GOES-R AWG Product Validation
Tool Development

Lightning Application Team

Steve Goodman (NOAA, GOES-R System Program)
Richard Blakeslee (NASA-MSFC)
Monte Bateman (USRA)
William Koshak (NASA-MSFC)
OVERVIEW

• Products

• Validation Strategies

• Routine Validation Tools

• “Deep-Dive” Validation Tools

• Further Enhancement and Utility of Validation Tools

• Summary
Lightning Optical: Events, Groups, and Flashes

<table>
<thead>
<tr>
<th>Name</th>
<th>User & Priority</th>
<th>Geographic Coverage</th>
<th>Vertical Resolution</th>
<th>Horizontal Resolution</th>
<th>Accuracy</th>
<th>Measurement</th>
<th>Temporal Coverage Qualifier</th>
<th>Product Event Qualifier</th>
<th>Cloud Cover Conditions Qualifier</th>
<th>Product Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Detection - Events - Groups - Flashes</td>
<td>GOES-R</td>
<td>Full Disk to Cloud Top</td>
<td>10 km</td>
<td>5 km</td>
<td>Real Time</td>
<td>70% minimum Flash Detection Efficiency (FDE)</td>
<td>Continuous</td>
<td>20 sec (Std. Dev. of FDE)</td>
<td>Day and night</td>
<td>Quantitative output to at least 65 degrees LZA and qualitative beyond</td>
</tr>
</tbody>
</table>
Event: The occurrence of a single pixel exceeding the background threshold during a single frame

Group: Two or more adjacent events in the same time frame

Flash: A set of groups sequentially separated in time by no more than 330 ms and in space by no more than 16.5 km

Groups Help Track Strokes & other components of the flash.
Validation Strategies

- Approach has two phases:
 - pre-launch evaluation phase given by the blue arrows.
 - post-launch evaluation phase given by the black arrows.
Ground Truth Datasets:

- **Short-Medium Range Lightning**
 - LMA (North Alabama, Oklahoma, DC, West Texas)
 - LDAR II (KSC Florida)
 - HAMMA (North Alabama)
 - High Speed Video Cameras
 - KSC Field Mills (KSC Florida)
 - NLDN (CONUS)

- **Long Range Lightning**
 - GLD360
 - WWLLN
 - WTLN

Also for Building the GLM Proxy
HAMMA Network
(Huntsville Alabama Marx Meter Array)

- 6 station network in N. Alabama
- More information content than LMA
- Can see preliminary breakdown, return stroke, and electrostatic changes
- Used as a time-of-arrival (x,y,z,t) RF source retrieval system
- Also provides electrostatic field changes to retrieve lightning charge
- Will use to determine what part of lightning process GLM detects
- Will also use to examine GLM detection sensitivity & continuing currents
Additional Ground-Based Systems for Field Campaigns

- CHUVA (beginning Oct 2011)
 - SPLMA (Sao Paulo Brazil)
- DC3 (May-June, 2012)
 - FCLMA (Fort Collins Colorado)
- HyMeX (beginning Sept 2012)
 - Possible deployment of MLMA (Mediterranean region)
Airborne GLM Simulator

- Build an airborne detection system that will make high resolution optical measurements as a GLM simulator.
- Deploy on aircraft (e.g., ER2, Global Hawk) to observe cloud-top lightning pulses (target DC3, HS3, other field campaigns).

Satellite Observations

- LIS
 - GLM proxy data development
 - Pre-launch validation simulations (including val tool testing)
 - Pursue opportunity to a LIS on International Space Station
- TARANIS (**Tool for the Analysis of RA**diation from lightNIng and **Sprites**)
 - Launch 2015, CNES/France; nadir staring (2 cameras, 4 photometers)
 - Directly compare with GLM data
- Cross-calibration between GLM and MTG LI (2017)
Definitions: Basic Val Tool Types

- **GLM Proxy Creation Tool**
 - A tool used to create simulated GLM data (level 1b or level 2).

- **LCFA Performance Validation Tool**
 - A tool that validates the performance of the Lightning Cluster Filter Algorithm (LFCA) using either simulated or actual GLM data.
 - Important: only the LCFA in isolation is being validated by these tools.
 - The Algorithm Implementation & Test Plan Document already describes some of these tools (and LCFA performance results); LCFA resiliency, accuracy, and speed were characterized.

- **GLM Validation Tool**
 - A tool that validates the end-to-end performance of the GLM using either lab-simulated or actual GLM data.
 - Validation can employ ground, air-borne, or satellite truths.
 - Both level 1b and level 2 data are evaluated.
Lightning Monitoring Tool (LMT) will monitor the following:

- **Instrument Health/Operation**: by ingesting housekeeping and other meta-data on continuous basis.
- **Instrument Degradation**: using periodic reports on DCC analyses (& other physical target analyses) that flag instrument degradation.
- **Individual Pixel Sensitivity**: using periodic reports on pixel fidelity.
- **GLM Products**: using truth data and the VaLiD shallow dive “engine” (see later).
 - Display any problem with the LCFA by monitoring flags (metadata) in the L2 stream that communicate problems (time, space and overflow) in the clustering process.
 - Will routinely report on lightning product statistics and assess reasonableness.
 - Compare GLM to other available data (e.g., clouds, other lightning data) to verify that GLM is seeing lightning where expected (and vice-versa).
- **INR**: using periodic reports on IR background (from ABI, GLM).
- **INR**: using periodic reports from laser beacon analyses.
- **INR**: using lightning NLDN/LMA ground truth @ night (if needed).
The “stop light” alert output of the LMT is based on inputs (white arrows) the LMT receives. A red or yellow alert could trigger more in-depth “deep dive” analyses.
Monitoring Pixel Sensitivity

pre-boost (Jan 98 - July 01) pixel array

- Pre-boost Lightning Events detected by CCD
- Scaled to Maximum Value
- January 1998 through July 2001
- % of Max
 - Max: 21989
 - Min: 2674
 - Mean: 15452.0
 - Median: 15734.0
 - S Dev: 2963.4
 - Total Events: 293166029

post-boost pixel array (Jan 02 - July 05)

- Post-boost Lightning Events detected by CCD
- Scaled to Maximum Value
- January 2002 through July 2005
- % of Max
 - Max: 22802
 - Min: 2745
 - Mean: 16651.6
 - Median: 16375.0
 - S Dev: 3022.3
 - Total Events: 293153131

post-boost – pre-boost

- Difference in Distribution of Lightning Events detected by CCD
- Postboost (01/02-07/05) - preboost (01/98-07/01)
- % of Max

• **TRMM/LIS Ex.- Time period for the post boost same as the pre-boost so that the amount of time analyzed would be the same**

• **Filtered data (i.e. Events that made it through all the various filters and ended up in flashes) at each pixel in the CCD array**

• **CCD values scaled by the maximum value to get a percent of maximum.**

Difference in pixel event counts (%)

- Mean: 0.168
- Median: 0.146
- S Dev: 3.125
- Max: 12.105
- Min: -16.500
Analytical Validation Tools

- **VaLiD** — “Shallow Dive” mode

 - **VaLiD** = **Validate Lightning Detection**

 - Will ingest data from multiple sources

 - Ground: NLDN, WWLLN, WTLN, various LMA

 - Space: LIS (if available)

 - Will plot some/all these data with GLM data (as desired by operator)

 - Will show lightning totals and trends

 - Can click on the live map and trigger “Deep Dive” mode
Analytical Validation Tools

- VaLiD — “Deep Dive” mode
 - Will be able to look at individual events, groups and flashes to assess resiliency, accuracy and speed
 - Plot products, LMA flashes/sources and/or other available/selected data (NLDN, WTLN, WWLLN, HAMMA, etc.)
 - Will give a flash-by-flash assessment of the inter-system comparison of all lightning detection systems
 - Will be able to assess flash detection efficiency
Pre-Launch Validation Tools

V1 Complete

- Current proxy is based on LMA data
- Have tools that validate GLM proxy pixels (L1b) and proxy flashes (L2)
- Also assesses resiliency, accuracy & speed of the LCFA
- Assesses the quality of the proxy pixels (L1b) — realistic? challenging enough to stress the LCFA?
- (v2) Need to generate L1b pixels from other sources besides (NA)LMA
- (v2) Need to run these proxies through VaLiD to test it
Post-Launch Validation Tools

• VaLiD and the LMT need to be functioning

• They will need to be "tweaked" post-launch (cannot guess alert thresholds pre-launch)

• May be able to also use satellite images (or GLM background images) to enhance both tools
Further Enhancement and Utility of Validation Tools

ZOOM Feature

as presently done for LIS …

1. Click a location & period
2. Define box dimensions
3. Spill out stats for box

Search Area
Center : (32.000,-96.500)
Diagonal : (31.000,-97.500) – (33.000,-95.500)

Search Day and Night time
2010 April [Day of Year 091 - 120]

Table pertains to flashes in the area of interest, (red rectangle on the image).

<table>
<thead>
<tr>
<th>Granule Name</th>
<th>Start time (UTC)</th>
<th>End Time (UTC)</th>
<th>Flashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRMM LIS SC.04.1 2010.114.70856 [Apr 24]</td>
<td>2010-114T00:26:07Z</td>
<td>2010-114T02:00:17Z</td>
<td>142</td>
</tr>
<tr>
<td>TRMM LIS SC.04.1 2010.114.70858 [Apr 24]</td>
<td>2010-114T03:30:57Z</td>
<td>2010-114T05:05:00Z</td>
<td>8</td>
</tr>
</tbody>
</table>

Total granules with flashes detected in the area of interest 4.
Total flashes detected in the area of interest, (red rectangle) 610.
Total flashes in image 5932.
Goal of GLM validation is to ensure that GLM products (events, groups, flashes)
- are adequately detected
- accurately located in space and time, and with proper latency

To accomplish this, we are developing various tool types:
- GLM proxy creation tool
- LCFA performance validation tool
- GLM validation tool

These tools require many truth datasets:
- ground
- air-borne
- satellite

Our coordinated efforts will lead to development of Lightning Monitoring Tool (LMT) which relies on several routine analyses and aperiodic data reports that involve both “shallow and deep dive” investigations.