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ABSTRACT

This document describes the algorithm for Aerosol (including smoke/dust) Detection
Product (ADP) over land and water from the multispectral reflectance measurements
observed by the Advanced Baseline Imager (ABI) onboard GOES-R. It includes the
description of theoretical basis, physics of the problem, validation of the product, and
assumptions and limitations.

Episodic events, such as smoke and dust outbreaks, impact human health and economy.
Therefore, it is desirable to have qualitative information on the time, location and
coverage of these outbreaks for the monitoring and forecasting of air quality. GOES-R
ABI is designed to observe the Americas in a 5-minute interval and at 0.5, 1, 2 km spatial
resolution in the visible, near-IR, and IR bands respectively. Taking advantage of the
unique capability of GOES-R ABI, ADP will be produced with an algorithm designed to
take advantage of various spectral measurements.

Aerosol detection algorithm is based on the fact that smoke/dust exhibits features of
spectral dependence and contrast over both visible and infrared spectrum that are
different from clouds, surface, and clear-sky atmosphere. The fundamental principle of
the detection algorithm depends on threshold tests which separate smoke/dust from cloud
and clear-sky over water and land.

By using MODIS observations as proxy, GOES-R ABI smoke/dust algorithm has been
tested for different scenarios such as wild fires, dust storms, and dust transport from
Africa. Comparisons with RGB images and other satellite products such as CALIPSO
have been performed along with a sensitivity study of the detection on the accuracy of
sensor radiances/brightness temperature. In general, the requirement, i.e., 80% correct
detection for dust over water and land, for smoke over land, and 70% correct detection
for smoke over water, can be achieved. Preliminary analysis shows that radiometric or
calibration errors at the 5% level can be tolerated.



1 INTRODUCTION

Aerosols perturb the Earth’s energy budget by scattering and absorbing radiation and by
altering cloud properties and lifetimes. They also exert large influences on weather, air
quality, hydrological cycles, and ecosystems. Aerosols released into the atmosphere due
to natural and anthropogenic activities lead to deteriorated air quality and affect Earth’s
climate. It is important to regularly monitor the global aerosol distributions and study
how they are changing, especially for those aerosols with large spatial and temporal
variability, such as smoke, sand storms, and dust [IPCC, 2007]. Detection of these highly
variable aerosols is challenging because of strong interactions with local surface and
meteorological conditions.

Because atmospheric aerosols can directly alter solar and Earth radiation in both visible
and infrared (IR) spectral regions through scattering and absorption processes, both
visible and IR remote sensing techniques have been used for detection of aerosols in the
atmosphere [e.g., Tanre and Legrand, 1991; Ackerman 1989, 1997; Kaufman et al., 1997;
Verge-Depre et al., 2006]. Visible and IR images can be used for detecting episodic
smoke and dust particles due to the fact that these aerosol particles display some spectral
variations in visible and IR spectral regions different from those of cloud or clear-sky
conditions. In practice, the detection is based on the analysis of reflectance (or radiance)
in visible bands or brightness temperature (BT) in IR bands. The magnitude of the
difference in reflectance or BTs in selected bands (or channels) can be used to infer the
signature of dust and smoke. This is the basic idea of our aerosol detection algorithm,
which will be described in detail in this document.

1.1 Purpose of This Document

The aerosol detection Algorithm Theoretical Basis Document (ATBD) provides a high
level description of and the physical basis for the detection of smoke/dust contaminated
pixels with images taken by the Advanced Baseline Imager (ABI) flown on the GOES-R
series of next generation NOAA operational geostationary meteorological satellites.

The algorithm provides an initial estimate of the presence or absence of smoke or dust
within each ABI pixel.

1.2 Who Should Use This Document

The intended users of this document are those interested in understanding the physical
basis of the algorithms and how to use the output of this algorithm to optimize the
episodic aerosol detection for a particular application. This document also provides
information useful to anyone maintaining or modifying the original algorithm.

1.3 Inside Each Section
This document is broken down into the following main sections.

e System Overview: Provides relevant details on ABI instrument characteristics
and detailed description of the products generated by the algorithm.
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e Algorithm Description: Provides the detailed description of the algorithm
including physical basis, the required input and the derived output. Examples
from algorithm processing using proxy input data are also provided.

e Test Data Sets and Outputs: Provides a description of the test data sets used to
characterize the performance of the algorithm and the quality of the output.
Precision and accuracy of the end product is estimated and Error budget is
calculated.

e Practical Considerations: Provides an overview of the issues involving
numerical computation, programming and procedures, quality assessment and
diagnostics and exception handling.

e Assumptions and Limitations: Provides an overview of assumptions which the
algorithm is based on and the current limitations of the approach. The plan for
overcoming some limitations with further algorithm development is also given.

1.4 Related Documents

Besides the references given throughout, this document is related to documents listed as
bellow:

(1) GOES-R Mission Requirements Document (MRD)

(2) GOES-R Functional and Performance Specification Document (F&PS)

(3) GOSE-R ABI Aerosol Detection Product Algorithm and Test Implementation Plan
(ATIP) Document

(4) GOSE-R ABI Aerosol Detection Product Validation Plan Document

1.5 Revision History

This is the third version (Version 3.0) of this document after updates on Version 2
applied to both GOES-16 and GOES-17 observations, and it corresponds to current
version of algorithm existed in Ground systems. Version 3.0 is based on Version 2.0 but
with updates including not only the revisions but also improvement of algorithm itself
and related changes to precision and accuracy estimates etc. All the documents were
created by the GOES-R AAA ADP team led by Dr. Shobha Kondragunta of
NOAA/NESDIS/STAR. The ADP team includes Dr. Steven Ackerman of University of
Wisconsin-Madison and Dr. Pubu Ciren of PSGS QSS Group, Inc., Maryland. Version
3.0 ATBD accompanies the delivery of the version 6.0 algorithm, which is also the latest,
to the GOES-R AWG Algorithm Integration Team (AIT).

2 OBSERVING SYSTEM OVERVIEW

This section will describe the products generated by the ABI ADP algorithm including
smoke and dust and the requirements it places on the sensor.

11



2.1 Products Generated

As described in Tables 1 and 2, ADP measurement accuracy is defined as 80% of correct
classification for dust over water and land, for smoke over land, and 70% correct
classification for smoke over water with measurement range given as binary yes/no
detection above threshold of 0.2 aerosol optical depth, as stated in GOES-R Ground
Segment Functional and Performance Specification (F&PS) (G417-R-FPS-0089 V1.9). It
should be noted that aerosol optical depth of 0.2 defines background atmospheric aerosol
and is not computed with this algorithm.

Table 1. GOES-R mission requirements for Aerosol Detection
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Table 2. GOES-R qualifier for Aerosol Detection

0
? 2 g
3 g 3 =
Jc £ ce Qo m 09 5
5 = 8 Igs S 3 58 =
3 = oS3 =0 s = 2.
@ ) SR o] D o — = @ o
= Z% = a < O =g &
= 5 g 2
2 2 =
2
Clear
Aerosol Quantitative out] Conditions
Detection to at least 60 |down to feature Over specified
(including GOES-R Cc Day degrees LZA of interest eoara phic area
Smoke and and qualitative | associated with geograp
Dust) at larger LZA threshold
accuracy
o Clear
Aerosol QUETI £ oL Conditions
. to at least 60 e
Detection dearees LZA down to feature| Over specified
(including GOES-R FD Day grees -2 of interest  |geographic area
and qualitative : .
Smoke and at laraer LZA associated with
Dust) g threshold
accuracy
Clear
Aerosol Quantitative out] Conditions
Detection GOES-R to at least 60 down_to feature Over specified
(including M Day degrees LZA of interest coaraphic area
Smoke and and qualitative | associated with geograp
Dust) at larger LZA threshold
accuracy

C=CONUS, FD=full disk, M= Mesoscale

The purpose of the ADP algorithm is to identify ABI pixels which are contaminated by
either smoke or dust during daytime to facilitate the monitoring of occurrences and
development of smoke/dust episodes. However, due to the relatively weak contribution of
aerosols compared to reflection from the surface to the satellite measured
reflectances/brightness temperatures, the ADP algorithm performs better for heavy smoke
/dust episodes (with aerosol optical depth >0.2) over dark surface than over bright
surfaces. Smoke detection over semi-arid and arid regions is less accurate due to lower
contrast with the background. The algorithm output is currently written in netCDF4

format for aerosol flag (1/0 for yes/no), smoke flag (1/0 for yes/no), dust flag (1/0 for
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yes/no) and 2 quality flags for smoke/dust detection, 2 confidence level flags for
smoke/dust detection and 2 quality information flags related to solar/viewing angle and
sun-glint region (contained in a 1 byte integer), i.e., smoke detection quality flag (1/0 for
not determined (bad)/ determined (good), Dust detection quality flag (1/0 for not
determined(bad)/ determined(good)), smoke detection confidence flag (00/01/11 for
lower/medium/high confidence), dust detection confidence flag (00/01/11 for
lower/medium/high confidence). In addition, product quality information flags (contained
in a 4 byte integer) are also generated but only as internal output. The details on both
quality flags and product quality information flags are given in tables 3 and 4
respectively. And, details on determination of quality flags are given in sections related to
each detection.

