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ABSTRACT 
 
This Derived Motion Winds (DMW) Algorithm Theoretical Basis Document (ATBD) contains a 
description (including the physical basis) of an algorithm for estimating atmospheric winds from 
images taken by the Advanced Baseline Imager (ABI) flown on the Geostationary Operational 
Environmental Satellite-Series R (GOES-R) series of National Oceanic and Atmospheric 
Administration (NOAA) geostationary meteorological satellites.  A brief overview of the GOES-R 
observing system is followed by a more specific description of the Derived Motion Winds 
algorithm, validation efforts, and planned improvements.  
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1 INTRODUCTION 
 

1.1 Purpose of This Document 
 
The derived motion wind Algorithm Theoretical Basis Document (ATBD) provides a 
description of and the physical basis for the estimation of atmospheric wind from 
observations from the Advanced Baseline Imager (ABI) flown on the GOES-R series of 
NOAA geostationary meteorological satellites.  The Derived Motion Wind Algorithm 
(DMWA) estimates not only the speed and direction of identified tracers (clouds and/or 
moisture gradients), but also their height in the atmosphere. This document also provides 
details on the evaluation of the DMWA performance during the development phase. 
 
The central purpose of this ATBD is to facilitate development of operational Product 
Generation (PG) software for the derived motion wind product which is to be implemented 
within the GOES-R Ground Segment product generation subsystem. 
 

1.2 Who Should Use This Document 
 
The intended users of this document are those interested in understanding the physical basis 
of the algorithms and how to use the output of this algorithm to optimize the use of the 
derived motion wind output for a particular application.  This document also provides 
information useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 
 
 This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of the ABI DMWA system and gives 
a brief description of the products generated by the algorithm. 

 
• Algorithm Description: Provides a detailed description of the DMWA algorithm 

including its physical basis, its input and its output. 
 

• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 
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1.4 Related Documents 
 

This document currently does not relate to any other document outside of the specifications 
of the GOES-R Ground Segment Mission Requirements Document (MRD) and Functional 
and Performance Specification (F&PS) and to the references given throughout. 
 

1.5 Revision History 
 
Version 0.1 of this document was created by members of the GOES-R winds algorithm 
development team and its intent to accompany the delivery of the version 1.0 derived 
motion winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (May 
2008) 
 
Version 0.2 of this document was created by members of the GOES-R winds algorithm 
development team and its intent is to accompany the delivery of the version 3.0 derived 
motion winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (June 
2009) 
 
Version 1.0 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong in response to internal AWG review items. This version of the ATBD still 
accompanies the version 3.0 of the derived motion winds algorithm to the GOES-R AWG 
AIT. (September 30, 2009) 
 
Version 1.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong and its intent is to accompany the delivery of the version 4.0 derived motion 
winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (June 2010) 
 
Version 1.2 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong and its intent is to accompany the delivery of the version 5.0 derived motion 
winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (August 2010) 
 
Version 2.0 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong in response to internal AWG and STAR review items. This version of the ATBD 
still accompanies the version 5.0 of the derived motion winds algorithm to the GOES-R 
AWG AIT. (September 2010) 
 
Version 2.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong to reflect corrections/additional information as a result of technical interactions 
the winds team had with AER over the past year. (July 2012)  
 
Version 3.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong to update the section on the gross forecast difference test and the cloud top band 
8 height assignment method. 
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2 OBSERVING SYSTEM OVERVIEW 
 
This section will describe the products generated by the GOES-R ABI Derived Motion 
Winds Algorithm (DMWA) and the requirements it places on the sensor.  

2.1 Products Generated 
The GOES-R ABI DMWA employs a sequence of images to arrive at an estimate of 
atmospheric motion for a set of targeted tracers viewed in selected spectral bands. These 
targets include well defined cloud edges or moisture gradients. Table 1 outlines the 
specifications for the GOES-R derived motion winds product as defined in the latest 
version of the GOES-R Ground Segment Project Functional and Performance Specification 
(F&PS) requirements document.  

