GOES-R AWG Product Validation Tool Development

Hydrology Application Team

Bob Kuligowski (STAR)
Outline

- Products
- Validation Strategies
- Routine Validation Tools
- “Deep-Dive” Validation Tools
- Ideas for the Further Enhancement and Utility of Validation Tools
- Summary
Products

- Rainfall Rate / QPE
 - 4-km resolution
 - every 15 min
 - FD equatorward of 60° and with a LZA<70°
Validation Strategies: Overview

• Twofold validation strategy:
 – Determine performance of the algorithm against spec
 – Identify systematic biases / weaknesses in the algorithm

• Ground validation datasets:
 – TRMM Precipitation Radar (35ºS-35ºN) from NASA
 – Nimrod radar composite (western Europe) from the British Atmospheric Data Centre
Validation Strategies

• Routine validation tools:
 – Time series of accuracy and precision
 • Is the algorithm meeting spec on a consistent basis?
 • Are there any trends in performance that might need to be addressed even if the algorithm is still meeting spec at this time?
 – Spatial plots of rainfall rates vs. ground validation
 • Are the rainfall rate fields physically reasonable?
 • Do the rainfall rate fields compare reasonably well with ground truth?
 – Scatterplots vs. ground validation
 • Are there any anomalous features in the scatterplots that could indicate errors not revealed by the spatial plots?
Validation Strategies

• Deep-dive validation tools:
 – Comparing calibration MW data with ground truth
 • How much of the error is due to the calibration data rather than the calibration process?
 – Divide data by algorithm class and analyze
 • Are errors in the algorithm associated with a particular geographic region or cloud type?
 – Spatially distributed statistics
 • Does the algorithm display any spatial biases (e.g., latitudinal, land vs. ocean) that need to be addressed?
 – Analyze the rainfall rate equations for particular cases
 • Are there particular predictors or calibration equations associated with errors?
• Capabilities:
 – Match Rainfall Rate with ground data (TRMM and Nimrod radar pre-launch; GPM and Stage IV / MPE post-launch)
 – Compute accuracy, precision
 – Compute basic validation statistics (volume bias, correlation, and threshold-dependent POD, FAR, area bias, and HSS)
 – Create joint distribution files
Routine Validation Tools

- Use GrADS for all visualization:
 - Spatial plots of Rainfall Rate and ground-truth data
 - Plots of POD, FAR, area bias, and HSS vs. threshold
 - Rainfall Rate / ground-truth data joint distribution
“Deep-Dive”
Validation Tools

• Capabilities:
 – Match Rainfall Rate with ground data (TRMM and Nimrod radar pre-launch; GPM and Stage IV / MPE post-launch)
 – Match calibration MW rainfall rates with ground data
 – Divide matched Rainfall Rate and ground data by algorithm class
 – Divide matched Rainfall Rate and ground data by location
 – Compute performance statistics by algorithm class and location
 – Extract rain/no rain and rate equations and distribution adjustment LUTs
“Deep-Dive” Validation Tools

- Use GrADS for all visualization:
 - Spatial plots and joint distribution plots of both calibration MW rain rates and of GOES-R Rainfall Rates vs. ground data
 - Spatial plots of performance statistics
“Deep-Dive” Validation Tools

- Use GrADS for all visualization:
 - 2-D plots of rain/no rain and rate values as a function of predictor values
 - Spatial plots of the training data (predictors & targets)
A handy tool would be a GUI that would allow the user to select a portion of a Rainfall Rate field and automatically create regional plots of:

- Performance statistics vs. ground validation and available calibration data
- Joint distribution
- Predictor fields
- Rain / no rain and rain rate equations and distribution adjustment LUTs
- etc.
Summary

• The GOES-R Rainfall Rate algorithm will be validated against TRMM and Nimrod radar pre-launch and GPM and Stage IV / MPE post-launch

• Validation will focus on evaluating performance and identifying areas for potential improvement
 – Routine validation will focus on the former using time series of statistics, spatial plots and joint distribution plots
 – Deep-dive validation will focus on the latter by examining the predictor and target data along with the calibration to determine the reasons for any anomalies in performance