Table 3. Quality flags for ABI aerosol detection product

Meaning
Byte/Bit" lbit: 0O 1
v Quality Flag Name (default) I
2bit: 00 (default) 01 11
. not
0 | Qc_sMmoke DETECTION | Determined(good) | poiermined(bad)
: not
1 QC_DUST_DETECTION Determined(good) Determined(bad)
2-3 | QC_SMOKE_CONFIDENCE Low Medium High
4-5 QC_DUST_CONFIDENCE Low Medium High

QC_Sunglint_Mask

outside of sun glint:

sun glint angle 240°

within sun glint:

40° >sun glint angle
>(0°

QC_Valid_Zenith_Angle

Valid angle range:

local zenith angle >=0
and <=70 and solar
zenithan angle >=0

Invalid angle range:

Either local zenith
angle> 70 or solar
zenith angle >60

and <=60

*Start from the least significant bit

2.2 Instrument Characteristics

The ADP will be produced for each pixel (2km resolution at nadir) observed by the ABI.
Table 5 summarizes the channels used by the current ADP algorithm.

The backbone of the ADP algorithm is the distinctive spectral and spatial signature of
aerosol (smoke/dust). Temporal variability has not been taken advantage of, in the current
version of algorithm, but is planned for future versions. Similar to clouds, variability of
smoke or dust plume is much larger than the surface over a course of day. Besides the
threshold test, by tracking the variability over time, for example, variability over a course
of 30 minutes, it is possible to define if a pixel is laden with smoke/dust. However, it
must be noted that cloud, smoke and dust may have similar temporal variability. Taking
advantage of temporal variability in smoke/dust detection has high requirement on
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separating clouds from smoke/dust. In addition, as shown in Table 5, different ABI
channels have different spatial resolution, ranging from 0.5 km for visible to 2 km for IR
channels. In ADP algorithm, the output resolution is 2km. Hence, channels with higher
spatial resolution than 2 km have to be aggregated to 2km by sub-sampling before
applying the ADP algorithm. Like any other threshold-based algorithm, the ADP
algorithm requires optimal performance of the instrument.  First, the ADP algorithm is
designed to work when only a sub-set of the expected channels are available. Missing
channels, especially the crucial ones, will impact directly the performance of the
algorithm.

Second, the ADP algorithm is sensitive to instrument noise and calibration error.
Thresholds are required to be adjusted accordingly to the status of instrument operation
and performance. Third, calibrated observations are also critical, but since the
algorithm does not compare the observed values to those from a forward radiative
transfer model, uncertainties in calibration can be ameliorated by modifying thresholds
post launch of the ABI.  The channel specifications are given in the MRD.
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Table 4. Product quality information flags for ABI aerosol detection product

Meaning
i Diagnostic Flag Name 1bit: 0 (default) 1
2bit: 00 (default) 01 11
Invalid longitude
0 QC_INPUT_LON Valid longitude
180<longitude or longitude <-180
Invalid latitude
1 QC_INPUT_LAT Valid latitude
90<latitude or latitude <-90
Invalid solar zenith angle (SZA) Valid solar zenith angle(SZA) ;
1] 23 QC_INPUT_SOLZEN SO'?l” Z%r(‘)'th
90<SZA or SZA <0 0<SZA<90 angle =
invalid local zenith angle(VZA) Valid local zenith angle(VZA) i
45 QC_INPUT_SATZEN Local' Z‘ig'(t)h
90<VZA or VZA <0 0=VZA<90 Bl
Snow/ice
6-7 QC_INPUT_SNOWI/ICE_SOURCE Snow/ice Mask from ABI retrieval Snow/ice Mask from IMS Mask from
Internal test
8 QC_INPUT_SUNGLINT_SOURCE ABI sun glint Mask Internal sun glint Mask
9 QC_INPUT_SUNGLINT outside of sun glint within sun glint
10 QC_INPUT_LAND/WATER Water Land
11 QC_INPUT_DAY/NIGHT Day Night
12 QC_WATER_SMOKE_INPUT Valid ABI inputs invalid ABI inputs
9 13 QC_WATER_SMOKE_CLOUD Cloud-free Obscured by clouds
14 QC_WATER_SMOKE_SNOWI/ICE Snowl/ice free With snowl/ice
15 QC_WATER_SMOKE_TYPE Thin Smoke Thick Smoke
16 QC_WATER_DUST_INPUT Valid ABI inputs Invalid ABI inputs
17 QC_WATER_DUST_CLOUD Cloud-free Obscured by clouds
18 QC_WATER_DUST_SNOWI/ICE Snowl/ice free With snowl/ice
19 QC_WATER_DUST_TYPE Thin dust Thick dust
3
20 QC_LAND_SMOKE_INPUT Invalid ABI inputs Valid ABI inputs
21 QC_LAND_SMOKE_CLOUD Cloud-free Obscured by clouds
22 QC_LAND_SMOKE_SNOWI/ICE Snowl/ice free With snowl/ice
23 QC_LAND_SMOKE_TYPE fire Thick smoke
24 QC_LAND_DUST_INPUT Valid ABI inputs Invalid ABI inputs
25 QC_LAND_DUST_CLOUD Cloud-free Obscured by clouds
26 QC_LAND_DUST_SNOW/ICE Snowl/ice free With snow/ice
27 QC_LAND_DUST_TYPE Thin dust Thick dust
4
28 spare
29 spare
30 spare
31 spare

*Start from the least significant bit
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3 ALGORITHM DESCRIPTION

3.1 Algorithm Overview

The ADP serves to aid air quality forecasters in identifying smoke and dust laden
atmosphere. The ADP algorithm follows heritage algorithms:

e Aerosols (dust) from AVHRR Extended (CLAVR-x) of NESDIS/STAR
e Non-cloud obstruction (including smoke and dust) detection in the MOD/MY D35
MODIS cloud mask developed for MODIS by the University of Wisconsin (UW).

The fundamental outputs of the ADP consist of four flags. They are the aerosol flag,
smoke flag, dust flag and aerosol detection quality flags. Aerosol flag has a value of 0 for
no aerosol and 1 for with aerosol. In the smoke/dust flag, 1 represents smoke/dust and 0
represents no smoke/dust, respectively. The details on quality flags are given in section
2.1. The following sections describe the ABI ADP algorithm.

3.2 Processing Outline

The processing outline of the ADP algorithm is summarized in Figure 1, which includes
the basic modules as input, output, and detection over land and water. The algorithm is
written in C++, and products are outputted in netCDF4 format. For optimizing CPU usage,
the ADP algorithm is designed to run on segments of data. Each segment is comprised of
multiple scan lines (10 lines).
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Name Type Description Dimension

Chi reflectance | input | Calibrated ABI level 1b reflectance at channel 1 | grid (xsize, ysize) |
Ch2 reflectance | input | Calibrated ABI level 1b reflectance at channel 2 | grid (xsize, ysize) |

emperature channel 7
emperature channel 13
emperature channel 14
emperature channel 15

Solar zenith angle Pixel solar zenith angle grid (xsize, ysize)

angle
angle
angle

Pixel latitude grid (xsize, ysize)
Pixel longitude grid (xsize, ysize)
QC flags [ input |  ABI quality control flags with level 1b data grid (xsize, ysize)

Name Type Source Dimension

Cloud mask m ABI level 2 cloud product grid (xsize, ysize)

ABI Product Snrﬂ\;\g/lI(ce ABI level 2 Snow/Ice Product grid(xsize, ysize)

Precedence [™gun glint inout | 'nternally determined but needs informationon | ., iz, )
Data mask P viewing geometry 9 Y

Day/night | . Internally determined but needs information on . . .
Ancillary | Land/Water T 1 km dataset orid(xsize.ysize)
Data mask http://glcf.umiacs.umd.edu/data/landcover ’




MODIS

cloud mask ALl Clad
tests used by mask tests Description Locations where the tests are
ABI ADP Byte Ngt)). (Bit used in ADP
Bit No. '
Smoke over land
3(7) | CIRREF- Near IR Cirrus Test (1.38 um) S"Sﬂ';f over waer
Dust over Water
ETROP — Emissivity at Smok Wat
moke over Water
2(5) Tropopause Test U G R
15 4 +1 . + Smoke over land
(1) |ULST - Uniform Low Stratus Test Dust over land
when ETROP is true but ULST is false

3(7) CIRREF- Near IR Cirrus Test (1.38 um) ggg&‘::\‘/’:{ V‘I’_a;&

Smoke over water

18 2 (6) PFMFT — Positive FMFT (Split-Window Dust over water
BTD) Test Smoke over land

Dust over land

3(8) EMISS4 — 4 um Emissivity Test Smoke over land
3(4) RGCT - Reflectance Gross Contrast Test Smoke over land



http://nsidc.org/data/g02156.html

e Sun glint mask

The ADP algorithm is designed to generate internal sun glint mask based on ABI viewing
and illuminating angles as second source. The sun glint angle (1) is calculated as follows

cos(r7) = cos(6y) * cos(@) + sin(fy) * sin(d) * cos(180 — )
& : solar zenith angle

@ : satellite zenith angle

@ : relative azimuth angle

Note that, ¢ is defined as the difference between satellite azimuth angle and solar azimuth
angle. An area with calculated sun glint angle greater than zero and less than 40° is
defined as sun glint area.

e Day/night mask
A day/night flag is determined internally based upon the solar zenith angle. Day is
defined as solar zenith angle of less than or equal to 87°, while night is defined as solar
zenith angle greater than 87°.

e Land/water mask
The only static input data required by the ADP algorithm is a global 1km land/water
mask. The global land cover classification collection created by The University of
Maryland Department of Geography with Imageries from the AVHRR satellites acquired
between 1981 and 1994 [Hansen et al., 1998] is the source
(http://glcf.umiacs.umd.edu/data/landcover/).

