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ABSTRACT

This Rainfall Rate Algorithm Theoretical Basis Document (ATBD) contains a high-level
description (including the physical basis) of an algorithm for estimating pixel-scale
rainfall rate from images taken by the Advanced Baseline Imager (ABI) flown on the
Geostationary Operational Environmental Satellite-Series R (GOES-R) series of National
Oceanic and Atmospheric Administration (NOAA) geostationary meteorological
satellites. A brief overview of the GOES-R observing system is followed by a more
specific description of the Rainfall Rate algorithm, validation efforts, and planned
improvements.



1 INTRODUCTION

1.1 Purpose of This Document

The Rainfall Rate Algorithm Theoretical Basis Document (ATBD) provides a high-level
description of and the physical basis for the estimation of pixel-scale rainfall rate from
images taken by the Advanced Baseline Imager (ABI) flown on the Geostationary
Operational environmental Satellite-Series R (GOES-R) series of National Oceanic and
Atmospheric Administration (NOAA) geostationary meteorological satellites. The
rainfall rate is produced as an Environmental Data Record (EDR) and the algorithm
output is used by the rainfall potential algorithm to create nowcasts of rainfall rates and
accumulations.

1.2 Who Should Use This Document

The intended users of this document are those interested in understanding the physical
basis of the algorithms and how to use the output of this algorithm in a manner that is
consistent with its underlying assumptions. This document also provides information
useful to anyone maintaining or modifying the original algorithm.

1.3 Inside Each Section
This document is broken down into the following main sections.

e System Overview: Provides relevant details of the Rainfall Rate Algorithm and
provides a brief description of the products generated by the algorithm.

e Algorithm Description: Provides all the detailed description of the algorithm
including its physical basis, its input and its output.

e Test Data Sets and Output: Provides a description of the test data set used to
characterize the performance of the algorithm and quality of the data products. It
also describes the results from algorithm processing using simulated input data.

e Practical Considerations: Provides an overview of the issues involving
numerical computation, programming and procedures, quality assessment and
diagnostics and exception handling.

e Assumptions and Limitations: Provides an overview of the current limitations of
the approach and gives the plan for overcoming these limitations with further
algorithm development.

1.4 Related Documents

This document currently does not relate to any other document outside of the Parallax
Algorithm Theoretical Basis Document and to the specifications of the GOES-R Ground



Segment Mission Requirements Document (MRD) and Functional and Performance
Specification (F&PS) and to the references given throughout.

1.5 Revision History

Version (0.1) of this document was created by Dr. Robert J. Kuligowski of
NOAA/NESDIS [National Environmental Satellite, Data, and Information
Service]/STAR [Center for Satellite Applications and Research] and its intent was to
serve as a draft submission to the GOES-R Program Office (GPO) for initial comments.

Version (1.0) of this document was created by Dr. Robert J. Kuligowski of
NOAA/NESDIS and its intent was to accompany the delivery of the 80% algorithm to the
GOES-R AWG Algorithm Integration Team (AIT).

Version (2.0) of this document was created by Dr. Robert J. Kuligowski of
NOAA/NESDIS and its intent was to accompany the delivery of the 100% algorithm to
the GOES-R AWG Algorithm Integration Team (AIT).



2 OBSERVING SYSTEM OVERVIEW

This section will describe the products generated by the ABI Rainfall Rate Algorithm and
the requirements it places on the sensor.

2.1 Products Generated

The Rainfall Rate Algorithm produces a field of instantaneous rainfall rates associated
with the most recently available GOES imagery. In terms of the F&PS, it is responsible
directly for the Rainfall Rate / QPE [Quantitative Precipitation Estimate] product within
the Hydrology product sub-type, and meets the requirements listed in Table 1. The
Rainfall Rate Algorithm design calls for a quantitative rainfall rate in millimeters per
hour on the same grid as the 2-km ABI IR bands. These products are intended for use by
operational meteorologists and hydrologists for flood forecasting. There are no
diagnostic products for external use aside from the official Rainfall Rate product and
accompanying quality flags, but the calibration coefficient tables and rainfall class grids

will be available internally for diagnostic purposes.

Requirement Description

Requirement Value

Name Rainfall Rate / QPE
User GOES-R
Geographic Coverage Full Disk
Temporal Coverage Qualifiers Day and night

Product Extent Qualifier

Quantitative out to at least 70 degrees LZA or 60 degrees
latitude—whichever is less—and qualitative beyond

Cloud Cover Conditions Qualifier

N/A

Product Statistics Qualifier

Over rain cases and mesoscale-sized surrounding regions

Vertical Resolution

N/A

Horizontal Resolution 2.0 km
Mapping Accuracy 2.0 km
Measurement Range 0 — 100 mm/hr

Measurement Accuracy

6 mm/hr at a rate of 10 mm/hr with higher values at

higher rates (pending addition: ‘“Quantitative for
convective rainfall and qualitative for stratiform
rainfall.”)

Product Refresh Rate / Coverage | 15 min

Time (Mode 3)

Refreshment Rate / Coverage Time | 15 min

(Mode 4)

Vendor Allocated Ground Latency | 266 sec

Product Measurement Precision

9 mm/hr at a rate of 10 mm/hr with higher values at

higher rates (pending addition: *“Quantitative for
convective rainfall and qualitative for stratiform
rainfall.””)
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Table 1. F&PS Requirements for the Rainfall Rate / QPE algorithm.

Note that for pixels outside the local zenith angle and latitude cutoffs, rainfall rates will
still be generated by the algorithm, but their use will be discouraged and they will not be
validated for comparison against spec.

2.2 Instrument Characteristics

The rainfall rate will be produced for each pixel observed by the ABI between 60°S and
60°N latitude that has a local zenith angle (LZA) of less than 70 degrees. The final
channel set is still being determined as the algorithms are developed and validated.
Table 2 summarizes the current channel use by the Rainfall Rate Algorithm. Note that
these particular bands had METEOSAT Spinning Enhanced Visible InfraRed Imager
(SEVIRI) equivalents and therefore are the only ones used in the current version of the
algorithm. However, the operational version of the code will be modified to include
inputs from the available ABI bands without SEVIRI equivalents if they are shown to
have a positive impact on algorithm performance.

Channel Number Wavelength (xm) Resolution (km) Used in Rain Rate
1 0.47 1.0
2 0.64 0.5
3 0.865 1.0
4 1.378 2.0
5 1.61 1.0
6 2.25 2.0
7 3.9 2.0
8 6.19 2.0 v
9 6.95 2.0
10 7.34 2.0 v
11 8.5 2.0 v
12 9.61 2.0
13 10.35 2.0
14 11.2 2.0 v
15 12.3 2.0 v
16 13.3 2.0

Table 2. Channel numbers, wavelengths, and footprint sizes of the ABI bands.

In addition to the data from the individual bands, the algorithm also uses brightness
temperature differences (BTD’s) between pairs of selected bands, and also uses some
spatial gradient information from the infrared (IR) window band (14); see Section 3.4.1.1
for details. Therefore, the performance of the Rainfall Rate Algorithm is sensitive to any
imagery artifacts or instrument noise. The channel specifications are given in the
Mission Requirements Document (MRD) section 3.4.2.1.4.0. The performance outlined
therein was assumed during development efforts.
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3 ALGORITHM DESCRIPTION

This section contains a complete description of the algorithm at the current level of
maturity (which will improve with each revision).

3.1 Algorithm Overview

The rain rate algorithm identifies raining pixels and derives rain rates on a pixel level in
ABI imagery. Its calibration is based on matches of ABI data with microwave (MW)-
derived rainfall rates, which are considered to be the most accurate estimates of
instantaneous rainfall rate available from satellite data. The ABI rain rate algorithm is
based on the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm
first described in Kuligowski (2002).

The algorithm derives rainfall rate fields in two steps:

1. Identify pixels that are experiencing rainfall. The predictors and predictor
coefficients for detecting rainfall are derived using discriminant analysis in a
calibration against MW-retrieved rainfall areas.