 
Table 1: F&PS Requirements for the Derived Motion Winds product 

Derived Motion Winds Specification 
Geographic Coverage Full Disk, CONUS, Mesoscale 
Vertical Resolution Cloud Motion Vector winds: At cloud tops; Clear-Sky 

Water Vapor winds: 200 mb 
Horizontal Resolution 10 km (Changes pending: 

FD: 38km 
CONUS: 38km 
Mesoscale: 38km 

Mapping Accuracy 5 km 
Measurement Range Speed: 0-300 kts (0 to 155 m/s) & Direction: 0 to 360 

degrees (Change pending: Speed 5.83-300 kts (3-155 
m/s)  

Measurement Accuracy Mean Vector Difference: 
7.5 m/s 

Refresh Rate/Coverage 
Time (Mode 3) 

FD: “60 mins (based on a single set of 3 sequential 
images 5 or more minutes apart);  
CONUS:  15 minutes; 
Mesoscale: 5 minutes ) 

Refresh Rate (Mode 4) FD: “15 mins (based on a single set of 3 sequential 
images 5 or more minutes apart);Change 
pending:60mins) 
CONUS:  15 minutes; 
Mesoscale: 5 minutes ) 

VAGL (Mode 3 or 4) 806s 
Measurement Precision 3.8 m/sec 

 (Change pending to “4.2 m/s”) 
Product Qualifiers 

Temporal Coverage Day and night 
Product Extent Quantitative out to at least 62 degrees LZA and 

qualitative beyond 
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Cloud Cover Conditions Clear conditions down to feature of interest associated 
with threshold accuracy 

Product Statistics Over specified geographic area 
The DMW products will be produced for each of the ABI bands designated in Table 2 over 
the various ABI Full Disk (FD), Continental United States (CONUS), and Mesoscale scan 
domains. 

2.2 Instrument Characteristics  
 
The GOES-R ABI has been designed to address the needs of many users of geostationary 
data and products (Schmit, et al, 2005) It will offer more spectral bands (to enable new and 
improved products), higher spatial resolution (to better monitor small-scale features), and 
faster imaging (to improve temporal sampling and to scan additional regions) than the 
current GOES imager.  
 
Table 2.  Channel numbers and associated wavelengths for the GOES-R ABI, as well as 
those channels that will be employed operationally by the DMWA in “Day1” applications  

Channel 
Number 

Wavelength 
Range (um) 

Central 
Wavelength 
(um) 

Nominal 
subsatellite 
IGFOV (km) 

Used in DMWA 

1 0.45-0.49 0.47 1  
2 0.59-0.69 0.64 0.5   
3 0.846-0.885 0.86 1  
4 1.371-1.386 1.38 2  
5 1.58-1.64 1.61 1  
6 2.225-2.275 2.26 2  
7 3.80-4.00 3.9 2  
8 5.77-6.6 6.15 2  
9 6.75-7.15 7.0 2  
10 7.24-7.44 7.4 2  
11 8.3-8.7 8.5 2  
12 9.42-9.8 9.7 2  
13 10.1-10.6 10.35 2  
14 10.8-11.6 11.2 2  
15 11.8-12.8 12.3 2  
16 13.0-13.6 13.3 2  

 
The spatial resolution of the ABI data will be nominally 2 km for the infrared bands and 
0.5 km for the 0.64-μm visible band. Table 2 provides a summary of the 16 spectral bands 
that will be available on the ABI. Those channels that are expected to be used in DMW 
feature tracking, at least initially for “Day-1” operational production, include the 0.64um, 
3.90um, 6.15um, 7.0um, 7.4um, and 11.2um bands. These are the so-called heritage 
channels that are used operationally today to derive atmospheric motion vectors.  
Derived motion winds will be generated separately from each of these six ABI bands.  
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Collectively, the derived motion winds from each of the six runs are the derived motion 
winds product.  
 
The ABI will scan approximately 5 times faster than the current GOES imagers. This brings 
opportunities and flexibility for the collection of more observations that will enable user 
needs to be better met. At the present time, there are two anticipated scan modes for the 
ABI. The first is a flexible scanning scenario that will provide one scan of the Full Disk 
(FD), three scans (5 minutes apart) of the Continental United States (CONUS), and 60 
scans (30 seconds apart) over a selectable 1000 km ×1000 km area every 15 minutes. The 
second mode is continuous full disk scanning where full disk coverage is obtained every 5 
minutes. In practice, some combination of both modes may be used. For example, three 
sequential FD images that are 5 minutes apart may be taken every hour for the generation 
of DMWs. The flexible scanning mode would then be used for the rest of the hour. 
 