3.4 Theoretical Description

The ADP algorithm attempts to separate cloudy and clear pixels from those with smoke
or dust. The detection of smoke or dust relies on the distinctive signature of smoke or
dust which is often expressed in terms of spectral variations of the observed brightness
temperature or solar reflected energy. The spectral variation of the refractive index plays
an important role in the success of these methods. In addition, the scattering and
absorption properties of an aerosol also depend on the particle size distribution and the
particle shape. Several aerosol remote sensing techniques have been developed using
observations from the Advanced Very High Resolution Radiometer (AVHRR) [e.g.
Barton et al., 1992]. Similar to the dust plumes, the volcanic ash plumes often generate
negative brightness temperature differences between 11um (BT11) and 12 um (BT12).
Prata [1989] has demonstrated the detection of volcanic aerosols using two infrared
channels, while Ackerman and Strabala [1994] applied observations at 8.6, 11 and 12um
from the Hyper Spectral Infrared Sound (HIRS) instrument to study the Mt. Pinatubo
stratospheric aerosol.

Image based aerosol detection always involves assumptions of the radiometric
characteristics of aerosol, clear and cloudy scenes. The surface conditions also influence
the separation of aerosol pixels from those with clear-sky or cloud. The ADP algorithm
currently uses spectral and spatial tests to identify pixels with smoke or dust in the
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daytime. Temporal tests are planned for future versions of the algorithm. The algorithm
also treats the detection differently for water and land.

3.4.1 Physics of the Problem

Techniques for the remote sensing of aerosols using solar and thermal measurements
from satellites have been developed for several instruments, including AVHRR and
MODIS. Fundamentally, these methods are based on the radiative signatures of
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Figure 2: Real and imaginary part of dust, soot, water and ice as a function of wavelength. Plots are
based on data obtained from CRTM.

aerosols. The problem of accurate detection and classification is compounded by the fact
that the physical characteristics of aerosols (e.g. particle size distribution, concentration,
chemical composition, location in the atmosphere) change as the aerosol layer develops
and dissipates. These physical changes are capable of affecting the radiative
characteristics of the original aerosol and our capability to detect them from satellite
observations. In addition to being present at the source region, aerosols are transported
by winds to other regions of the globe.
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Fundamentally, the radiative signatures of an aerosol layer are determined by the
scattering and absorption properties of the aerosol within a layer in the atmosphere. These

are:

Extinction coefficient, o, (which integrated over path length gives the optical
thickness, 7). This parameter characterizes the attenuation of radiation through
an aerosol volume due to aerosol scattering (measured by scattering coefficient
osca) and absorption (measured by absorption coefficient oans) S0 that cex=

Oscat Oabs.

Single scattering albedo, ®, = o, /0., , Which describes how much attenuation
of radiation is due to scattering. It ranges between 1 for a non-absorbing medium
and 0 for a medium that absorbs and does not scatter energy.

Phase function, P(u, #") which describes the direction of the scattered energy.

Here xand p”are the cosine of solar and local zenith angles, respectively.

There are three important physical properties of a particle that are needed to determine
the scattering and absorption properties listed above:

The index of refraction (m=m_—im, ) of the particle: The index of refraction of

the medium is also required, but for air itis 1. Measurements of the index of
refraction of a material are very difficult to make [Bohren and Huffman 1983].

Them, is an indication of the scattering properties while the m; is an indication of

the absorption characteristics of the material. The scattering and absorption
properties of an aerosol also depend on the particle size distribution. The index of
refraction of smoke and dust is different from ice or water (Figure 2), which
suggests that multi-spectral techniques should be useful in separating the aerosol
from clouds.

The shape of the particle: Microscopic analysis reveals that aerosols are
irregular in shape. Thus, the assumption of spherical particles is often not accurate
but a reasonable approximation. Shape effects may be a particular problem in
the vicinity of strong infrared absorption bands for small particles with a uniform
size distribution [Bohren and Huffman, 1983]. As no satisfactory method of
handling the radiative properties of irregular shaped particles has been developed
for general application to remote sensing techniques, the sensitivity studies
generally assume spherical shaped particles.

The size distribution of the particles, n(r): In addition to defining the radiative
properties, the n(r) also determines the aerosol mass concentration. Particle size
distributions of aerosols are often expressed as a log-normal distribution.

Because of these distinctive wavelength dependent aerosol properties, the spectral
threshold based techniques are used to detect dust, smoke, volcanic ash work. The bulk
transmittance of many aerosols displays a strong spectral variation in the 8-10 um and
10-12 um regions. This is also a spectral region over which the atmosphere is fairly
transparent.  For these reasons, techniques have been developed which successfully
employ satellite radiance measurements at 11 and 12 um to detect aerosols. These split
window IR techniques have primarily been applied to volcanic aerosols, particularly
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depth retrieval algorithm has a condition that ratio of reflectances between 0.47 um and
0.64 pm should be less than 0.75 for the central pixel in a 3 X 3 box to be identified as
dust. Evan et al [2006] use a constraint that the reflectance value of the 0.86.um channel
(Ro.ssum) divided by the reflectance value of the 0.63um channel (Ro.s3um) is within the
range of 0.6-1.0 for the AVHRR (this range is slightly different for MODIS due to
differences in the spectral response functions). Again, due to the nonlinear relationship
with optical thickness, we chose to square the reflectances prior to applying a test. The
physical basis for this test is that the presence of smaller aerosols, like smoke, tends to
reduce the values for this ratio, as smaller particles are more efficient at scattering light at
0.63um. Although dust particles are observed to scatter more light at 0.64um than at 0.86
um probably due to their size, they tend to exhibit more uniform scattering across this
spectral region [Dubovik et al., 2002]. A ratio type test of Ro.gsum/ Ro.s4um has been found
to be useful in discriminating pixels containing smoke from those with dust

Although dust particles are observed to scatter more light at 0.64um than at 0.86um
probably due to their size, they tend to exhibit more uniform scattering across this
spectral region [Dubovik et al., 2002]. Thus, the ratio Ro.gsum/ Ro.saum test [Evan et al.,
2006] has been found to be useful in discriminating pixels containing smoke from those
with dust. Another test for dust examination over water is the requirement that the ratio of
reflectance at 0.47 um and 0.64 pm is smaller than 1.2.  Similar to the dust detection
over land, low level clouds (often towering cumulus) can also have a negative split
window brightness temperature difference. Therefore, brightness temperature between
3.9 umand 11 pm can be used to screen out cloud contaminated pixels.

The RGB image in Figure 4 shows a dust plume with different regions of heavy dust, thin
dust, and clear sky clearly identified. For these different regions, the relationship
between different visible and IR BTD are plotted in the four panels of Figure 4. Clear
sky pixels have low reflectance at both 0.47 and 0.64 um, thin dust has elevated
reflectances at these channels, and thick dust pixels have 20% or greater reflectance at
these channels. The BTD between 3.9 um and 11 um plotted against the BTD between
11 um and 12 um shows a clear separation of thick dust pixels compared to thin dust and
clear-sky.
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Smoke is separated from cloud using spatial uniformity tests for 0.64 pum channel.
Clouds show large variability in this channel compared to smoke.

Spatial variability tests will also help in avoiding the mis-classification of clouds as
smoke. By using the standard deviation of reflectance at 0.86um, where both smoke
aerosols, thick clouds show uniform variability compared to thin smoke and partially
cloudy pixels. Also, while reflectance from cloud is spectrally independent, it is not for
smoke. This allows the use of spectral contrast tests using 0.47 um, 1.61 um, and 2.25
pm to separate clouds from thick smoke. A combination of tests developed using
multiple channels are shown in Figure 6.

First of all, over water, clear pixels, pixels loaded with thick smoke and cloud are more
uniform than pixels with partial cloud or thin dust. By using the standard deviation of
reflectance at 0.86um, where both aerosol and clouds effects are moderate, pixels which
contain thick smoke vs. clouds/thin smoke can be separated. It is known that smoke in
visible channels looks brighter than water surface but darker than a cloud. However, it is
very difficult to completely separate them by only using the reflectance test. Therefore,
based on the fact that reflection from clouds is spectrally independent, while reflection
from smoke has strong wavelength dependence, spectral contrast tests are combined to
separate clouds, smoke and water surface. First of all, the ratio between 0.47um to
1.61um is used, the rationale for choosing these two channels is due to the fact that
aerosol effect is larger at 0.47um while water is darker at 1.61um. Secondly, the ratio
between 2.25um to 1.61um is combined to enhance the separation of smoke from clouds.
Thirdly, by constraining Ro.47um and Ry.61um, thick smoke can be identified
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snow/ice. Note that, unlike the primary and secondary snow/ice mask, the internal
snow/ice over land test is implemented after the smoke/dust detection. Instead of
terminating the detection process, internal snow/ice test result is used as quality control
and outputted in the quality information flags.