2. Retrieve rainfall rates for pixels where rainfall has been detected. The predictors
and predictor coefficients for retrieving rainfall rate are derived using stepwise
forward linear regression in a calibration against MW-retrieved rainfall rates.

The rain rate algorithm provides estimates of instantaneous rainfall rate at the same pixel
resolution as the ABI. In addition to its use in estimating rainfall rates from current ABI
data, the estimates are also extrapolated forward in time in the GOES-R Rainfall Potential
Algorithm, and these nowcasts are in turn used as input for the Probability of Rainfall
Algorithm (see corresponding ATBD’s for additional details).

3.2 Processing Outline
The processing outline of the rain rate algorithm is summarized in Fig. 1. The rain rate is

designed to run on individual pixels, with some information required from pixels in the
5x5 neighboring region.

12
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Figure 1. High Level Flowchart of the rain rate algorithm, illustrating the main
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3.3 Algorithm Input

This section describes the input needed to process the rainfall rates. While the rainfall
rate is derived for each pixel, it does require limited knowledge of the surrounding pixels
(5x5). The Rainfall Rate Algorithm can run with information from only one pixel, but
only if certain predictors are removed from the predictor set.

3.3.1 Primary Sensor Data

The list below contains the primary sensor data used by the Rainfall Rate Algorithm.
Primary sensor data refers to information that is derived solely from the ABI observations
and geolocation information.

e Parallax-corrected, calibrated brightness temperatures (or radiances that will then
be converted to brightness temperatures) for channels 8, 10, 11, 14, and 15 (see
separate ATBD for description of parallax correction algorithm)

e Pixel latitude, longitude, and local zenith angle (LZA)

e Minimum channel 14 brightness temperature over a 5x5 array centered on the
pixel of interest—note that if any of the pixels in the 5x5 array are missing, this
value is still computed based on the available pixels.

e Average channel 14 brightness temperature of the nearest 4 pixels along the scan
line (2 on each side) and nearest pixel in the two adjacent scan lines—unless at
least 3 of these 6 values are missing, in which case this value is not computed.

e Any relevant ABI quality control flags

3.3.2 Ancillary Data

The following list briefly describes the ancillary data requited to run the Rainfall Rate
Algorithm. Ancillary data is defined as data that requires information not included in the
ABI observations or geolocation data. All three of these ancillary data sets would be
considered to be non-ABI dynamic data (i.e., they are not other ABI-derived products);
no static ancillary data (i.e., time-constant ancillary data such as topography or a land/sea
mask) are required.

e MW-derived rainfall rates

Rainfall rates, presumably from MW data but also permissible from active radar,
are required as a calibration target for the algorithm. These rainfall rates do not
need to be available in real time, though the accuracy of the rain rate estimates
tends degrade slightly as the difference between the time period covered by the
training data and the time of the retrieval from the ABI becomes longer. The MW
rainfall rates will be obtained from an operational NESDIS Blended Microwave
Rainfall Rate product that will combine rainfall rates from multiple platforms

14



(e.g., SSMIS, AMSU-B/MHS) and match their statistical distributions in order to
resolve inconsistencies between the two. These rainfall rates are on a 1437 row x
2500 element Mercator grid with an equator resolution of 16 km centered on the
equator and the Greenwich meridian.

Matched MW rain rates and ABI predictors

These MW-derived rainfall rates are matched with ABI-derived predictors that
have been aggregated to the spatial resolution of the MW rain rates (nominally 15
km). Each data point is on a separate data record (the data are not necessarily on
a regularly-spaced grid, though they can be) and the contents of each record of
this matched file are given in Table 3:

Bytes Variable Type Value
0-3 MW pixel latitude Real*4 |-60.0 to 60.0
4-7 MW pixel longitude Real*4 |-180.0 to 180.0
8-11 MW rainfall rate (mm/h) Real*4 |0 to 50
12-15  |ABI band 8 brightness temperature (K) Real*4 [174 to 325
16-19 |ABI band 10 brightness temperature (K) Real*4 |174 to 325
20-23  |ABI band 11 brightness temperature (K) Real*4 |174 to 325
24-27 |ABI band 14 brightness temperature (K) Real*4 |174 to 325
28-31 |ABI band 15 brightness temperature (K) Real*4 |174 to 325
32-35  [S=0.568*(Tmin,112-217 K) Real *4 |-107.432 to 43.568
36-39 Gt = Tavg,11,2 - Tmin 112 Real*4 0to 151
40-41 MW satellite ID Integer*2

Table 3. Contents of each data record of the IR-MW matched data file.

Retrieval coefficient table

This table contains the ID’s (from the matched file) of the selected predictors
along with their calibration coefficients for both rain / no rain discrimination and
rain rate calibration. A list of the contents of this table is provided in Table 4:

4-Byte Variable Type Value
Word

Digital day Real*4 |0 to 366.99
1-12 Number of previous time periods required for|Integer®*4|1 and higher

training

13-24  |Heidke Skill Score from 2-predictor rain / no rain|Real*4 |-1.0 to 1.0
calibration (1 value for each of 12 classes)
25-36  |Correlation coefficient from 2-predictor rain rate(Real*4 |-1.0 to 1.0

calibration (1 value for each of 12 classes)

15




37-48  |First rain rate predictor ID for classes 1-12 Integer*4|1 to 16

49-60  |Second rain rate predictor ID for classes 1-12 Integer*4|1 to 16

61-72  |First rain / no rain predictor ID for classes 1-12  |Integer*4|1 to 8

73-84  |Second rain / no rain predictor ID for class 1-12  |Integer*4|1 to 8

85-108 |Rain rate intercept for classes 1-12 Real*8

109-132 |Class 1-12 rain rate multiplier for predictor 1 Real*8

133-156 |Class 1-12 rain rate multiplier for predictor 2 Real*8

157-180 |Class 1-12 rain / no rain multiplier for predictor 1 |Real*8

181-204 |Class 1-12 rain / no rain multiplier for predictor 2 |Real*8

205-216 |Class 1-12 rain / no rain threshold values Real*4

217-240 |Class 1-12 nonlinear transformation multiplier for|Real*8
predictor 1 (0 if predictor is not transformed)

241-264 |Class 1-12 nonlinear transformation multiplier for|Real*8
predictor 2 (0 if predictor is not transformed)

265-288 [Class 1-12 nonlinear transformation exponent for|Real*8
predictor 1 (0 if predictor is not transformed)

289-312 (Class 1-12 nonlinear transformation exponent for|Real*8
predictor 2 (0 if predictor is not transformed)

313-324 |Class 1-12 nonlinear transformation intercept for|Real*4
predictor 1 (0 if predictor is not transformed)

325-336 |Class 1-12 nonlinear transformation intercept for|Real*4
predictor 2 (0 if predictor is not transformed)

337-348 |Look-up table values for adjusting rain rates for|Real*4
classes 1-12 at 0.1 mm/h

349-360 |Look-up table values for adjusting rain rates for|Real*4
classes 1-2 at 0.2 mm/h

361- Look-up table values for adjusting rain rates for|Real*4

12336 |classes 1-12 at 0.3...50.0 mm/h

Table 4. Contents of the retrieval coefficient table file.

3.4 Theoretical Description

As stated previously, retrieval of rainfall rate requires two steps: determining which
pixels in satellite imagery will be associated with rainfall, and then deriving rainfall rates
In the case of visible / IR instruments such as the ABI, the basic
approach is to use the information about cloud-top properties that are inherent in the
brightness temperature information (e.g., height, thickness, phase, particle size) to make
inferences about the occurrence and rate of rain. This algorithm develops statistical
relationships between the brightness temperature values and the occurrence of rainfall
and its intensity. In the algorithm, discriminant analysis is used to determine the best
predictors and predictor coefficients for occurrence, and stepwise forward linear

for those pixels.

regression is used for intensity.
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3.4.1 Physics of the Problem

The difficulty in using visible- and IR-wavelength information for retrieving rainfall rates
is that raining clouds are generally optically thick, meaning that the information at these
wavelengths comes from the top portion of the cloud, and typically above precipitating
hydrometeors that are actually of interest. Microwave-frequency information is relatively
more valuable because raining clouds are generally not optically thick in that portion of
the spectrum, meaning that MW signals are sensitive to the total water or ice path in the
cloud rather than just the properties of the cloud top. However, since MW sensors are for
the near future restricted to low-Earth orbit (LEO), rainfall information from such
instruments will not be available on a continuous basis without a much more substantial
LEO satellite constellation than is currently planned. The compromise has been to use
the intermittently-available but relatively more accurate MW-based rainfall rates as a
calibration target for visible and IR data from geostationary platforms, and to use the
resulting calibration to retrieve rainfall rates at the full spatial and temporal resolution of
the geostationary data.