Table 3.  Image navigation and registration pre-launch specifications (3σ) for day 
and night (in black) for the GOES-8-12, GOES-13/O/P, and GOES-R series of 
satellites. In red are actual computed image navigation and registration performance 
statistics (in km) for GOES-12 and GOES-13. (Computed values courtesy of G. 
Jedlovek; NASA/MSFC) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Significant improvements in the performance of the image navigation and registration are 
expected with GOES-R. This is expected to translate to more accurate DMWs. The stability 
of the frame-to-frame navigation, in particular, is a key factor for deriving accurate 
atmospheric motion vectors.  Table 3 shows the image navigation and registration pre-
launch specifications (3σ) in black for the GOES-8-12, GOES-13/O/P, and GOES-R series 
of satellites. In red are actual computed image navigation and registration performance 
statistics for GOES-12 (using four 1-week periods of residual data from 2005 and 2006) 

  
  

GOES 8-12 
 

Day/Night 

GOES 
13,O,P 

 
Day/Night 

GOES-R 
 

Day/Night 

Absolute  
Navigation (km) 

4.0 / 6.0 
(4.5 /5.0) 2.3 1.0 / 1.5 

Within Image (km) 1.6 / 1.6 2.0 1.0 

Image-to-Image (km)  

5-7 min -- 
(2.3 / 2.3) 

-- 
(0.6/0.6) 

0.75 
1.0 

15 min 1.5 / 2.5 
(2.8 / 3.2) 

1.3 
(1.0/1.3) 

0.75 
1.0 

90 min 3.0 / 3.8 1.8 0.75 
1.0 

24 hr 6.0 / 6.0 4.0 -- 
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and for GOES-13 (using two days from special collection period in December 2006) based 
on the standard deviation of the residual differences calculated from satellite image 
navigation and registration (INR) data. It is clear from this table that the image navigation 
and registration performance has improved with each new series of GOES satellites. The 
GOES-13 image-to-image registration accuracy, for example, is substantially improved 
over its predecessors and approaches the GOES-R specifications, which represent even a 
further improvement.  Higher spatial, spectral, and temporal resolution, together with 
increased radiometric performance and improved navigation/registration performance of 
the GOES-R ABI is expected to result in better target selection, improved feature tracking, 
and target height assignment. In addition, new opportunities for applications of very high-
resolution (spatial & temporal) winds in severe storm environments and feature tracking of 
volcanic ash and dust are expected. 
 
The performance of the DMWA is sensitive to any imagery artifacts, instrument noise, and 
image registration accuracy. The GOES-R ABI channel specifications are given in the 
MRD section 3.4.2.1.4.0 and it is assumed that the GOES-R ABI will perform within these 
specifications.  
 

3 ALGORITHM DESCRIPTION 
 
A complete description of the DMWA algorithm at the current level of maturity (which 
will improve with each revision) is provided in this section.  
 

3.1 Algorithm Overview 
 
The DMWA developed for the GOES-R ABI instrument has its heritage with the DMWA 
being used operationally today at NOAA/NESDIS for the current GOES series of satellites 
(Merrill et al, 1991; Nieman et al, 1997, Velden et al, 2005). There are a number of basic 
steps involved in the process of generating DMWs: 
 

• Obtain a set of at least three precisely calibrated, navigated and co-registered 
images in a selected spectral channel 

• Locate and select a set of suitable targets in the middle image domain 
• For each image pair in the image triplet, use a correlation algorithm to derive the 

motion most representative for the target scene  
 

When tracking cloudy target scenes using ABI channels 2 (0.64um), 7 (3.9um), 
8 (6.15um), or 14 (11.2um) the correlation algorithm is used in conjunction with 
a nested tracking algorithm where the following steps are performed: 
 
• Apply the correlation algorithm to smaller sub-targets within each target 

scene in order to derive a set of local motion vectors for each target scene  
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• Analyze the local motion field with a cluster analysis algorithm in order to 
extract the dominant motion within the target scene.  