The specific internal tests as currently implemented are:
1) Good data test
e Rossum, Rieyym>0 &
e BTiyum>0K &
e ABI quality flags for above channels indicate good data

2) Snow and Ice tests;
if BT11um<285k & (Ro.geum- R161um )/ (Ro.gsum+ Ri61um )>0.2
then snowl/ice indicated for this pixel.

3.4.2.2 Dust Detection over Land

Figure 7 is a flow chart of the algorithm to detect the presence of dust over land during
daytime (defined as solar zenith angle less than 87° degrees). The tests are not performed
over snow and ice.

The specific tests as currently implemented are:

1) (1) Test for the presence of snow/ice by using primary snow/ice mask, and if the
primary is not available, then using secondary snow/ice mask. However, for dust
detection over land, cloud mask is not applied to avoid the frequent miss-
identification of dust plume as clouds in cloud mask. Residual cloud contamination
is eliminated after detection by the designed test. Any pixel with positive snow/ice
mask is not processed.

(2) Test for the quality of the input radiance data
®  Ro.47um, Ro.6aum, Ro.gspm, R1.38um > 0 &
e BTs9um, BT11um, BT12um > 0K &
e ABI quality flags for above channels equal to zero, indicating quality of
the data is assured.

(3) Thin Dust detection: BTD and R tests — check for pixels with thin dust and no cirrus
clouds

If

BT11um-BT12um < 0.4K & OK <BT3.9um- BT11ym <5K & 0.035<R138um < 0.055 & MNDVI
<0.05

then thin dust (1)
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section 3.4.2.2, the quality flag for this pixel will be assigned as 0, i..e., as determined,
otherwise, this pixel will be marked as not determined with quality flag value of 1.
Determination of confidence level relies on how close for a crucial test to the threshold
and also solar/viewing angle. In the detection of dust over land, the BTD between
BT11um-BT12um is chosen as the crucial test. The confidence level is defined as following:

Crucial Test: BTD=BT11um-BT12um

If 0.3<BTD<0.4 or SZA>60 or VZA>70 confidence level=low
If 0.0<BTD<0.3 confidence level=medium
If BTD<0.0 confidence level=high

3.4.2.2.2Example result

The results of applications of the dust test to MODIS Aqua data on April 15, 2003 at
20:20 UTC and on March 4, 2004 at 19:45 UTC, are shown in Figure 8 and 9,
respectively. The left hand side of the figure is a red-green-blue (RGB) false color
image of the scene showing the location of the dust outbreak. The right-hand side of the
figure shows the results of the dust test. Pixels flagged as dusty are colored orange. A
second example is shown in Figure 10, which is an example of smoke and dust co-existed
event observed by GOSE-16 at several UTC timestamps on 04/13/2018.
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Figure 8: Left: a red-green-blue (RGB) false color image of a MODIS Aqua observation data on
April 15, 2003 at approximate 20:20 UTC. Right: the results of the dust test where pixels flagged as
dusty are colored orange.
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Figure 9: Left: a red-green-blue (RGB) false color image of a MODIS Aqua observation data on
March 4, 2004 at approximate 19:55 UTC. Right: the results of the dust test where pixels flagged as
dusty are colored blue.
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clouds relies on ABI cloud mask. Pixel is considered to be obscured by clouds if
ABI cloud mask tests in 2/5 (byte no./bit no.) is true but 4/1 is false, or 2/6 is true.
Any pixel with positive snow/ice/cloud mask is not processed and the corresponding
quality flag is set as 1, i.e. not-determined.

3) Test for the quality of the input radiance data

*  Ro.47um, Ros4um, Rogsum >0 &

*  BTsoum, BT10.3um, BT12um > 0K

» ABI quality flags for above channels equal to zero, indicating
quality of the data is assured.

4) Uniformity and spectral tests for residual clouds

e MeanRo.gspm > 0 and StdRo.gspm < 0.005 &
® Roayym<1.0 &
® Ro.47um/Ro.64um < 2.5
If all above test passed, then proceed to dust detection. Otherwise,
detection is stop here. And, quality flag is set as 1, i.e., not determined.
5) Tests for dust
If 3.0K< BT3.9um- BT10.3um < 10K then thin dust test
Else
Thick dust test

4.1 thin dust test
if
BT103um- BT1oum <4.0K and -0.3 < NDVI<0 or
Ro.47um/Ro.6aym < 1.5 or
BT3.9um- BT103um > 5.5K and BT10.3um- BT12um < 3.0K
then thin dust (1), (2) and (3)

4.2 thick dust test
if
BTs.9um- BT1ym > 20K and

BT11um-BT12um < 0K and -0.3 < NDVI <0.05
then thick dust (2)

6) Set dust mask flag
There are three separate tests for thin dust over water, each is elaborated above. Any of
the tests can pass for the pixel to be flagged as dusty, although some of the tests have

multiple conditions that must be passed.

3.4.2.3.1 Determination of quality and confidence flags
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Determination of confidence level relies on how close for each test to the threshold. In
general, there are three types of test, i.e.,1). Value of the test<threshold. 2). Value of the
test >threshold; 3). Value of the test is within a range of two thresholds. First of all,
confidence value is assigned to each test. For type 1 test, confidence value of 0.0, 1.0 and
0.5 is assigned respectively for actual value is less than 1% under the threshold, more
than 2% under the threshold and between 1%~2%. For type 2 test, confidence value of
0.0, 1.0 and 0.5 is assigned respectively for actual value is less than 1% above the
threshold, more than 2% above the threshold and between 1%~2%. For type 3 test, range
between low-threshold and up-threshold are divided into 5 equal interval, confidence
value of 0.0, 1.0 and 0.5 is assigned respectively for actual value falling into the most
outside two intervals, the middle interval and the rest two intervals. Then, the ensemble
confidence value is calculated by averaging the confidence value for all the tests. Final
confidence level is determined by the ensemble confidence value. Details for
determination confidence level for dust over land are given as follow:

1. Thin dust (1) as shown in section 3.4.2.3

Testl: 3.0K< BT3.9um- BT10.3um < 10K
Test2: BTz.o9um- BT10.3um <4.0k
Test3: -0.3 <NDVI<0

Con_value=[con_value(Testl)+ con_value(Test2)+ con_value(Test3)]/3.0

If con_value<0.33 confidence level=low
If con_value>0.33 &<0.66 confidence level=medium
If con_value>0.66 confidence level=high

2. Thin dust (2) as shown in section 3.4.2.3

Testl: Ro.47um/Ro.saum < 1.5
Test2: 3.0K< BT3.9ym- BT10.3um < 10K

Con_value=[con_value(Testl)+ con_value(Test2)]/2.0

If con_value<0.25 confidence level=low
If 0.25<con_value<0.75 confidence level=medium
If con_value>0.75 confidence level=high

3. Thin dust (3) as shown in section 3.4.2.3

Testl: 5.5k <BT3z.9um- BT10.3um < 10K
Test2: BT10.3um- BT12um < 3.0K
Con_value=[con_value(Test1)+ con_value(Test2)]/2.0

If con value<0.25 confidence level=low
If con_value>0.25 &<0.75 confidence level=medium
If con_value>0.75 confidence level=high
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4. Thick dust as shown in section 3.4.2.3
Testl: BT3oum- BT11um > 20K

Test2: BT1ium-BT12um < 0K
Test3: -0.3 <NDVI<0.05

Con_value=[con_value(Testl)+ con_value(Test2)+ con_value(Test3)]/3

If con_value<=0.33 confidence level=low
If con_value>0.33 &<0.66 confidence level=medium
If con_value>=0.66 confidence level=high

In addition, the confidence level is also determined by the solar/viewing geometry and
where the detect dust is within sunglint region, i.e., for a pixel with detected dust, its
confidence level is as:

If 0.0<suglint angle <40 or SZA>60 or VZA>70 confidence level=low

3.4.2.3.2Example result

The results of an application of the dust test to MODIS data on May 18, 2010 at
approximate 12:30 UTC is shown in Figure 12. The left hand side of the figure is a
RGB images, the middle image is MOIDIS AOD (large than 0.2) the brightness. The
image to the right shows the results of the water and land dust detection algorithm, where
orange and brown regions indicate the presence of dust.

ical Depth [MONIS) no dats lend weler thin thick thin thick
Bemmse | smvke smvke dust dusl
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Figure 12: MODIS Terra observations on May 18, 2010 at approximate 12:30 UTC. A dust
outbreak is flowing from the Sahara desert over the adjacent Atlantic Ocean.

The MODIS AOD image shows no data over sun glint region. The RGB image and the
ABI dust mask image show qualitative agreement.

