daytime

MODIS LST: 09/04/2012 1815 UTC

Sample of the VIIRS-MODIS LST comparisons: Daytime case

ASA

LST Range(K)	Samples	BIAS	STD	RMSE
280-290	45	-5.163	4.686	6.937
290-300	3197	0.462	2.315	2.36
300-310	6574	1.785	1.899	2.606
310-320	9	8.756	5.794	10.32

IGBP_Type	Samples	BIAS	STD	RMSE	MIN_DIFF	MAX_DIFF
1	2906	1.222	2.134	2.459	-16.829	18.502
2	2	2.454	1.708	2.735	1.246	3.662
3	75	0.762	1.599	1.761	-2.569	7.177
4	160	3.209	1.655	3.608	-8.123	7.542
5	2951	1.306	1.855	2.269	-9.997	11.891
6	2	2.466	1.206	2.61	1.613	3.319
7	1283	1.589	2.286	2.783	-13.401	12.397
8	767	1.318	2.544	2.864	-10.392	13.002
9	369	1.726	2.326	2.894	-12.693	10.574
10	158	2.085	2.213	3.035	-4.236	10.812
11	133	0.367	2.394	2.413	-7.593	9.921
12	54	3.642	3.195	4.825	-7.304	13.137
13	1	8.185	NaN	8.185	8.185	8.185
14	129	2.624	2.28	3.47	-1.717	10.703
16	1	4.82	NaN	4.82	4.82	4.82
17	834	0.552	2.637	2.693	-13.982	15.387

MODIS LST vs. ADL-SWLST over 17 IGBP surface types

	Sample	e Size	STD(K)		BIAS(K)	
	Day	Night	Day	Night	Day	Night
Evergreen Needle Leaf Forests	78576	169041	3.869	2.53	-0.353	0.263
Evergreen Broadleaf Forests	42370	53237	2.466	1.737	0.749	0.241
Deciduous Needle leaf Forests	136	850	4.018	2.392	-0.396	0.152
Deciduous Broadleaf Forests	419490	319971	1.938	1.68	-0.22	-0.293
Mixed Forests	235425	321087	2.559	1.986	-0.184	-0.226
Closed Shrub Lands	101179	71349	3.415	2.353	0.021	-0.116
Open Shrub Lands	1142242	752619	3.03	2.224	-0.346	-0.868
Woody Savannahs	346408	354723	2.661	1.868	0.106	-0.643
Savannahs	93405	99398	2.517	1.773	0.419	0.047
Grasslands	833455	891019	2.712	1.662	0.206	-0.356
Permanent Wetlands	5029	5247	3.82	3.254	0.351	0.901
Croplands	413472	480492	2.497	1.631	0.157	-0.125
Urban Built-Up	76174	79016	2.833	1.823	-0.237	-0.75
Natural Vegetation Mosaics	395406	410113	2.122	1.562	0.245	-0.175
Snow ice	447385	11	2.389	2.7432	-0.287	- 2.116
Barren	135049	89471	3.644	2.663	-0.147	-0.202
Water Bodies	55646	127271	3.993	2.977	-1.484	0.151

SURFRAD LST(K)

validation

Station based validation results (From Jan. 19 to Oct. 31, 2012)

Pixel-Station Correction

- To account for the spatial variability of LST within a VIIRS pixel, a new scaling methodology is developed based on:
 - High resolution (<250m) information about spatial variability of land type and biophysical properties
 - A land surface model to describe the LST spatial variability associated with the variability of surface properties
- Comparisons with in situ LST derived from SURFRAD and CRN stations show the very good performance of VIIRS sensor and LST algorithm
- Methodology just published in peerreviewed literature:

Guillevic P., Privette J., Coudert B., Palecki M. A., Demarty J., Ottlé C. and Augustine J. A. (2012). Land Surface Temperature product validation using NOAA's surface climate observation networks – Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sensing of Environment, 124 (2012) 282–298.