The following subsections describe how this calibration process is performed in the
Rainfall Rate Algorithm. The first subsection describes the MW data set that is used as a
calibration target and how it is matched against the ABI predictors, and the subsequent
four subsections describe respectively how the training data are assembled, how the
rainfall detection algorithm is calibrated, how the Rainfall Rate Algorithm is calibrated,
and then how the resulting calibration is applied to independent data to product the rain
rate product.

34.1.1 Training Data: Matched ABI Predictors and Microwave
Rain Rates

The MW rain rates serve as the calibration target for the rain rate algorithm, both in terms
of identifying raining areas and in retrieving the intensity of rainfall. In practice, any
reliable rainfall rate field could be used for calibration, including radar data, and it is not
necessary that these fields be continuous in space or time—just that they represent
instantaneous rates of rainfall rather than accumulations over time. Since rainfall rates
from multiple microwave instruments are used, the rates should be bias-adjusted since
differences among the input data sets will effectively act as noise in the training data set.
This blending and bias adjustment is performed by a separate algorithm that was
developed by S. Kidder of the Cooperative Institute for Research in the Atmosphere
(CIRA) and is currently moving toward operational implementation at NESDIS.

To properly match the ABI predictors with the MW rain rates in space, differences in
footprint size between the ABI and the MW sensors must be addressed. The procedure in
this algorithm is to aggregate the ABI data onto the MW footprint, assuming perfectly
round footprints with a diameter of 2 km for the ABI and 15 km for the MW. For each
available MW footprint, those ABI footprints that at least partially overlap the MW
footprint are identified, and the fraction of the coverage of the MW footprint by the ABI
footprint is computed based on the location of the footprint centers and the above
assumptions about footprint shape and size. The weight of each GOES footprint is
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proportional to the total computed overlapping area with the MW footprint such that all
of the weights add up to unity. For the aggregation process, the GOES brightness
temperatures are converted to radiances and aggregated, and then the resulting radiance is
converted back to brightness temperature. This prevents errors from the nonlinear
relationship between radiance and brightness temperature.

Time matching of the ABI predictors with the MW rain rates should match the ABI and
MW fields that are closest in time. For the current requirement of 15-min update
frequency, the ABI and MW pixels should be within 7.5 minutes in time; if in the future
the requirement is changed to a 5-min update cycle, the ABI and MW pixels should be
within 2.5 minutes in time. Due to the latency of microwave data, previous ABI images
will need to be available for matching with microwave data that may be up to 3 hours old
at the time of availability.

Note that the predictors in this algorithm are not necessarily restricted to ABI data;
predictors from other GOES-R instruments (e.g., lightning) can also be used, in addition
to any other ancillary data that might prove to be relevant (e.g., stability profiles from
numerical weather models). This point will be raised again in the subsections on training.
The current list of predictors is presented in Table 5, where the subscript refers to the
wavelength of the brightness temperature T; e.g., T734 is the brightness temperature at
7.34 um. Note that the matched MW-ABI data file contains the component SEVIRI
brightness temperature values and also the derived values in Predictors 2 and 3; the
additional predictors in Table 5 (i.e., brightness temperature differences) are computed
internally by the calibration program to reduce the required size of the matched data files.
The constant adjustments are performed in order to optimize the nonlinear predictor
transformation described in Sections 3.1.4.3 and 3.4.2.2. In the case of brightness
temperature differences, a constant is added in order to avoid negative values which have
an undefined logarithm; in the case of the brightness temperature values, a constant is
subtracted because lower (but positive) values are most sensitive to the nonlinear
transformation.

Input ID Description
1 Ter-174 K
2 S= 0.568*(Tmin,11.2-217 K) +25K
3 Tave112- Tmin112—(S—25K) +85K
4 T734-Te10 + 30K
5 Tgs-Tr34+30K
6 Ti12-T734+20K
7 Tgs-T112+30K
8 Tiio-Tiz+20K
9-16 Nonlinear transformations of predictors 1-8

Table 5. Predictors computed from the data in the matched MW-ABI data file.

Note that if a particular pixel is present but there are missing pixels in the 5x5
neighboring region, Tmin (and hence S) will still be computed, but the missing pixels will
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be ignored in calculating the predictors that require information from the neighboring
region. However, if at least 3 of the 6 neighboring pixels (the closest 4 in the same scan
line and the 2 corresponding pixels in the adjacent scan lines) used to compute G; are
missing Gy is not computed and is assigned a missing value of -999.0.

Finally, if any of these predictors has a value less than or equal to zero, the nonlinear
transformation (see Section 3.4.1.3) cannot be performed and so no retrieval is performed
for such pixels; their rainfall rate value is set to a missing value of -999.0.

The performance of the rain rate algorithm has been shown to improve when the data are
divided into classes that can be determined a priori from available data. Specifically, the
data have been divided into 4 latitude regions (60-30°S, 30°S-EQ, EQ-30°N, and 30-
60°N) and further into 3 rainfall types according to selected ABI brightness temperature
values from the matched MW-ABI data set:

— Type 1 (water cloud): T734<T;;2and Tgs-T;12<-0.3
— Type 2 (ice cloud): T734<Ty;2and Tgs-T1;2>-0.3
— Type 3 (cold-top convective cloud): T734>T1;2

These types were determined by experimenting with the changes in the relationship
between T;;, and rainfall rate (T, is the band typically used for rain rate retrievals
because of its sensitivity to cloud-top temperature with relatively small water vapor
effects) for various brightness temperature threshold difference regimes. The thresholds
are the points at which this relationship changes significantly from one side of the
threshold to the other, which implies that they represent significantly different regimes
for rainfall rate retrieval purposes. This results in a total of 12 rainfall classes in the
algorithm which are summarized in Table 6. Separate files of matched MW rain rates
and ABI data are maintained for each class.

Class |Latitude| Cloud Type
60-30°S |1 (water)
60-30°S |2 (ice)
60-30°S |3 (convective)
30°S-EQ |1 (water)
30°S-EQ |2 (ice)
30°S-EQ |3 (convective)
EQ-30°N |1 (water)
EQ-30°N |2 (ice)
EQ-30°N |3 (convective)
30-60°N |1 (water)
30-60°N |2 (ice)
30-60°N (3 (convective)
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Table 6. Description of rainfall classes.

Note that if a pixel falls exactly on the boundary between two latitude regions, it is
assigned to the higher of the two regions. For instance, a pixel at exactly 30.0°N will be
assigned to one of classes 10-12, not to classes 7-9. Note also that if any of the three ABI
brightness temperature values used to determine cloud type (T734, Tss, or Tyjp) is
missing for a given pixel, the rainfall class will be set to zero and no retrieval will be
performed for that particular pixel (i.e., its value will be set to -999.0).

Separate matched data sets are maintained for each rainfall class, with the data points in
reverse time order (i.e., the most recent data in the first record and the oldest data in the
last record). These matched data sets are rolling-value data sets; i.e., older data are
cycled out of the end of the file as newer data are brought in to the beginning of the file
keep the data set up-to-date. Initial work with training data sets covering a fixed period
of time (e.g., 24 hours) proved to be unsuitable because time variations in the intensity
distribution of rainfall would affect the robustness of the calibration. For example, if an
extended period of light rain or no rain were followed by heavy rain, the algorithm might
be preferentially calibrated for light rain and thus perform poorly when the heavy rain
began. To ensure a training data set that contains enough raining pixels for reliable
results but is still short enough to reflect recent conditions, the number of raining (>1
mm/h) data points in the training data files are kept fixed. Specifically, as newer data
become available and are added to the training data file, the oldest data points are
removed until the number of raining pixels returns to the same value as before the newer
data were added. Sensitivity studies showed that the best results were obtained when
5,000 raining pixels were required for Type 1 and Type 2 clouds and 1,000 raining pixels
were required for Type 3 clouds. It should be noted that the number of training pixels
read is controlled by the training code rather than by the file size; i.e., the training code
will read through the training file (i.e., backward in time) until the required number of
raining pixels is read. Therefore, it is not critical for the training file to be trimmed
strictly to the required number of training pixels as extra pixels will simply be ignored.