Another example is a Trans-Atlantic dust event observed by GOES-16 in Full disk mode
(Figure 13). It is clearly seen that the trans-Atlantic dust even shown in RGB image is
also identified in GOES-R ADP product. Note that, sun-glint region, where dust detection
is not confident, is given in a black hole at left image.

Figure 13: Left: the results of the smoke/dust detection where pixels flagged as dusty are colored as
yellow (low confidence), orange (medium confidence) and brown (high confidence) at UTC 18:30 on
June 02, 2018 from GOES-16 Full disk. Right. Synthetic RGB image of a GOES-16 Full disk
observation.

3.4.2.4 Thick Smoke Detection over Land

Figure 14 is a detailed flow chart of the algorithm to detect the presence of smoke over
land during daytime. Note that, the tests are not performed in the presence of snow/ice
and ice clouds
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Input cloud/snow/ice
free land pixel

BT; 9um--BT11,;m>10.0K and
BT, 4, > 350.0K

Rosaum >(R’0.6aum +Rsurrace 0.6aum) aNC
1.8>=R,>=1.2and 1.8>=R,z1.0 and
StdR, ¢, n<0.04

Not smoke




c1=2.990101E-02, c2=-1.873911E-04, c3=4.602174E-01, c4=9.658934E-04

NDVI <=0.2 and NDVI<0.3:
c1=5.179930E-02, cz=-1.043257E-04, c3=4.937035E-01, c4=4.310074E-04

NDVI <0.2:
c1=-3.397737E-02, c2=1.640336E-03, c3=1.087497E+00, c4=-9.538776E-03

The specific tests as currently implemented sequentially are:

1) Test for the presence of snow/ice by using primary snow/ice mask, and if
the primary is not available, then using secondary snow/ice mask. Test for
the presence of clouds relies on ABI cloud mask. Also test for the
presence of clouds by using ABI cloud mask. Pixel is considered to be
obscured by clouds if ABI cloud mask tests in 3/7 (byte no./bit no.) is true,
or 2/5 is true but 4/1 is false, or 3/7 is true, or 2/6 is true or3/2 is true , Any
pixel with the presence of snow/ice or cloud, as indicated by the snow/ice
mask or cloud mask, is not processed.

2) Test for the quality of the input radiance data

*  Ro.47um, Ro.64um, Ro.gspm , R225um >0 &

O BT3,9pm, BT]_]_pm, > 0K

» ABI quality flags for above channels equal to zero, indicating
quality of the data is assured.

3) Fire detection (hot spot)
If
BT3.0um> 350K and BT3z.9um - BT11um > 10K
then fire and associated with thick smoke

4) Spectral and uniformity tests for thick smoke

If
Ro6aum > (R'o64um  + (C,+C,005)+(C,+C,00s)eR
1.2<R;1<1.8and 1.0<R»< 1.8 and
StdRo.64ym < 0.04 (3x3)

then thick smoke

) and

2.25um

5) Set smoke flag

. If fire or thick smoke then smoke

3.4.2.4.1 Determination of quality and confidence flags
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The approach to determine the quality flag and confidence value for each test is the same
as that described in section 3.4.2.3.1.. Details for determination confidence level for dust
over land are given as follow:

1. Smoke from fire as shown in section 3.4.2.4

Test2: BT3.9um - BT1um > 10K

Con_value=[con_value(Testl)+ con_value(Test2)]/2

If con_value<=0.25 confidence level=low
If con_value>0.25 &<0.75 confidence level=medium
If con_value>=0.75 confidence level=high

2. Thick smoke as shown in section 3.4.2.4

Testl: R2.25um < 0.2

Test2: Ro.eaum > (0.06 + R2.25um)
Test3: R1>0.85

Testd: R2>1.0

Con_value=[con_value(Testl)+ con_value(Test2) + con_value(Test3)+
con_value(Test4)]/4

If con_value<=0.25 confidence level=low
If con_value>0.25 &<0.75 confidence level=medium
If con_value>=0.75 confidence level=high

Note that, the confidence level is also determined by the solar/viewing geometry, i.e., for
a pixel detected as smoke, its confidence level is as:

If SZA>60 or VZA>70 confidence level=low

3.4.2.4.2Example result

The results of an application of the smoke test to MODIS Terra data on May 2, 2007 at
16:35 UTC is shown in Figure 15. Smoke over Florida is detected. Comparisons of
smoke mask to RGB images show that both smoke over land and water were well
captured. Another example for GOES-16 observations is given in Figure 16. It is
indicated smoke plume shown in RGB is also identified as smoke in GOES-R ADP
product.
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Figure 15: Left: a red-green-blue (RGB) false color image of a MODIS Terra observation data on
May 2, 2007 at approximate 16:35 UTC. . Right: the results of the smoke test where pixels flagged as
smoky are red.

L Confidene

Figure 16: Left: the results of the smoke/dust detection where pixels flagged as smoky are colored
as yellow red (high confidence) at UTC 20:02 on Sep 23, 2018 from GOES-16 CONUS observation.
Right. Synthetic RGB image of a GOES-16 CONUS observation.
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Smoke over water

Rtn.amm,n.mm,l.ﬁmm,:,r.um] >0
Quality flag for above channels =0

R' 26 & R’y 55um0.03 0.0025<5td Ry ggum
& R';<0.5 <0.05

R 210 &
R'4<0.6

R'; >=10.0 &
R

Return output

end
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2) Uniformity test

If 0.0025<StdRo.ssum <0.05 then
thick smoke determination test

If 0.0015<StdRo.gsum <0.0025 then
thin smoke determination test

3.1) Thick smoke determination test

If R; >10.0and R, <0.6
then thin smoke (1)

If Rpgeum>0.03and R; >6.0and R;<0.5 then thick smoke

3.2). thin smoke determination test

If Rygeum>0.02 and R3>10.0 and R,<0.7 then thin smoke (2)

3) Set smoke flag
Note that,

Rygeum - TOA reflectance at 0.86um (R g6,m) cOrrected for Rayleigh
Scattering, i.e.
R(,),.Sﬁum:RO.SGum = R(,).Sﬁum

Roseum - Reflectance from Rayleigh scattering at 0.86um
Rie1um - Reflectance from Rayleigh scattering at 1.61um
R32sum - Reflectance from Rayleigh scattering at 2.25um

14 A
Rl — Ro.47um—Ro.a7un R — R2 25ym—Ro.2.25un
=

! !
Ri61ym—Ri61um Ri61ym—Ri61ym

3.4.2.5.1 Determination of quality and confidence flags

The approach to determine the quality flag and confidence value for each test is the same
as that described in section 3.4.2.3.1.. Details for determination confidence level for dust

over land are given as follow:

1. Thick Smoke (1) as shown in section 3.4.2.5

Testl: R'3>6.0
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Con_value=[con_value(Test1)]

If con_value<=0.25 confidence level=low
If con_value>0.25 &<0.75 confidence level=medium
If con_value>=0.75 confidence level=high

2. Thin Smoke (1) as shown in section 3.4.2.5

Testl: R's>10.0
Test2: R4 <0.7

Con_value=[con_value(Testl)+ con_value(Test2)]/2

If con_value <=0.25 confidence level=low
If con_value >0.25 &<0.75 confidence level=medium
If con_value>0.75 confidence level=high

3. Thin smoke (2) as shown in section 3.4.2.5

Testl: R3>5.0
Test4: R4 <0.5

Con_value=[con_value(Testl)+ con_value(Test2) + con_value(Test3)+
con_value(Test4)]/4

If con_value<=0.25 confidence level=low
If con_value>0.25 &<0.75 confidence level=medium
If con_value>=0.75 confidence level=high

Note that, the confidence level is also determined by the solar/viewing geometry, i.e., for
a pixel detected as smoke, its confidence level is as:

If SZA>60 or VZA>70 confidence level=low

3.4.2.5.2Example result

The results of an application of the smoke test to MODIS Terra data on October 28, 2003
at approximate 18:25 UTC is shown in Figure 18. Smoke over the coast of California due
to a fire in the dry season is detected. The detected coverage of the smoke is very similar
to the pattern that observed from the RGB image, indicating the success of ADP
algorithm. Another example is given in Figure 19, which shows the application of ADP
algorithm on GOES-16 observations at two timestamps, i.e., UTC:16:47 and UTC: 20:17.
It is clearly seen the detected smoke plumes in ADP for a smoke event over gulf close to
Florida are very similar to these shown in RGB images.
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Figure 18: Left: a red-green-blue (RGB) false color image of a MODIS Terra observation data on
October 28, 2003 at approximate 18:25 UTC. Right: the results of ADP algorithm.
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Figure 19: Left: a red-green-blue (RGB) images of GOES-16 observation on March 24, 2018 at
16:47 UTC and 20:17 UTC. Right: the results of ADP algorithm.
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3.4.3 Noise reduction in smoke/dust detection

Since the size of smoke/dust event usually appears as larger than several ABI pixels, to
reduce noises appeared after above-described detections, which are based on threshold
tests, buddy checks are applied to the results after detection steps described in above
sections. Buddy checks are done for both smoke and dust pixels. For a pixel that is
detected as smoke pixel, buddy check is then performed for surround pixels in a 3 by 3
box. If the number of pixels that are detected as smoke in this box is less than 5, then the
detected smoke for this pixel is considered as noise, and corresponding smoke flag for
this pixel is reversed from 1 to 0, and also the corresponding confidence flag is changed
to as low confidence. The same procedure is also applied to pixel which is identified as
dust from detection described in above sections.