• Assign a height to the derived winds using pixel level information from the 
dominant cluster.  

 
When tracking moisture gradients in clear target scenes using ABI channels 8 
(6.15um), 9 (7.0um), or 10 (7.4um), the nested tracking algorithm is disabled 
and the following steps performed: 

 
• Assign a height to the tracer using a cold sample of pixels. 
• Apply the correlation algorithm to the  entire target in order to arrive at a 

motion vector  
 

• Average the vectors derived from each of the image pairs to arrive at the final set 
of DMWs 

• Perform quality control on the DMWs and assign quality indicators to each of the 
DMWs 

 
 
A target scene is represented by an NxN array of pixels that defines a suitable feature in 
the image whose movement can be tracked in time. The size of this array is a function of 
the spatial and temporal resolution of the imagery and the scale of the intended feature to 
be tracked. One of the challenges of deriving atmospheric motion winds operationally from 
satellites is to determine and utilize imagery taken at frequencies appropriate to the scales 
resolvable by operational numerical weather prediction systems while at the same time 
meeting production demands that require routine full disk coverage.  
 

3.2 Processing Outline 
 
In order to estimate motion, one must have a sequence of images separated by some, 
preferably fixed and relatively short, time interval. The DMW algorithm described here 
uses a sequence of three images to compute a pair of vector displacements (one for an 
earlier time step and one for a later time step) that are averaged to obtain the final motion 
estimate. The current version of the algorithm requires that the three images be equal in 
size. The DMWA uses the middle image to perform the initial feature targeting, then 
searches the before and after images for traceable (coherent) features to derive motion 
estimates. 
 
The basic processing outline for the DMWA is summarized in Figure 1. The algorithm is 
designed to run on segments of data provided by the framework and consisting of multiple 
scan lines. Processing begins after a data buffer containing the brightness temperature 
values from three consecutive images is filled. The data buffer also contains output from 
the cloud mask and cloud height algorithms which must execute before the DMWA. It 
should be noted that the cloud data is only required for the middle image time because this 
is the image that is processed for targets. On the other hand, brightness temperature values 
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are required for all three image times because this is the quantity being tracked.  In practice, 
the buffer is a data structure holding the 2-dimensional arrays of brightness temperatures 
for three image times and the cloud information for a single image time. 
 
Once the data buffer is full, the middle portion of the buffer is divided into small “target” 
scenes NxN pixels and each scene is analyzed to determine if it is a suitable tracer. Only 
the brightness temperature field from the middle image time is processed for targets and it 
is these targets that will be tracked over time to derive the motion. Processing only the 
middle portion of the buffer allows for the features to drift over time but still remain within 
the domain of the buffer. Within each target scene, the algorithm locates the strongest 2-D 
gradient in the brightness temperature field and re-centers the NxN target scene at this 
location. A brightness temperature gradient threshold is used to prevent target selection on 
very weak gradients. 
 
After the target scene is re-centered on the maximum gradient, tests are performed to 
determine whether or not the scene would be a suitable tracer. These tests eliminate target 
scenes that lack the gradients necessary to track reliably while also removing scenes that 
are suspected to contain multiple cloud layers. 
 
If a potential tracer makes it through the target quality control, a search region, much larger 
in size than the target scene, is defined in each of the tracking images. At this point, 
depending on the channel being processed, one of two tracking strategies is employed. 
Both strategies use the Sum of Squared Differences (SSD) similarity measure to locate the 
target scene in the preceding and succeeding images. 
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Figure 1.   High Level Flowchart of the ABI Derived Motion Wind Algorithm. 
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When processing cloud-top features from the 0.6, 3.9, 6.2 or 11.2 micron channels, a 
tracking strategy called nested tracking is used to estimate motion. In this approach, a small 
5x5 pixel box is “nested” within the outer target scene and a local motion vector is derived 
at each interior pixel. A 2-pixel offset is used near the boundary of the outer target scene. 
The field of local motion vectors that results is then analyzed with a cluster analysis 
algorithm to find the dominant motion. The dominant motion is computed by averaging 
the displacements associated with the largest motion cluster found by using a cluster 
analysis algorithm.  The wind vector is then assigned a representative height after 
examining the cloud top pressure or brightness temperatures associated with the pixels in 
the largest cluster.  When processing the visible, SWIR or LWIR channels, a median cloud 
top pressure is found by examining the cloud-top pressure values of all pixels in the largest 
cluster. When processing one of the three water vapor channels the height assignment 
process is slightly different.  Here, the water vapor channel brightness temperature values 
are examined and a median temperature is found from the pixels in the largest cluster. The 
median brightness temperature is then compared to a GFS forecast temperature profile to 
find the pressure where the two values agree. The pressure at which these two values agree 
serves as the representative height of the derived motion wind. 
 