It is important to note that the training of the coefficients and the retrieval of the actual
rain rates can be done in parallel to save time: the coefficients would be updated
whenever new target data become available, and then these updated coefficients would be
used in retrieving the rain rates from the next available set of ABI imagery.

3.4.1.2 Rainfall Detection

The objective of the rainfall detection portion of the algorithm is to separate clear and
cloudy but non-raining pixels from raining pixels. The training of the separation portion
of the algorithm is applied to each cloud class separately using discriminant analysis
(similar to linear regression but with a binary predictand—the value is 1 if the MW rain
rate exceeds 1.0 mm/h and 0 otherwise. Note that the 1.0 mm/h threshold is used because
of significant differences among MW instruments in sensitivity to drizzle and very light
rain). For each of the 12 algorithm classes, discriminant analysis is performed using each
of the available predictors, and the predictor that produces the best Heidke Skill Score
(HSS; see Section 3.4.2.1 for definition) for rain / no rain discrimination (compared to
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observations) is selected. This first predictor is then combined with all of the remaining
predictors for a second set of tests to determine the best 2-predictor combination. The
result is an equation for linearly combining one or two predictors, plus a threshold value
above which the pixel is considered to be raining.

This threshold value is then optimized to produce an unbiased result, since experience has
shown that the best HSS value is not necessarily associated with minimum bias.
Specifically, the maximum and minimum values for the rain / no rain discriminator are
computed, and for 1,000 intervals of equal size the bias is computed for each selected
rain / no rain discriminator value (such that no pixels would be classified as raining when
the minimum threshold value is used and all of them would be classified as raining when
the maximum threshold value is used). A binary search is then used to identify the
threshold value with a bias closest to unity (i.e., the number of pixels in the training data
that are classified as raining by the scheme is as close as possible to the number of
raining microwave pixels in the training data), and this is the threshold value that is used.

Once the predictors and coefficients have been selected and the threshold value has been
determined, the resulting predictor ID’s and coefficients are then written to a file for use
by the prediction program. A more detailed description of this process is contained in
Section 3.4.2.1.

3.4.1.3 Rainfall Rate Estimation

The objective of the rainfall rate portion of the algorithm is to determine rainfall rates for
those pixels that were classified as raining by the discriminant analysis scheme, with
separate equations for each algorithm class. Consequently, only those pixels that have
non-zero target rainfall rates are used in developing the equations for retrieving rainfall
rates.

Since the relationship between many of the predictors (e.g., IR window brightness
temperature) and rainfall rates is known to be nonlinear, the first step is to supplement the
predictor set with a second set of predictors that represent optimal nonlinear
transformations of the original set: for each algorithm class, each original predictor is re-
scaled to eliminate negative values, and then the predictors and target rain rates are
regressed against each other in logjo-logip space. The resulting slope and intercept
become an exponent and multiplier in linear space, and this slope and intercept are used
to create a nonlinear transformation of each predictor.

After creating the set of transformed predictors for each algorithm class (which are
included with the original predictors in the predictor pool), all of the predictors are
evaluated via linear regression against the target rain rates, with separate regressions
performed for each algorithm class. The predictor that has the best correlation with the
target rain rates is then combined with each of the remaining predictors, and the 2-
predictor combination that produces the best correlation with the target data is selected.
After this is done, a preliminary set of rain rates is retrieved and compared to the
microwave training data to derive a set of coefficients for adjusting the retrieved rain fall
rate distribution to match the distribution of the microwave rainfall rates. All of the
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required coefficients are then written to a file for use by the prediction routine. A more
detailed description of this process is contained in Section 3.4.2.2.

34.14 Independent rainfall rates

The equations produced by the calibration of the rainfall detection and rainfall rate
estimation are used to derive the rainfall rates from current ABI imagery that comprise
the algorithm output at the full ABI resolution. Note that the rainfall rates are produced
using different equations for each of the 12 classes.

3.5 Mathematical description

3.5.1 ABI-MW footprint matching

The starting point for matching the ABI and MW footprints is to determine the distance
between the centers of the two. The assumption of a spherical Earth (since the distances
involved are less than 20 km) leads to the equation

Distance = {[(lonyg; — lonyy,) * cos(latyy)]? + [(lat,g; — latyw)]?} * 111 km (1)

where latap; and latyw are the latitudes of the centers of the ABI and MW footprints, and
lonap; and lonyw are the corresponding longitudes. Presuming the distance is less than
the sum of the two radii (ragi=1 km, ry,yw=7.5 km; both footprints assumed to be perfect
circles), so that the two circles have a common area. Two possible scenarios exist in that
case: if the distance is less than the radius of the smaller (ABI) radius, then the ABI
footprint is contained entirely within the MW footprint and so the common area is simply
the ABI footprint area (Nr’ap;). If the distance is greater than the ABI radius but smaller
than the sum, then the common area of the two circles is expressed as

Area = iy + (@ = cos(a) sin(a)) + 7 * (B — cos(f) sin(p)) (2)
where

a = acos [—Tisl';dista‘nw_,_rﬂzdw] (3)

2+ rdistance
and
B = asin [P ) )
ABI
and
B = m — B if distance < ryweos(a) .

The weight of each ABI pixel in computing the MW value is simply the common area of
the ABI and MW pixel divided by the total area of ABI pixels within the MW pixel; thus,
the weights for each MW pixel always add up to unity. In other words, for each ABI
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pixel i among a total of n ABI pixels (or partial pixels) within the MW pixel of interest,
the weight w; is computed as

Area;

Vi = S area; ©

3.5.2 Calibration: Rain / no rain discrimination

Mathematically, a special case of multiple linear regression called discriminant analysis
(in which the target values are 0 and 1 instead of continuous values) is used to separately
calibrate the rain /no rain discrimination for each algorithm class. A two-predictor
additive multiple regression model is used for each algorithm class c:

Yo =Dy +0. X, +b X, &, (7)

c, 17,1

where y is the target MW rain rate or rain / no rain value; the x’s are the two selected
ABI-derived predictors; the b’s are the calibration coefficients; and ¢ is the residual error,
which is to be minimized by solving the following system of normal equations for the
coefficients by, by, and by:

nC nC nC

Z yc,j = bc,O nc + bc,l z Xc,l,j + bc,2 Z Xc,2,j

i=t j=1 i=t

nC nl: nC nl:

2
Z Xc,l,j yc,j = bc,O Z Xc,l,j + bc,l Z Xc,l,j + bc,2 Z Xc,l,j Xc,z,j (8)
- =

j=1 j=1

i=1

&
&

n n, n,

_ 2
D Koo Yo =Boo D Xon s F0e D Xy 1 Xen s F00 DX
j =1 j=1

j= j=1 i i=

where the first part of the subscript is the algorithm class, the second is the predictor
number, and the third part is the data point number (all sums are over the total number of
data points in the class n.)

The calibration procedure begins by solving the 1-predictor version of these equations
(1.e., no terms containing b, or X ) for each of the first 8 (untransformed) predictors in
the matched data set (see Table 5). Since the outputs of these equations will be
continuous (i.e., non-binary), a threshold value must be determined for converting the
output to binary values: outputs above the threshold are assigned a value of 1 (rain) and
outputs below are assigned a value of 0 (no rain). This threshold is selected to produce
the minimum amount of bias; i.e., the number of pixels in the training data set that are
classified as raining should match as closely as possible the actual number of raining
microwave pixels in the training data set. In order to do this, the equation outputs are
computed for each training pixel and the highest and lowest values are preserved. This
range of values is divided into 1000 equally spaced intervals, and for each of these 1000
threshold values the number of pixels classified as raining is computed. Since this
number decreases monotonically as the threshold value increases (the threshold value
must be exceeded), a simple binary search can then be used to identify the threshold
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value that produces the best match to the microwave data in terms of the number of
raining pixels.