Upscaled in situ LST vs. satellite LST

-- Site Bondville, IL

Day of Year

VIIRS LST EDR validation results

NOAP

- Near real time monitoring of VIIRS LST under different cloud conditions and surface types
- To monitor the diurnal and seasonal temperature change over each site
- The monitoring starts from February 1, 2012 to present
- Three sites are selected including cn_champaign_9_SW in Illinois with crop land surface type, cn_Wolf_Point_29 in Montana with grass land type and cn_Mercury_3_SSW in Nevada with open shrub land type.
- CRN and SURFRAD ground truth data are used as reference for the monitoring

Near Real Time Monitoring

Near Real Time Monitoring

Emissivity dependency issue

Figure on right shows a plot of the validation results using the MOD11, MOD21 and VIIRS main algorithm over one of the pseudo-invariant sites. This figure highlights the problem of using a static map for the emissivity coefficients seen with both MOD11 and VIIRS [*Hulley and Hook*, 2009]. In both cases the retrieved MOD11 and VIIRS LSTs are too low by 2-3 K (emissivity set too high) whereas the dynamic emissivity approach MOD21 gives the correct answer. The VIIRS retrieval does not meet the accuracy requirement.

Plot of MODIS/VIIRS LST at the Kelso Dunes, CA pseudo invariant site versus radiance-based LST.

Courtesy by Simon Hook (NASA/JPL)

- VIIRS LST has achieved beta quality and it performs beyond the beta according to our continuous evaluations of the data quality.
 - Comparing to MODIS LST data, accuracy and precision of nighttime VIIRS LST ranges from -2.1 to 0.9 K and 1.57 to 3.26 K, respectively; accuracy and precision of daytime VIIRS LST ranges from -1.48 to 0.75 K and 1.9 to 4.1 K, respectively
 - Comparing to SURFRAD station data, accuracy and precision of nighttime VIIRS LST are -0.3 K and 1.8 K, respectively; accuracy and precision of daytime VIIRS LST ranges from 1.9 K and 2.5 K, respectively.
 - Comparing to upscaled SURFRAD station data, accuracy and precision of the VIIRS LST are better than comparing to the regular SURFRAD station data.
- Surface type dependency of the LST quality is significant.
- > Nighttime LST performance is better than the daytime
- The evaluation/validation is performed with limited ground data (surface types).

General

- Nighttime snow/ice cover information maybe incorrectly identified and work is in progress
- LST over inland water was spurious (high values) before 10 August 2012, due to surface type order error in LUT
- Strong surface type dependency of LST retrieval quality -- consistency
- Seasonal dependency of LST retrieval quality -- emissivity variation
- Cloud residual impact -- may need additional cloud filter
- Validation difficulties
 - Limited high quality in-situ data
 - Surface heterogeneity in a pixel
 - Emissivity variation within a surface type
 - Impact of cloud contamination
 - High LST temporal and spatial variation and its impact to match-up dataset

- Near-term
 - Continue monitoring the LST data and comparisons to MODIS LSTs
 - Perform Radiance-based validation so the LST performance can be analyzed in detail for each surface type
 - Perform the LST validation with a global distribution of ground LST measurements
 - Develop new algorithm coefficients for the update
 - Explore additional cloud filtering method for better LST validation
 - Initial end user evaluation and feedback
- Mid- to long-term
 - Full evaluation of updated science algorithm and code
 - Provisional status by May 2013
 - Validated Version 1 status by Nov. 2013

- Preliminary results show that the VIIRS LST product is working well.
 - Results are preliminary
 - LST quality can be different significantly from one surface type to other
 - Nighttime LST retrieval is better than the daytime retrieval
 - "temporal snow" is not clarified
- Validations are performed with comparisons to MODIS LSTs, in-situ LSTs, LST map monitoring; upscaling method is applied.
- Beta release of Suomi NPP VIIRS LST is ready.