When processing the clear sky portions of a water vapor (6.2um, 7.0um or 7.3um) image, 
the strategy for tracking features is more conventional. For these cases, the target is 
assigned a height before it is tracked. The height is computed using a sample of pixels from 
the coldest portion of the scene. After the target is assigned a height, a search is performed 
to find the closest match of the target in the preceding and succeeding images in the image 
triplet. This conventional approach produces a single motion vector associated with the 
motion of the entire target scene.  
 
Both tracking approaches use a forecast wind (from the center of the target scene) to locate 
and place the center of the search region in the next image. This practice of using the 
forecast to “guide” the search serves two purposes. First, it reduces the number of “false 
positives” in the tracking step. Secondly, it minimizes the computational expense of the 
search.   
 
During the tracking process, correlation thresholds are applied to screen out false positives. 
When nested tracking is employed, only matching scenes possessing a correlation score of 
0.8 or higher (1.0 is perfect) are allowed to influence the final solution. For conventional 
tracking, where nested tracking is not invoked and the larger  target scene is tracked,  the 
correlation threshold is reduced to 0.6. 
  
Two sub-vectors are generated in the tracking process, one vector for the backward time 
step and one vector for the forward time step.  Accelerations between sub-vectors 
exceeding a user defined threshold (5 or 10 m/s depending on band) are not permitted 
(vectors are discarded). In addition, gross errors in the height assignment and tracking 
estimates are removed by comparing the satellite-derived motion wind to a numerical 
forecast wind and discarding those satellite-derived wind vectors which differ significantly 
from the forecast wind.  These gross error thresholds are band-dependent. 
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Once the last line segment is processed, the entire set of derived winds undergoes a more 
rigorous quality control process. Two related algorithms will make up the Automatic 
Quality Control (AQC) of the GOES-R DMW processing.  The first one is the 
quality indicator (QI), based on work done at EUMETSAT (Holmlund, 1998).  The 
second is the Expected Error (EE) principles developed at the Bureau of Meteorology, 
Australia (LeMarshall et al. 2004). 

3.3 Algorithm Input 
 
This section describes the input needed to process the DMWs.  While the DMWA uses 
information at the pixel level (e.g., cloud mask, cloud height), the derived motion is 
representative of a group of pixels (i.e., a scene within a target box of size NxN pixels). 
The DMWA is currently designed to process winds only after a data buffer has been filled 
with brightness temperature data from all three images in the tracking sequence. Cloud 
height and cloud mask information for the middle image time is also required. The buffer 
must be large enough to capture the motion of features up or down in the image. 
Consequently, the DMWA processes only a portion of the buffer (a middle strip the same 
width as the target box size) for suitable tracers. Processing proceeds from west to east 
until the earth edge is encountered or no more elements exist in the line segment.  The 
process is repeated until the number of lines remaining in the line segment is smaller than 
the number of lines that make up the target scene. At this point the extra lines are saved in 
the buffer and control is returned to the framework until the next line segment is read into 
memory. The following sections describe the actual input needed to run the DMWA. 
 

3.3.1 Primary Sensor Data 
 
The list below contains the primary sensor data to be used by the DMWA.  By primary 
sensor data, we mean information that will be derived solely from the ABI observations 
and geolocation information.  The sensor data is used at it original resolution. 

 
• Calibrated and navigated radiances for ABI channel 14 (11.2um) for the middle 

image time of the loop sequence.  
• Calibrated and navigated reflectances (percent) for ABI channel 2 (0.64um) and 

brightness temperatures for ABI channels 7 (3.9um), 8 (6.15um), 9 (7.0um), 10 
(7.4um), and 14 (11.2um) for three consecutive images. 