Once the bias has been optimized, the HSS is computed for that particular predictor, and
the predictor the highest Heidke Skill Score (HSS) is selected. The HSS is computed as
follows:

2((:1(:4 —CyCs )

HSS =
(¢, +c,)c, +¢,)+(c; +c,)c +¢y)

)

where c; is the number of correct no-rain estimates, ¢, is the number of false alarms (i.e.,
the estimate has rain but the observation has no rain); c; is the number of failed detections
(i.e., the estimate has no rain but the observation has rain); and ¢4 is the number of correct
rain estimates for the class of interest. Higher HSS values indicate greater skill, with 1 as
a perfect value (i.e., c;=c3=0).

After the first predictor is selected, the procedure is repeated for each two-predictor pair
containing the first selected predictor to obtain two predictors and the associated
coefficients from Eq. (7) plus the threshold value for converting the continuous equation
output into binary form.

It should be noted that the selection of only 2 predictors was the result of
experimentation—additional predictors were shown not to have a positive impact on the
performance of the algorithm. This may be due to the high degree of correlation among
the visible and IR bands when depicting optically thick clouds.

3.5.3 Calibration: Rainfall rate

For each class, a separate pair of predictors is selected for the rain rate retrieval, using
Eqgs. (1)-(2) as the basis for selection but with continuous output. Prior to selection, the
set of 8 predictors is supplemented by a set of non-linear transformations (see Table 5).
These nonlinear transformations for each predictor p and class C xp,cT use the power
function; i.e.,

T Boe
Xpo = p.cXpg (10)
where the coefficients o, and B, are found by solving the equation

log,y =log ap .+ :Bp,c log,, X' (11)

Solving this equation separately for each predictor and class yields the following least-
squares solutions:
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np°CZ(lOg1° Xp.ci Xloglo yc,i)_ ; 3

; ) (loglo Xp,c,i )Z (loglo yc,i)
Poo=—" =1 Rl (12)

nP,C np,c

2
np,cZ(loglo Xp,c,i) - 1Oglo Xp,c,i

i=1 i=1

Npe

Z(loglo Yei —log, Xp,c,i)

log, a, . == (13)

nP,C

For each predictor p in each class C, the coefficients a,, . and B3, are solved for by
applying Eqgs. (12) and (13) using the predictor values X, ; and the corresponding target
microwave rainfall rates y.;. However, since the equation form in Eq. (10) has no
intercept, it is constrained to pass through the origin (0,0), so a modified version was
developed.

prjc =10% (xp,c +1+7,, )ﬂ“ -1 (14)

The third unknown (y, ) cannot be solved for with only two equations, so the equation is
optimized using a “brute force” approach. First, the value of y,  is initially set to 0 and
the equation is solved using Eq. (12) and (13). The value of y, . is then incremented by
25 and Eq. (12) and (13) are solved again; i.e., the value of y, . is added to the each
predictor value x, . when solving the equation. The Pearson correlation coefficient is then
computed for the transformed data:

cov(X,Y) (15)
0,0,

Correlation =

where cov(x,y) is the covariance of the predictor and target data, and o, and o, represent
the standard deviations of the predictor and target data, respectively. The predictor data
in this case consists of the values of the transformed predictors (i.e., pr,C) and the target
data consist of the microwave rainfall rates against which they have been matched (i.e.,

Yo)-

If the equation fit (as measured by correlation coefficient) is improved, the value of y, . is
incremented by 25 and the process is repeated (but is stopped if it reaches 2500 to avoid
non-convergence). If the equation fit is degraded (i.e., lower correlation coefficient),
then the process stops and the previous value of y is used. This process of determining
the coefficients ., Bp,c, and vy, is repeated for each predictor and each class and applied
to create the supplemental set of 8 transformed predictors for each class.

The total set of 16 predictors is then used for calibrating the rainfall rate retrieval. For
each class, each predictor is first regressed against the target rain rates using Eq. (8), and
the predictor with the highest Pearson correlation coefficient against the target
microwave rainfall rates is selected.
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The process is then repeated with the 15 possible combinations of the selected first
predictor and each of the remaining predictors, and the pair with the highest correlation
against the target data is selected as the predictor pair (and associated coefficient set) for
that class.

As with the rain / no rain discrimination, experiments showed no positive impact from
using more than two predictors, again perhaps because of the high degree of correlation
among the visible and IR bands for optically thick clouds.

Previous work has shown that the rainfall rates retrieved using this approach generally
exhibit a strong systematic dry bias—too wet for low rainfall rates and much too dry for
higher rainfall rates. This is believed to be the result of significant scatter in the training
data caused by spatial displacements between the coldest cloud tops and the heaviest
rainfall rates. To address this problem, an adjustment for the retrieved rainfall rate is
derived that adjusts its distribution to match the training microwave rainfall rates.

Specifically, for each rainfall class, the rainfall rates are retrieved using the coefficients
derived above, and then are sorted from lowest to highest and matched against the
training rainfall rates which have also been independently sorted lowest to highest. The
result of this match is a lookup table (LUT) whereby the value of the retrieved rainfall
rate is converted to the value of the corresponding microwave rainfall rate so that the
distribution of the retrieved rainfall rate will match that of the microwave rainfall rates.

To create a useful LUT, linear interpolation is used to create a table with evenly spaced
increments of 0.1 mm/h for the training rainfall rates. In addition, since the MW rainfall
rates have a lower dynamic range (in part due to their coarser spatial resolution), but
since extrapolation of the data could produce non-physical results, for all values between
50 mm/h (the maximum rainfall rate from the TRMM Microwave Imager) and 100 mm/h
the input and output values are set equal to one another (i.e., a retrieved rainfall rate of 75
mm/h will be mapped to a final rainfall rate of 75 mm/h). Linear interpolation is then
performed between the data point with the highest rainfall rates and the (50 mm/h, 50
mm/h) data point. This LUT is then written to the end of the retrieval coefficient table in
Table 4, Section 3.2.2.

3.5.4 Application to independent data

The predictors and coefficients obtained during the calibration outlined in the previous
two subsections are then applied to the current ABI imagery using Equation (1) with the
appropriate coefficients and predictor values. To avoid the potential data quality issues
with any pixel that is missing one but not all bands, if any of the input bands has a value
less than 120 K, the value of the 10.8-micron (band 14) brightness temperature is set to
the missing value of -999.0. The rain /no rain discriminator is then computed. For values
below the threshold, a rain rate of zero is assigned; for values above the threshold, the
rainfall rate is computed using Eq. (1) with the rain rate coefficients (and predictor
transformations from Eq. (4) as needed), followed by the distribution adjustment in Eq.
(10).
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3.6 Algorithm Output

The final output of this algorithm is the Rainfall Rate product—a field of instantaneous
rainfall rates in mm/h (rounded to the nearest integer) at the same resolution as the ABI
IR data—2 km at nadir. Note that for output purposes these values are converted to short
integers and multiplied by 10, so the effective values in the output files are tenths of mm
per hour. This product will also be accompanied by a grid of corresponding quality flags,
with values of 0 for good data and non-zero for data that are of questionable quality due
to deficiencies in the input data, as described in Table 7:

Byte | Bit Flag Source Value
0 0 | Rainfall Rate output RR 1=bad data; 0=OK
1 | Local zenith angle block-out zone | SDR 1=local zenith angle>70° or
lat>60°; 0=OK
2 | Bad input data for 1* rain / no rain | SDR 1=bad data; 0=OK
predictor and RR
3 | Bad input data for 2" rain / no SDR 1=bad data; 0=OK
rain predictor and RR
4 | Bad input data for 1% rain rate SDR 1=bad data; 0=OK
predictor and RR
5 | Bad input data for 2" rain rate SDR 1=bad data; 0=OK
predictor and RR
6 | Retrieval coefficients missing RR 1=no retrieval coefficients;
0=0OK
7 | Not used

Table 7. Quality flags for the Rainfall Rate product.
Note that if any of bits 2-6 are set to 1 that all of them should be set to 1.