In addition, to reduce the contamination from pixels which has melting snow/ice or
covered partially by snow/ice, and are usually missed in snow/ice mask, snow/ice
adjacency are further performed to reduce noise in smoke/dust detection. The snow/ ice
adjacency tests are performed for all pixels identified as snow/ice in snow/ice mask. If a
pixel is identified as snow/ice in snow/ice mask, then smoke/dust flag in all surrounding
pixels in 3 by 3 box is set as 0, and the corresponding confidence flag are set as low
confidence.

3.4.4 Algorithm Output

The final output of this algorithm is a single yes/no mask for Aerosol (smoke/dust), dust
and smoke, as shown in Table 9, and also the corresponding DQF flags as shown in Table
3.

Table 9. ABI aerosol imagery detection algorithm output

Name Type Description Dimension
Aerosol flag | output | Detected aerosol binary flag (1/0 - yes/no) grid (xsize, ysize)
Smoke flag output Detected smoke binary flag (1/0 — yes/no) grid (xsize, ysize)
Dust flag output Detected dust binary flag (1/0 — yes/no) grid (xsize, ysize)

In addition the following information is included in the output:

e Date and Time (swath beginning and swath end)

e Bounding Box

0 product resolution (nominal and/or at nadir)
number of rows
number of columns
bytes per pixel
data type
byte order information
o0 location of box relative to nadir (pixel space)

e Product Name
e Product Units

O O0OO0OO0Oo
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e Ancillary Data to Produce Product (including product precedence and interval
between datasets is applicable)
o Version Number
o Origin (where it was produced)
o Name
Satellite
Instrument
Altitude
Nadir pixel in the fixed grid
Attitude
Latitude
Longitude
Grid Projection
Type of Scan
Product Version Number
Data compression type
Location of production
Citations to Documents
Contact Information

4 Prelaunch Test Datasets and Outputs
4.1 Proxy Input Data Sets and validation data

4.1.1 Input Data sets

The MODIS instrument flying on NASA’s Aqua and Terra satellites measures radiances
at 36 wavelengths including infrared and visible bands with spatial resolution 250m to
1km. The cloud mask is part of the MODIS Cloud Product [Ackerman et al., 1998, 2008;
Frey et al., 2008; King et al., 2003; Platnick et al., 2003]. Due to the fact that MODIS
has nearly all ABI channels, currently MODIS provides the optimum source of data for
testing (Table 10)

50



Table 10. Mapping of ABI Channels to MODIS Channels

ABI Channel (um) MODIS Channel (um)
Channel 1: 0.45 - 0.49 Channel 3: 0.459 - 0.479
Channel 2: 0.59 - 0.69 Channel 1: 0.62 - 0.67
Channel 3: 0.846 - 0.885 Channel 2: 0.841 - 0.876
Channel 4: 1.371 - 1.386 Channel 26:1.36 - 1.39
Channel 5: 1.58 - 1.64 Channel 6: 1.628 - 1.652
Channel 6: 2.225 - 2.275 Channel 7: 2.105 - 2.155
Channel 7: 3.8-4.0 Channel 21: 3.929 — 2.989
Channel 11: 8.3 -8.7 Channel 29: 8.4 - 8.7
Channel 14: 10.8 - 11.6 Channel 31: 10.78 — 11.28
Channel 15: 11.8-12.8 Channel 32: 11.77 - 12.27

The disadvantage is in the lack of temporal coverage. In the current algorithm (V5)
testing, a total of 146 cases (or MODIS granules) (80 for dust and 66 for smoke) were
used for testing the performance of ADP algorithm. Currently, no simulated ABI data
with aerosols are available but we plan to use the simulated ABI data once it becomes
available.

MODIS L1-B 1km radiance data were obtained from NASA Level 1 and Atmosphere
Archive and Distribution System (LAADS, http://ladsweb.nascom.nasa.gov/). Visible
channel reflectances were normalized to the overhead sun position by dividing with the
solar zenith angle. For the IR channels, radiances were converted to Brightness
Temperatures. Viewing and illumination geometry and geo-location are from
MOD/MYDO03. Various cloud tests used in ADP are extracted from the corresponding
bits in the MODIS cloud mask product (MOD/MY D35). Snow/ice mask from
MOD/MYD35 is used as the primary source of snow/ice mask. Land/water mask is also
from MOD/MYD35. Both sun glint mask and day/night flag are internally calculated as
described in section 3.12.

4.1.2 Truth data

4.1.2.1 Supervised MODIS RGB image and MODIS Aerosol optical
depth product

Both smoke and dust have a distinctive signature in RGB image, and NASA Natural
Hazard system (http://earthobservatory.nasa.gov/NaturalHazards/) and MODIS rapid
response system (http://rapidfire.sci.gsfc.nasa.gov/gallery/) routinely issues MODIS
observations containing the smoke and dust outbreaks around the globe. By selecting
granules which are dominated by either only smoke or only dust, a supervised truth
dataset were obtained. Then the corresponding Aerosol Optical Depth (AOD) product is
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used to identify the smoke/dust laden (AOD>0.2) and smoke/dust free (0.2>A0D>0.0)
pixels; Note that, the traditional MODIS AOD product over land only covers dark dense
vegetation surface. However, MODIS deep blue AOD product on AQUA provides
AOD coverage on bright surface such as over desert. MODIS pixels with no AOD
retrievals are considered as covered by clouds or snow/ice, bright surface over land and
bad input data. These conditions are consistently unfavorable for detection of smoke/dust
as well as discussed in Section 3. In addition, due to the difference in cloud screening
procedures between MODIS AOD product and ADP algorithm, only pixels with both
MODIS AOD product and ADP indicating cloud-free conditions are used for quantitative
analysis.

4.1.2.2 CALIPSO VFM product

With the launch of CALIPSO and CloudSat in the EOS A-Train formation in April 2006,
the ability to conduct global satellite cloud product validation increased significantly.
Besides cloud type, CALIPSO also identifies aerosol types including smoke and dust.
Vertical Feature Mask (VFM) is the CALIPSO product which is used for validating ABI
ADP product. It gives not only vertical distribution of aerosol layer but also 6 types of
aerosol, including clean marine, dust, polluted dust, polluted continental, clean
continental, polluted dust and smoke. However, the sparse spatial coverage and narrow
swath of CALIPSO lidar observation limits the amount of match-up overpasses with
MODIS for smoke and dust cases. From 2006 to 2010, about 48 match-up cases are
found with CALIPSO passing through the smoke/dust plume. Among them there are 22
smoke cases and 26 dust cases.

4.2. Output from simulated/proxy data sets
4.2.1. Output for Dust Detection

4.2.1.1. Comparison with RGB image and AOT product

Supervised RGB image can capture dust events very well since dust plumes look brown
in the image compared to cloud. Thus, RGB image can be used to validate the ADP dust
detection algorithm. Therefore, we can apply dust detection algorithm to MODIS
measurement of a dust event and compare the detection result with the MODIS RGB
image. One example is shown in Figure 20 for the MODIS Terra image of April 7, 2007
at 07:30UTC. Qualitative comparison of dust detection with MODIS RGB image shows a
good agreement.
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Unlike the case in Figure 21, the co-located overpass shown in Figure 22 between CALIPSO and
MODIS is over water. It is noted that this co-located overpass is right on the edge of a sun glint
region where ABI ADP data are not processed. Therefore, by excluding pixels in the overpass
within sun glint and with MODIS AOD less than 0.2, the agreement between ABI ADP and
CALIPSO VFM is about 81 %. For a total of 26 match-up cases for dust, the average of
agreement is ~81%.

4.2.2. Output for Smoke Detection

4.2.2.1. Comparison with RGB image

Smoke is associated with fire events and the spatial distribution of smoke plume is uniform and
looks gray to a human eye compared to a cloud. This feature is useful in identifying smoke
plumes in a RGB image without difficulty. Thus, RGB image can be used to validate the ADP
smoke detection. One example is shown in Figure 23 for a fire event in Australia observed by
MODIS Agua on August 25, 2006 at 17:15UTC. Qualitative comparison of smoke detection
with MODIS RGB image shows a good agreement, especially for the thick smoke plumes over
vegetated areas.
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Figure 25: Comparison of smoke detected (red) using ABI ADP algorithm with smoke in CALIPSO Vertical
Feature Mask (VFM) on October 2, 2007 at 17:50 UTC. a) RGB image, b) Aerosol Optical depth from
MODIS C5 aerosol Product, c) Smoke (red) on CALIPSO track, d) Smoke detected with ABI ADP algorithm
on CALIPSO track, €) Smoke vertical distribution on the part of CALIPSO track collocated with ABI ADP,
d) smoke from ABI ADP on the same part of track as in b.