3.3.2 Ancillary Data 
 
The following list briefly describes the ancillary data required to run the DMWA.  By 
ancillary data, we mean data that will require information not included in the ABI 
observations or geolocation data. 
 

• Land mask / Surface type 
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A land mask file is needed such that each ABI pixel can be classified as being over 
land or water. The details of the dataset that contains this information and the 
procedure for spatially mapping it to the ABI are described in detail in the 
Algorithm Interface and Data Description (AIADD) Document. 
 

• DMWA configuration file 
 
A configuration file is needed to set six variables within the DMWA processing 
algorithm: 
 
1. GOES-R ABI channel number – Channel number to use for feature tracking  
2. Time step between images  
3. Target box size – In pixel space 
4. Nested tracking flag – to enable or disable nested tracking. 
5. Expected Error (EE) filter flag 
6. Clear-sky WV flag – to enable or disable clear sky processing. 

 
• Numerical Weather Prediction (NWP) Forecast Data 

 
1. Short-term forecast temperature and wind data on pressure surfaces from 

National Centers for Environmental Prediction’s (NCEP) Global Forecast 
System (GFS) model are used to calculate target heights and for calculating 
model shear and model temperature gradients used in the Expected Error 
algorithm described in Section 3.4.2.4.2. Details concerning the preprocessing 
of NWP forecast data can be found in the AIADD Document. 

2. Short-term GFS forecast wind profiles are also used to center the search box on 
the predicted locations of targeted features being tracked in the first and last 
images of the loop sequence 

 
• Expected Error Coefficients File 

 
1. A set of regression coefficients corresponding to a number of predictors used 

to compute the Expected Error quality flag that is appended to each DMW that 
is computed. The details of this approach are described in Section 3.4.2.4.2.  

 

3.3.3 Derived Data 
 
This section lists the input data that must be derived before the DMWA is executed.  The 
output of several upstream cloud product algorithms from the GOES-R AWG cloud team 
are used in the DMWA derivation process and include the following: 
 

• Cloud Mask 
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The cloud mask is used by the DMWA as part of the cloud amount test when 
selecting which target scenes to process. It is also used to screen out pixels that do 
not have a cloud top pressure associated with them.  
 

• Cloud top pressure, cloud top pressure quality, and cloud top temperature 
 
This information is used by the DMWA to assign a representative height to the 
target scene being tracked. 
 

• Cloud top height and temperature error estimates 
 

• Low level inversion flag 
 
This information is used by the DMWA to assign a representative height to the 
scene being tracked within a GFS model designated low-level inversion. 
 

• Solar zenith angle 
 
This information is used by the DMWA to determine day/night pixels. 

 
 

3.4 Theoretical Description  

3.4.1 Physics of the Problem – Estimation of atmospheric flow from 
motions in sequential satellite imagery 

 
This section discusses the theory behind the challenge of estimating atmospheric flow from 
motions in sequential satellite imagery. Atmospheric motion is determined through the 
tracking of features in time. Identifying features to be tracked is the first step in the process. 
These features can be clouds, or in the case of clear-sky conditions, moisture gradients.  
 
The DMWA uses the ABI visible and infrared observations shown in Table 3 to extract 
atmospheric motion. The choice of spectral band will determine the intended target (cloud 
or moisture gradient) to be tracked, its height in the atmosphere, as well as the scale of its 
motion.  Historically, the coverage of operational GOES DMWs is diurnally consistent in 
the mid- to upper tropospheric levels (100–600 hPa) through the use of the mid-wave 
(6.7um – 7.3um) water vapor channels and longwave (10.7um) infrared (LWIR) channel 
for deriving vectors. In the lower levels (600–950 hPa), DMWs are provided by a 
combination of the visible (VIS) and IR channels, depending on the time of day. During 
daylight imaging periods, the VIS channel usually provides superior low-level tracer 
detection than the LWIR channel due to its finer spatial resolution and decreased 
susceptibility to attenuation by low-level moisture. During night-time imaging periods, the 
shortwave (3.9um) infrared (SWIR) channel compliments the LWIR channel to derive 
DMWs. The SWIR channel is a slightly “cleaner” window channel than the LWIR (less 
WV attenuation), making it more sensitive to warmer (lower tropospheric) temperature 
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features (Dunion and Velden, 2002). The SWIR channel is also not as sensitive as the 
LWIR channel to cirrus clouds that may obscure low-level cloud tracers. These two 
characteristics make it a superior channel for producing low level DMWs at night. 
 