In addition, two quality information fields will be output: a gridded file containing flags
indicating if the rainfall rate values were truncated at 0 mm/h or at 100 mm/h (Table 8)
and a gridded file containing the rainfall class (1-12) of a particular pixel (Table 9):

Byte | Bit Flag Source Value
0 0 | Rain rate > RR I=rain rate >100 mm/h but truncated at 100 mm/h;
100 mm/h O=rain rate <100 mm/h
1 Rainrate <0 | RR 1=rain rate <0 mm/h but truncated at 0 mm/h;
mm/h O=rain rate >0 mm/h

Table 8. Diagnostic information for the Rainfall Rate product.

Grid Field Source Value

1 Precipitation class identifier RR Value of rain class, ranging from
1to12

27




Table 9. Gridded quality information for the Rainfall Rate product.

Finally, the metadata file will contain the information listed below in Table 10:

Type Variable

Float |Total rain area (number of pixels in image with rain rates > 1 mm/h)

Float |Total rain volume (total rain in rain area, mm/h)

Long |Total number of pixels with a successful retrieval (i.e., bit 0 in

Long |Number of QA flag values: 8

Long |Number of retrievals with QA flag value 0 (all bits set to 0)

String |[Definition of QA flag value 0:
Good rain rate retrieval

Long |Number of retrievals with QA flag bit 0 set to 1

String |Definition of QA flag with bit 0 set to 1:
Bad rain rate retrieval

Long |Number of retrievals with QA flag bit 1 set to 1

String |Definition of QA flag with bit 1 set to 1:
Local zenith angle block-out zone

Long [Number of retrievals with QA flag bit 2 set to 1

String |Definition of QA flag with bit 2 set to 1:
Bad input data for 1* rain / no rain predictor

Long |[Number of retrievals with QA flag bit 3 set to 1

String |Definition of QA flag with bit 3 set to 1:
Bad input data for 2™ rain / no rain predictor

Long [Number of retrievals with QA flag bit 4 setto 1

String |Definition of QA flag with bit 4 set to 1:
Bad input data for 1 rain rate predictor

Long [Number of retrievals with QA flag bit 5 setto 1

String |Definition of QA flag with bit 5 set to 1:
Bad input data for 2" rain rate predictor

Long |Number of retrievals with QA flag bit 6 set to 1

String |Definition of QA flag with bit 6 set to 1:
Retrieval coefficients missing

String |Definition of Rain Class 1:
Water cloud; 60-30 S latitude

String |Definition of Rain Class 2:
Ice cloud; 60-30 S latitude

String |Definition of Rain Class 3:
Overshooting top cloud; 60-30 S latitude

String |Definition of Rain Class 4:
Water cloud; 30 S latitude-EQ

String |Definition of Rain Class 5:
Ice cloud; 30 S latitude-EQ

String |Definition of Rain Class 6:
Overshooting top cloud; 30 S latitude-EQ
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String |Definition of Rain Class 7:

Water top cloud; EQ-30 N latitude
String |Definition of Rain Class 8:

Ice top cloud; EQ-30 N latitude

String |Definition of Rain Class 9:

Overshooting top cloud; EQ-30 N latitude
String |Definition of Rain Class 10:

Water cloud; 30-60 N latitude

String |Definition of Rain Class 11:

Ice top cloud; 30-60 N latitude

String |Definition of Rain Class 12:

Overshooting top cloud; 30-60 N latitude

Table 10. Metadata for the Rainfall Rate product.

Additional diagnostic information will be provided by the corresponding retrieval
coefficient table (Table 4, Section 3.3.2). All of these fields will be delivered to the
GOES-R Archive System (GAS) and the Comprehensive Large Array-data Stewardship
System (CLASS) as well as being retained in 2-day local storage for diagnostic purposes.
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4 TEST DATASETS AND OUTPUTS

4.1 Simulated/Proxy Input Data Sets

As described below, the data used to test the Rainfall Rate Algorithm included SEVIRI
observations and blended MW rainfall rates. The test period chosen was the 6™ through
the 9™ of January, April, July, and October 2005. While SEVIRI is obviously not
operating over the GOES domain and does not have the exact same spectral coverage and
spatial resolution, for rainfall rate applications, it is still preferred over simulated ABI
data for objective validation, given the errors exhibited by the latter in depicting the
correct intensity and location of precipitation features. The rest of this section describes
the proxy and validation data sets used in assessing the performance of the Rainfall Rate
Algorithm.

4.1.1 SEVIRI Data

SEVIRI provides 11 spectral channels with a spatial resolution of 3 km at nadir (coarser
than the 2-km resolution of the ABI) and a temporal resolution of 15 minutes, and thus
represents the best source of data currently available for testing and developing the
Rainfall Rate Algorithm. Figure 2 is a full-disk SEVIRI image from 1200 UTC on
January 7, 2005. The SEVIRI data was provided by the GOES-R Proxy Data Team.
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Figure 2. Full disk 10.8- um color-enhanced image from SEVIRI for 1200 UTC on
January 7, 2005.

4.1.2 Microwave-Derived Rainfall Rates

The target data for calibration is a blend of MW rain rates from multiple Special Sensor
Microwave/Imager (SSM/I) and Advanced Microwave Sounding Unit (AMSU) sensors,
plus the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), all of which were
reprojected onto a common lat/lon grid. These fields are available every half hour, and
include data from all of the MW overpasses during that time period. An example is
shown in Fig. 3. It should be noted that the testing and validation results in this ATBD
were obtained using a somewhat different matched MW rain rate data set than the one
planned for operations and described in Section 3.3.2; this is because the latter data set
was not yet in operational production at the time of this writing and thus was not
available for use in the initial testing and validation.
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Figure 3. Blended MW rainfall rates covering 1230-1300 UTC 7 January 2005.

4.2 Output from Proxy Input Data Sets

As part of an intercomparison exercise to select which algorithm would be used for
GOES-R, the rain rate algorithm was applied to SEVIRI data from the 6™ through the 9™
of January, April, July, and October 2005. The same time periods were used for the
evaluation of algorithm precision and accuracy, along with all of January 2008. Figure 4
is an example of output from the Rainfall Rate Algorithm described in this document.
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Figure 4. Sample rain rate algorithm output from 1245 UTC January 7, 2005.

4.2.1 Precision and Accuracy Estimates

The F&PS specifications for the Rainfall Rate algorithm (see Table 1) refer to
instantaneous rainfall rates, so radar data (both space-based and ground-based) must be
heavily relied on since gauges generally do not provide reliable information on
instantaneous rates. However, such data are very difficult to obtain over Europe and
Africa. Comparisons will be made against Tropical Rainfall Measuring Mission
(TRMM) Precipitation Radar (PR) data and Nimrod radar data over Western Europe
obtained from the British Atmospheric Data Centre (BADC).



Because slight errors in the spatial location of rainfall can significantly degrade statistics
that are computed on a pixel-by-pixel basis (e.g., Ebert 2008), a “fuzzy” approach for
fine-scale rainfall validation has been selected whereby the Rainfall Rate pixel is
compared with the pixel within a 10-km radius that has the most similar value rather than
with the directly corresponding pixel. This is a variant of the “single observation —
neighborhood forecast” strategy described in Ebert (2008).

4.2.1.1 Validation against TRMM PR

Validation against the 5-km resolution TRMM PR 2A25 product was performed for the
519t of J anuary, April, July, and October 2005 plus all of January 2008. For illustration
purposes, Fig. 5 shows the coverage of the TRMM PR during a typical 24-hour period.
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Figure 5. Coverage of TRMM PR data during October 6, 2005.

Figure 6 shows a scatterplot of the rainfall rates that was created using the “fuzzy”
verification method described in the previous section, with the density of points indicated
by color (red=more dense; purple=less dense) to eliminate the visually misleading effect
of multiple overlapping points. The Rainfall Rate product displays a significant wet bias,
but the best-fit line still corresponds quite well with the 1:1 line (i.e., a high occurrence of
matching values between the estimates and observations).