For smoke detection, two CALIPSO VFM vs. ABI ADP cases are presented. They are both over
land on July 23, 2006 at 05:15 UTC and October 2, 2007 at 17:50 UTC (Figure 24 and Figure
25). The agreement between the ABI ADP and CALIPSO VFM is 75% and 80% respectively.
For a total of 22 smoke cases, the agreement between ABI ADP and CALIPSO VFM is about
80%.

4.2.3. Correct Detection (Accuracy) Estimates

Due to lack of ground truth for the accuracy estimate, the evaluation of ADP products is mainly
based on the inter-comparison to other satellite based smoke and dust products (such as RGB
image, HMS smoke analysis, and CALIPSO VFM product). As mentioned before, the correct
detection/A estimates are semi-quantitative.

Correct detection = (TPD + TND) / (TPD+FPD+TND+FND) (4.3.1)

In equation 4.3.1, TPD is true positive detection, TND is true negative detection, FPD is false
positive detection, and FND is false negative detection. The primary validation approach will
provide an overall performance of the algorithm but will not provide information on performance
of the algorithm over different geographic regions. Therefore, additional spot checks and
statistics will be carried out.

Because accuracy of aerosol detection calculated using equation 4.3.1 will include true negative
detects (clear sky pixels), it will not provide information on the true positive detects which a user
might be interested in.  Therefore, probability of detection and false alarm ratio (FAR) are
computed using equations 4.3.2 and 4.3.3:

POD =—1"D__*100 (4.3.2)

— (TPD+FND)

FAR = {FP2)__*100 (4.3.3)

(FPD+TPD)

As discussed in section 4.2, two types of truth data are used. One is the supervised MODIS RGB
and MODIS AOD products and the other one is CALIPSO VFM product. By collocating outputs
from ABI ADP algorithm run with MODIS measured radiance as proxy with these two types of
truth data, statistics on accuracy, hit rate, and miss rate are calculated (see Table 11)
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Table 11. Correct Detection/accuracy, Probability of Detection, and False Alarm Ratio of
ABI dust and smoke detection

No. of Matchups e POD FAR
Detection
CALIPSO VFEM
2031 . . .
Dust o 81.3% 706% | 29.4%
Smoke 5(%%2 80.5% 71.9% | 28.1%

Supervised MODIS AOD product

688911

Dust over land (54) 84.5% 63.6% 36.3%
Dust over water 3522;)23 832% | 785% | 21.5%
Smoke over land 6?28;’ 7 80.1% 77.3% 22.7%
Smoke over water 4522%)3 822% | 864% | 13.5%

Based on these validation studies, the GOES-R ABI aerosol detection algorithm meets the
Functional Product and System requirements (80% correct detection for dust over land and
water, for smoke over land, and 70% correct detection for smoke over water).

However, we are increasing our validation efforts by compiling large amount of AOD and
extinction data from ground-based networks such as AERONET (AERosol Robotic NETwork)
and IMPROVE (Interagency Monitoring of Protected Visual Environments). The presence of
dust and smoke can be indirectly inferred from these measurements and used in the validation of
the ABI aerosol dust/smoke detection product. This work is currently ongoing and will be
presented in any subsequent documents related to validation are presented.

4.3. Error Budget

To examine the sensitivity of the detection algorithm to the radiometric bias/noise, we perturbed
the reflectances at all detection channels with a bias of -5% and a random noise of 5% and
compared the results with those without the radiometric perturbation. An example of a dust case
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4.4.5. Results from Framework run with global MODIS observation

To further test the framework run, global MODIS (Both Terra and Aqua) observations for
August 24 and 25, 2006 were selected as proxy input to run ADP algorithm in the framework.
Figure 30a-b show global smoke/dust mask product from framework run of the ADP algorithm.
Note that, the white shaded region is due to the missing MODIS granule data. In general, the
framework run produced no abnormal smoke or dust pattern for each of these two days, and
consistency is seen between results from these two consecutive days. Furthermore, large smoke
plume resulting from biomass burning were identified over South America, and dusts from dust
storm are shown over Sahara desert. Although the location of the dust and smoke plumes are
consistent between the two days, there are differences in the amount of smoke and dust present.
This is very typical because while old fires die out, new fires form and dust transport occurs in
the free troposphere moving it long distance over short time periods. In fact, with the current
operational GOES fire and aerosol products, we know that substantial diurnal variation exists for
fire duration.  In addition, as shown in Figure 31 and Figure 32 for smoke and dust case,
smoke/dust mask produced by ADP from framework run has very similar pattern of smoke/dust
as identified in MODIS RGB images. These framework runs were not compared to offline
runs. It should also be noted that these runs are based on Version 3 algorithm. Framework
runs using Version 5 algorithm for a longer time period covering several seasons is currently
underway. Results are not available yet to present in the ATBD.
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HODATA SMOKE DUST

Figure 31: Smoke/dust mask from ADP algorithm run in the framework for Aqua, August 27, 2006, UTC
17:15. Left: MODIS RGB image Right: smoke/dust mask from ADP.

NODATA SMOKE  DUST

Figure 32: Smoke/dust mask from ADP algorithm run in the framework for Aqua, August 24, 2006, UTC
13:20. Left: MODIS RGB image Right: smoke/dust mask from ADP.
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5 Post-launch validation Datasets and Outputs
5.1 Input Data Sets and validation data

5.1.1 Input data set

GOES-R was launched on November 19, 2017, named as GOES-16. It was positioned at 89.0W
until December 1, 2018, when it moved to its final operational position, i.e., 75.0W. The GOES-
16 observations used in post-launch validations cover the time period from January 1, 2018 to
October 31, 2018. The algorithm used to generate ADP from GOES-16 observations is the latest
version as descried in this ATBD and it is the same as in ground system.

5.1.2 Truth data

The truth data and validation strategies used in post-launch validations are the same as in pre-
launch validations as described in Section 4. In addition, AERONET measurements were added
as another truth data for post-launch validations.

5.1.2.1 Aerosol Robotic Network (AERONET) observations

The ground-based remote sensing network, AEROsol Robotic Network (AERONET), equipped
with well-calibrated sunphotometers over more than 100 sites throughout the world, measures
and derives quality-assured aerosol optical properties for a wide diversity of aerosol regimes, for
up to the last 10 years [Holben et al., 1998; 2001; Dubovik et al., 2002]. These high quality data
have been widely used as ground “truth” for evaluation and validation of satellite remote sensing
of aerosols [Yu et al., 2003; Remer et al., 2005]. As for primary source of in situ observations,
observations from AERONET will be the primary source, since the stratification of Angstrom
Exponent data from AERONET indicates the presence of smoke or dust particles in the
atmosphere.
The matchup strategies are as following:

e Collocated AERONET and GOES-R ADP smoke/dust detection results

— Spatial coverage: a circle with a radius of 25 km and centered on
AERONET stations are chosen to determine the dominant SM type from
GOES-R ADP product.

— Temporal average: AERONET measurements within a 30minutes window
centered on the NPP VIIRS overpass time, at least three measurements are
available.

e Dominant SM type from JPSS ADP product

— 80% of pixels in the circle are cloud, snow/ice and glint-free (for over
water)

— The type of more than half the valid retrievals was chosen as the dominant
type from JPSS ADP product.

e Classification of Aerosol Type over AERONET:

— Smoke:

AOD>0.2 and AE>1.0
— Non-Smoke:

AOD>0.2 and AE<0.5
— Dust:
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AOD>0.3 and AE<0.5
— Non-Dust:
AOD>0.3 and AE>1.0

52  Output from GOES-16 ADP product
5.2.1 Output for dust detection

5.2.1.1 Comparisons with RGB and GOES-16 AOD product
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Figure 33: Comparison of ABI ADP dust detection (right) with synthetic RGB (left) from GOES-16
observations. Top row: on October 13, 2018 at UTC: 23:02. Middle row: on April 17, 2018 at UTC:
20:32. Bottom row: on March 06, 2018 at UTC: 22:17.

As examples, three dust events over U.S. were given in comparison between synthetic RGB and
ADP product. Dust plume is uniform and appeared to be yellowish in RGB compared to clouds
and smoke plumes. Thus, RGB image can be used to validate the ADP dust detection,
qualitatively. As all three dust example shows, the coverage of dust plume as indicated in ABI
ADP as yellow-orange-brown color agreed with the dust plume shown in RGB images very well.
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CALIPS0 VFM ADPF DUST/SMOKE




True False False True

Time Period " W . .
positive positive negative negative

Accuracy POCD POFD

Dec 14,2017 —

Oct 13, 2018 4612 1476 667 488749 99.4 87.4 24.2

5.2.1.3 Comparisons against AERONET measurements

The dust detections from ABI ADP run on GOES-16 observation validated with ground-based
measurements, i.e, AERONET observations, were performed according to the strategies
described in section 5.1.2.1. The time periods covers from December 14, 2017 to October 13,
2018. The derived statistics matrix is given in Table 13.

Table 13. Accuracy, Probability of Correct Detection (POCD) and False Alarm Rate (FAR)/ Probability of
False Detection (POFD) of dust detection derived from the match-ups of ABI ADP over GOES-16
observations with AERONET measurements.