50 - - -
= L. "
== L4
w el _'.':'! ....... 2l =
5 |
Eae
g a
[ |

EEG ..i ..........
E
[ |
N
EEG .................................
=
O
L

‘I.:l ................................ fomeeee

""" B 'm0
0 e = i
i 10 0 0 40 50

o TRMM (mm /h)

Figure 6. Scatterplot of Rainfall Rate algorithm vs. collocated TRMM rain rates; colors
are related to pixel density with red highest and purpose lowest. Solid line is the 1:1 line
and the dashed line is the best-fit line.

Because rainfall rates are highly skewed toward low rates that are of much less
hydrometeorological interest than higher rain rates, the F&PS precision spec focuses on
the performance of the algorithm for rain rates of 10 mm/h (see Table 1). Specifically,
when the rain rate at a given pixel is 10 mm/h, the corresponding observed value should
be within 9 mm/h (i.e., within the range of 1 — 19 mm/h) 68% of the time. This appears
to be a very loose requirement compared to most products; however, instantaneous
rainfall rate is far more variable in both space and time than most other geophysical
parameters, and even a “fuzzy” validation approach will not resolve this without using a
significantly larger radius than the 10-km radius used for this algorithm.

The performance of the algorithm against the F&PS precision spec is illustrated in Fig. 7
by the cumulative distribution function (CDF) of absolute error in the Rainfall Rate
product (the values along the abscissa) with respect to the TRMM PR for only those
pixels with algorithm values between 9.5 and 10.5 mm/h (there are too few pixels with
rain rates of exactly 10.0 mm/h to enable a statistically significant analysis). These errors
were computed using the “fuzzy” verification strategy described in the previous section.
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The dashed line indicates that 68% of the errors are below 8.9 mm/h, which is within the
spec value of 9.0 mm/h.
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Figure 7. CDF of errors of Rainfall Rate product with rates of 9.5-10.5 mm/h vs. TRMM.

4.2.1.2 Validation against Nimrod data
Validation against the 5-km Nimrod composite radar product was performed for the 5"-

9" of April, July, and October 2005 (January 5-9 was not available from the BADC
archive) and all of January 2008. The coverage of these radars is illustrated in Fig. 8.
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Figure 8. Coverage of Nimrod mosaic radar data.

Figure 9 shows a scatterplot analogous to Fig. 6 (and using the same “fuzzy” validation
as against TRMM PR), but here the Rainfall Rate product displays a very strong
systematic dry bias (indicated by the small slope of the dashed best-fit line), which in this
case translates into a volume bias of approximately 14% (i.e., the retrieved rainfall
volume is 14% lower than the Nimrod volume). This is not at all unexpected given that
IR-based algorithms can exhibit significant detection problems for stratiform
precipitation at higher latitudes.
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Figure 9. Same as Fig. 6, but vs. Nimrod.

Figure 10 is analogous to Fig. 7, except that it is for Nimrod. As the red dashed line
indicates, approximately 68% of the errors are below 9.8 mm/h, which is outside the spec
value of 9.0 mm/h; however, the requirement is for quantitative validation only for
convective precipitation, and Western Europe is a region that is largely dominated by
stratiform rainfall. A comparison of Fig. 10 with Fig. 7 illustrates the difficulty of
retrieving precipitation from the midlatitudes, where stratiform precipitation is much
more prevalent and for which cloud-top imagery does not contain sufficient information
to estimate rainfall to the same degree as in the tropics.
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The validation of retrieved rain rates against TRMM PR data for the 5™-9™ of January,
April, July, and October 2005 plus all of January 2008 is summarized in Table 11 using
the “fuzzy” verification described in Section 4.2.1.1. As discussed in the previous
section, the precision and accuracy specs are both being met for the TRMM PR. The
algorithm does not meet either spec against Nimrod data largely due to the low bias of the
algorithm for stratiform rainfall; however, since the accuracy and precision specs are only
for convective rainfall this is acceptable. Table 11 summarizes the performance of the
algorithm against both TRMM and Nimrod data at the 10 mm/h threshold compared to

the F&PS spec.

Accuracy (mm/h) Precision (mm/h) Number of data
at 10 mm/h at 10 mm/h points
Vs. TRMM 4.9 8.9 13887
Vs. Nimrod 8.6 9.7 501
Proposed F&PS 6.0 90 | -

Table 11. Comparison of Rainfall Rate algorithm validation with F&PS.
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5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

The calibration portion of the algorithm creates / updates a series of external files
containing matched MW rainfall rates and ABI predictors, and whenever a file is
updated, ingests the data into an array and uses L-U (Lower-Upper) matrix
decomposition to solve the resulting matrix for calibration coefficients (Eq. 2) and
predictor ID’s that are stored in a separate external file. The retrieval portion of the
algorithm ingests the calibration coefficient files and the ABI predictor fields that are
indicated within these files and applies the coefficient files to the predictor fields,
resulting in a rainfall rate field on the same grid as the ABI predictors.

The calibration and retrieval portions of the Rainfall Rate Algorithm do not need to be
run sequentially; in fact, parallel processing is preferred as long as care is taken to make
sure that coefficient files are available whenever needed for the retrieval portion of the
algorithm. The only stipulation is that for optimal accuracy the calibration should be
updated as frequently as new ABI-MW rain rate matchups are available. Note that since
the input microwave data may have a latency of as much as 3 hours, previous ABI data
will need to be available for calibration purposes.

5.2 Programming and Procedural Considerations

The Rainfall Rate Algorithm requires knowledge of spatial uniformity metrics that are
computed for each pixel using pixels that surround it. Beyond this reliance, the Rainfall
Rate Algorithm is purely a pixel by pixel algorithm; no information from previous time
periods is required for the retrieval step (though it is needed for the calibration step—see
below). Note that although the current requirement for refresh rate (15 min) is longer
than the planned ABI refresh rate of 5 min, no temporal averaging is performed to
generate the 15-min products; the most recently available ABI image is used to generate
the current Rainfall Rate product.

A collection of MW rainfall rates during the previous 2-3 days should be available for
use as calibration targets. However, if necessary the rainfall rate algorithm can run using
pre-computed calibration coefficients which will be adjusted whenever target MW
rainfall rates become available and a sufficient supply of matched data pairs has thus
been built up. Furthermore, if the availability of MW rainfall rates is interrupted, the
algorithm will continue to produce estimates using the most recently computed
calibration coefficients.

5.3 Quality Assessment and Diagnostics

Quality flags will be produced and provided along with the rainfall rate fields, with non-
zero values for pixels whose inputs have values outside the acceptable range. These flags
are described in detail in Section 3.6. Table 12 lists acceptable range values for the
inputs. Note that the minimum values in the table are for computational purposes: values
lower than that would produce negative predictor values, which will in turn result in
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errors when the nonlinear predictor transformation described in Section 3.5.2 is
performed. Note also that

Input ID Predictor Description Minimum Value
1 Teo 174 K
2 S:0.568*(Tmin,1 1.2-2 17 K) 25K
3 Tavg 11.2‘Tmin,1 1.2‘S -85 K
4 T734-Te.19 -30 K
5 Tgs5-T734 -30K
6 T112-T734 20 K
7 Tss5-Tiio -30 K
8 T112-Ti23 20 K

Table 12. Minimum acceptable values for each algorithm predictor.

The following procedures are recommended for diagnosing the performance of the
rainfall retrieval algorithm.

e Periodically image the individual test results to manually identify artifacts or non-
physical behaviors.

e Automatically evaluate the time series of the total rainfall area and total rainfall
volume and flag excessively large changes for further investigation.

5.4 Exception Handling

The Rainfall Rate Algorithm includes checking the validity of each input ABI band
before retrieving a rainfall rate, and a ‘missing’ (-999.0) value is assigned to a pixel if any
of the input values are outside the acceptable range. A missing value is also assigned to
that pixel if the calibration coefficients are unavailable; this is done by checking the first
rain detection predictor ID, the Heidke Skill Score, and the correlation coefficient from
the training file for missing values. The bits 1-4 (depending on the predictor; see Table 7
in Section 3.4.3) of the quality flag for that pixel will also be set to 1. The Rainfall Rate
Algorithm also expects the Level 1b processing to flag any pixels with missing
geolocation or viewing geometry information.

If the microwave data are unavailable, the algorithm will continue to produce estimates of
rain rate using the most recently available calibration coefficient tables; performance will
degrade slightly as a result but the degradation will be limited. If one or more individual
ABI bands used by the algorithm become unavailable, the algorithm will first output
missing values (and corresponding quality flags) for any pixels that use the missing ABI
band, and then subsequent updates to the calibration coefficients will ignore the missing
bands and retrieval will continue as normal. The degree of degradation in performance
will depend on the band(s) that are lost.
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5.5 Algorithm Validation

Prior to launch, validation efforts will focus on Europe and Africa using SEVIRI data as a
proxy for ABI given the previously discussed concerns about using simulated data for
rainfall rate validation. The validation data will consist of TRMM PR data over the
Tropics and Nimrod ground-based radar data over Western Europe, plus any ground-
based radar data from field campaigns that can be obtained. These data sets were
described in Section 4.2.1.1. However, it should be noted that ground-based radars have
numerous well-documented limitations, so any ground-based radar data used for
validation will need to be carefully quality-controlled, including comparisons between
radar-derived rainfall total fields and corresponding rain gauges to determine the extent
of such errors.

During the pre-launch period, validation tools will also be developed: one set to be used
by operations to monitor the performance of the algorithm in real time and identify any
anomalies; the second to be used by the algorithm developers to identify systematic
algorithm deficiencies, their possible causes, and potential remedies. The former will be
transferred to the NOAA / NESDIS Office of Satellite Data Processing and Distribution
(OSDPD) while the latter will remain at STAR for use by the algorithm developers and
collaborative partners outside STAR.

The post-launch phase will consist of monitoring of the product stream by OSDPD using
the aforementioned tools, and close collaboration between STAR developers and the
NOAA / NESDIS / OSDPD / Satellite Services Division (SSD) Satellite Analysis Branch
(SAB) analysts who are responsible for real-time monitoring of satellite rainfall. They
will evaluate the performance of the algorithm both from an “eyeball” perspective of day-
to-day performance and from the perspective of systematic behavior of the algorithm as
identified using the statistical tools. Modifications to the algorithm to address any
deficiencies will then be identified and implemented.

Additional details about algorithm validation can be found in the corresponding Product
Validation Plan.
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6 ASSUMPTIONS AND LIMITATIONS

The following sections describe the assumptions and limitations of the current version of
the Rainfall Rate Algorithm.

6.1 Performance

Several assumptions have been made in developing and estimating the performance of
the Rainfall Rate Algorithm. They are listed below, accompanied by proposed mitigation
strategies in parentheses.

1.

The calibration target (MW) rainfall rates are accurate. (No mitigation
possible)

The calibration target rainfall rates are available with a reasonably short lag
time. Note that in the absence of calibration data, the algorithm will continue
to produce retrievals based on the last available set of calibration coefficients.
The potential impact on doing so for an extended period of time will be
determined via testing.

The ABI data have been corrected for parallax prior to retrieval of rainfall
rates. Mitigation is in progress via a coordinated parallax correction effort.

The available validation data (TRMM for the tropics and Nimrod for Western
Europe) provide a sufficiently representative sample for evaluating whether
the algorithm will meet spec over GOES-R coverage area. (Investigating
additional radar validation data from field campaigns such as NAMMA, and
COPS.)

The processing system allows for processing of multiple pixels at once for
application of the spatial uniformity tests. (No mitigation possible)

Striping (i.e., when two or more detectors have slightly different calibrations,
producing scan lines that are biased with respect to one another) and spectral
shifts are minimal. (No mitigation possible)

No data aggregation is performed in time; i.e., if the frequency of ABI
imagery exceeds the product refresh rate, only one ABI image will be
processed per product. (No mitigation possible)

In addition, a number of limitations in the ability to retrieve rainfall rates from satellite
data have been identified and are listed here, along with proposed mitigation strategies:

1.

Satellite-based rainfall algorithms generally exhibit much better skill for
convective (warm-season) rainfall than for stratiform (cold-season) rainfall,
because the relationship between cloud-top temperature and rainfall rate is much
stronger for the former than the latter. The inclusion of additional ABI bands

43



provides some mitigation by implicitly including information about cloud-top
properties (particle size and phase); the potential impact of explicitly retrieved
cloud top properties from the ABI processing system will be investigated as a
mitigation effort.

The current version of the algorithm does not account for any influences on
precipitation below cloud level; e.g., modulation by topography or evaporation of
hydrometeors in dry sub-cloud air. Mitigation of the former is being explored
through a GOES-R Critical Path project to develop an orographic correction for
the algorithm that accounts for topographically-induced wind flows. The
mitigation of other subcloud effects will be investigated by examining the impact
of relevant numerical weather model fields (e.g., total precipitable water and/or
low-level relative humidity) on precipitation estimates. Note that ABI-derived
fields cannot be used for this application since they will not be available for
cloudy regions.

Finally, the channel mapping between SEVIRI and ABI has been used in the
development and pre-launch validation of the algorithm is shown in Table 13:

ABI Band SEVIRI Proxy
Number Central Wavelength (um) Number Central Wavelength (um)
8 6.19 5 6.2
10 7.34 6 7.3
11 8.5 7 8.7
14 11.2 9 10.8
15 12.3 10 12.0

Table 13. Channel mapping associated with ABI proxy data from SEVIRI during
algorithm development and validation.

6.2 Assumed Sensor Performance

It is assumed that the sensor will meet its current specifications.

However, the Rainfall

Rate Algorithm will be dependent on the following instrumental characteristics.

The spatial variation predictors in the Rainfall Rate Algorithm will be critically
dependent on the amount of striping in the data. Note that this will affect the
retrieval only when any texture-related predictors are among the selected
predictors selected by the algorithm.

Unknown spectral shifts in some channels will affect the BTD calculations and

thus compromise some of the predictors. Note that this will affect the retrieval
only when any BTD’s are among the predictors selected by the algorithm.
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6.3 Pre-Planned Product Improvements

A number of potential improvements are being investigated for the “day-2 Rainfall Rate
product:

6.3.1 Smoothing along Region Seams

The current version of the algorithm does not attempt to smooth any discontinuities that
may occur along the seams between regions (i.e., 30°S, the equator, and 30°N). The code
will be modified to overlap the regions somewhat and apply a weighted average to the
two overlapping regions to produce a smoother result.

6.3.2 Incorporation of Numerical Model Moisture Fields to Correct for
Subcloud Evaporation of Rainfall

The current operational Hydro-Estimator rainfall rate algorithm uses National Centers for
Environmental Prediction (NCEP) North American Mesoscale (NAM) model total
column precipitable water and mean-layer relative humidity from the lowest third of the
troposphere to enhance rainfall rates in moist regions and reduce them in dry regions.
Such a correction for the GOES-R Rainfall Rate algorithm is being investigated.

6.3.3 Correction for Orographic Modulation of Rainfall

A GOES-R Critical Path Project in collaboration with Hampton University is working to
develop a correction for the orographic modulation of rainfall based on wind, topography,
and stability information from an operational numerical weather model.

6.3.4 Incorporation of Time Change Information

Another GOES-R Critical Path Project, in collaboration with City College of New York
(CCNY), involves determining Lagrangian (i.e., cloud-following) time changes in cloud
properties and using them as predictors in the rainfall algorithm. This is an effort to
address the tendency of satellite rainfall algorithms to underestimate rainfall early in the
convective cycle.

6.3.5 Incorporation of Retrieved Cloud Microphysics Information

A third GOES-R Critical Path Project, in collaboration with ESSIC involves
incorporating retrieved cloud effective radius and cloud liquid water path information in
an improved regime classification and as direct predictors in the algorithm.
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