True False False True

Time Period " W . .
positive positive negative negative

Accuracy POCD POFD

*Dec 14,2017 —

Oct 13, 2018 6540 173 833 57438 98.5 88.4 2.6

As shown in Table 13, dust detection with ABI ADP on GOES-16 observation can have an
accuracy of ~98%, POCD pf ~88% and POFD of 2.6%.

In addition, to evaluate how dust detection in ABI ADP perform over time, time series of dust
detection over AERRONET stations located at dust dominated region were examined. Figure 35
shows the examples for three stations, i.e., Cape Verde, Ragged Point and Cape San Juan. First
of all, ADP dust (red diamond) always corresponds to the times when AODs are elevated due to
passing dust storms, and for times when AODs are low, ADP shows no dust (pink triangle),

, indicating high correct detection rate. Secondly, nearly no false detection (blue star) was seen,
indicating low false detection rate of ADP. These results are further indicated in the statistics
shown for each station.
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5.2.2 Output of smoke detection
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Figure 36: Comparison of ABI ADP smoke detection (right) with synthetic RGB (left) from GOES-
16 observations. Top row: on March 06, 2018 at UTC: 22:17. Middle row: on September 25, 2018 at
UTC: 20:32. Bottom row: on September 23, 2018 at UTC: 22:15.

Figure 36 shows three examples where smoke detections from ABI ADP are compared with synthetic
RGB generated from GOES-16 observations. In general, smoke plumes are shown up in RGB images as
grayish color. Pixels where smoke are detected in ABI ADP are given as light-purple, pink and red,
respectively for low, medium and high confidence level of smoke detection. The three examples covers
smoke from small-scale agriculture burning, smoke from forest fires and the transported smoke plumes.
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6. PRACTICAL CONSIDERATIONS

6.1. Numerical Computation Considerations

The ADP algorithm is implemented sequentially. Because some tests require ancillary data, the
ancillary data (e.g., day/night, snow/ice, sun glint, and cloud/clear) need to be input first. To
balance the efficiency and memory requirement for the full disk processing, a block of scanning
pixels are read into a RAM buffer together instead of reading data pixel by pixel.

6.2. Programming and Procedural Considerations

The ADP requires knowledge of spatial uniformity metrics that are computed for each pixel
using pixels that surround it. Detection is performed separately for land and water.

In addition, future temporal tests require information from the previous image. Beyond this
reliance, the ADP is a pixel by pixel algorithm.

6.3. Quality Assessment and Diagnostics

The following procedures are recommended for diagnosing the performance of the ADP.
e Monitor the percentage of pixels falling into each ADP aerosol bin values. These values
should be quasi-constant over a large area.
e Monitor frequency of false positives of regions to assess need to have region specific
thresholds developed and implemented.
e Periodically image the individual test results to look for artifacts or non-physical
behaviors.
e Monitor retrievals over different surface (geographic) type for dependency of errors on
surface brightness
e Monitor spectral threshold values and provide a quality flag depending on how close the
spectral BT differences are to specified thresholds
e Monitor retrievals for temporal consistency. Are retrievals consistent from image to
image?
Qualify flag with value of 0/1/2 representing lower/medium/high confidence is generated
according to how far the actual value for each test is from the predefined threshold.

6.4. Exception Handling

The quality control flags for ABI ADP will be checked and inherited from the flagged Level 1b
sensor input data, including bad sensor input data, missing sensor input data and validity of each
channel used; and will also be checked and inherited from the ABI cloud mask at each pixel.

The ADP also expects the Level 1b processing to flag any pixels with missing geolocation or
viewing geometry information.

The ADP does check for conditions where the ADP cannot be performed and generates quality

control flags for snow/ice pixel, pixels with saturated channels; pixels missed geolocation or
viewing geometry information.
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6.5. Algorithm Validation

For pre-launch validation, ADP algorithm will be extensively validated by using MODIS RGB
images, MODIS aerosol product and Vertical Feature Mask from CALIPSO. The new analysis in
the development to validate the ADP using AERONET and IMPROVE data will be presented in
the next release of the ATBD as well as the ADP validation report.  For post-launch validation,
besides above-mentioned approach, field campaigns will also be carried out. Details on
Algorithm Validation are given separately in the ABI ADP algorithm testing and validation plan
document.

7. ASSUMPTIONS AND LIMITATIONS

The following assumptions have been made in the current algorithm:
e Calibrated and geo-located radiances in ABI channels as required by ABI ADP algorithm
as shown in Table 2 are available;
e ABI cloud mask is available and adequate for the purpose of DP algorithm
e All the ancillary data are available.
Limitations applying to current algorithm are:
e Only for daytime
e Smoke detection over land is limited to dark surface
e Not optimal for optically thin smoke and dust
e No testing has been done to determine algorithm limitations if smoke and dust or other
types of aerosols co-exist in the same pixel

7.1. Performance

The following assumptions are made in estimating the performance of ADP algorithm:

« smoke/dust mask from CALIPSO VFM represents the truth;

. visual separation of smoke, dust and clear pixels from MODIS RGB image introduces
negligible error;

« Thresholds used in the current algorithm are tailored for MODIS channel specifications.
Post —launch tuning of these thresholds will not affect the estimate of algorithm
performance.

« In case of ABI sensor degradation, product production might squeeze but studies will be
carried out prior to the launch on the extent of the effect any changes to instrument
characteristics will have on product quality.

7.2 Assumed Sensor Performance

ABI ADP algorithm assumes the sensor will meet its current specifications and produce
calibrated quality radiance in the required channels (see Table 2). As shown in section 3.4.1.,
impacts from instrument noise and calibration error can be mitigated by adjusting threshold
accordingly. However, ADP algorithm has low tolerance on missing channels. As discussed in
above sections, ADP algorithm selects the optimal channels or combination of channels to best
separate signal of smoke/dust from others. Therefore, missing any channel will definitely
downgrade the performance of the algorithm and eventually leads to failure if crucial channels
are missing. Though current version of ADP algorithm is not designed to mitigate for missing
channels, the impacts of missing specific channel on ADP product is estimated with three
MODIS granules (,i..e, Aqua 2010209.0920, Terra 2003301.1825 and Terra 2002007.1125),
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respectively for smoke and dust detection. And, the relative changes (%) of the total number of
smoke or dust pixel are summarized in Table 16:

Table 16. Relative change (%) from smoke/dust pixel to clear pixel and from clear to smoke/dust pixel (in the
parentheses) under an assumption that one specific channel is missing

Chi | Ch2 | Ch3 | Ch4 | Chs | Che | Ch7 | Chi4 | Chi5
and | 00 | 11000 [ 00 | _ 00 | 00 | _ ;
ok (0.1) | (0.0) |(0.05) (73.3) | (0.1)
waer | 00 | . [ 00 | 00 00 | _ ] ]
(0.54) (90.2) | (50.6) (0.52)
and | 00 | 00 | 00 | 00 [ 012 [ 012 00
(0.1) | (15.8) | (15.8) | (0.32) (17.1) | (28.8) | (4.63)
gust water | 188 [ <1000 | 00 | | 00 | _ | 00 | 00 | 00
24) | (0.0) | (33) (0.33) (0.14) | (24) | (1.8)

In addition, ADP algorithm will be dependent on the following instrumental characteristics.
e The spatial uniformity tests in ADP will be critically dependent on the amount of striping
in the data.
e Errors in navigation from image to image will affect the performance of the temporal
tests.

7.3. Pre-Planned Product Improvement

7.3.3. Improvement 1

Smoke detection over water is not optimal and will need improvements. We already improved
the algorithm for the Version 5 release associated for the 100% delivery. Current algorithm has
not been able to take advantage of temporal variability information that is unique for
Geostationary Platform. We plan to utilize the rapid refresh rate of GOES_R ABI and improve
the algorithm.

7.3.4. Improvement 2

The spectral screening thresholds are currently not a function of viewing and solar geometry.
Testing will be carried out to understand the dependencies of some of the smoke/dust tests on
viewing and solar geometries. Additional testing will also be done using simulated proxy data
to determine ABI spectral thresholds and how robust these spectral thresholds are under different
scenarios. Based on these tests, algorithm could be improved.

7.3.5. Improvement 3

There are other algorithms based on spectral threshold tests that have been recently developed
for SEVIRI.  We will try to adapt those tests to improve smoke detection over water, dust
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detection over land and water, and also find a way to detect dust in the night time.  Algorithm
would have to be substantially altered for night time dust detection because visible channels will
not be available.

7.3.6. Improvement 4

Validation of smoke/dust detection still remains a challenge at this stage. Besides the validation
exercises that have already been completed, additional validations will be carried out. They
include comparisons with the ground-based measurements and other satellite products.
Validation with ground-based measurement will take advantage of measurements from aerosol
sampler in IMPROVE network and Angstrom exponent information from AERONET for any
indications of smoke/dust particle over some local and regional event. This, however, is not a
direct comparison but an indirect subjective evaluation of smoke/dust detection product. For
comparisons with other satellite products, Aerosol Index from OMI will be fully used to quantify
the accuracy of smoke/dust products.
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