As described previously, each target is an NxN array of ABI pixel measurements (scene) 
that encapsulate a suitable feature whose movement is tracked in time. The size of this 
array is a function of both the spatial and temporal resolution of the imagery and the scale 
of the intended feature to be tracked. Generally speaking, a small target box yields a noisier 
motion field than one generated with a larger target box. Conversely, if the target scene is 
too large, the algorithm will tend to measure the mean flow of the pixels in the target scene 
(i.e. a spatial average of several motions) rather than the intended instantaneous wind at a 
single point. These considerations need to be kept in mind when choosing the optimal target 
box size.  
 

3.4.1.1 Target Selection 
 
The objectives of the target selection process are to select high quality target scenes that: 
i) capture the intended target (i.e., clouds or clear-sky water vapor gradient), ii) contain 
sufficient contrast, and iii) do not contain a mix of multi-layered clouds. Target scenes that 
posses these characteristics are more amenable to precision tracking and height assignment 
that result in more accurate atmospheric wind estimates.  
 
Target scenes are centered at pixel locations where the magnitude of the brightness 
temperature gradient is large. In other words, these target scenes are centered over cloud 
edges or tight moisture gradients in clear-sky conditions. To assure that only high quality 
targets are selected, all potential target scenes first undergo a spatial coherence and cluster 
analysis (Coakley & Bretherton, 1982) check.  The primary goal of this analysis is to 
identify the presence of a coherent signal in the target scene that indicates a dominant single 
layer cloud in the target scene. The spatial-coherence method attempts to identify the 
presence of cloud layers in each target scene by identifying the portions of the region that 
exhibit a high degree of local uniformity in the pixel-level emitted radiances. A high degree 
of uniformity will exist for regions that are cloud-free or for regions completely covered 
by cloud at a uniform height. For targets that are not completely covered by clouds, the 
emitted radiances can vary significantly from one pixel to the next.   
 

3.4.1.1.1 Spatial Coherence and Cluster Analysis Methods 
 
The starting point for spatial-coherence and cluster analysis methods is the model of a well-
defined, single-layered system of clouds situated over a relatively uniform background. 
What is meant by the term “well-defined” and “relatively uniform” will be explained 
below. The emitted radiance observed by a radiometer viewing such a system is given by 
 
   I = (1 – C)Ics + C(εcldIcld + tcldIcs)                                                   (1) 
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where I is the emitted radiance, C is the fractional cloud cover for the field of view, Ics is 
the radiance associated with the cloud-free portion of the field of view, i.e. the radiance 
observed when C = 0. εcld is the mean effective emissivity associated with the cloud layer, 
tcld is the mean transmissivity, and Icld is the radiance that would be observed for overcast 
regions, i.e. C = 1, if the clouds were black at the wavelength of observation. The emitted 
radiance, I, is assumed to be at an infrared (IR) window wavelength so that downward 
emission above the cloud can be neglected. Likewise, the surface is assumed to be black at 
the wavelength of observation so that all radiation incident on the surface is absorbed, 
especially that emitted downward by the cloud. It is assumed that no radiation is reflected 
by the surface. Over a relatively small region the emission of the clear-sky background, Ics, 
and the height of the cloud layer, and therefore Icld, are assumed to have little variance. 
That is, the effects of variations in the thermal emissions associated with the clear-sky 
background and the height of the cloud layer are small when compared with the effects 
caused by variations in the fractional cloud cover and the cloud optical properties. If these 
conditions are met, the background is said to be relatively uniform and the layer is said to 
be well-defined. From (1), the variance of the radiances under such conditions is given by: 
                            _             _                    ___                      ___ 
  (I–I)2 =[(C–C)Ics+(Cεcld – Cεcld)Icld+(Ctcld – Ctcld)Ics]2                               (2) 
 
The variances of emitted radiances over small areas spanning several image pixels is the 
key to identifying the portions of a region that are cloud-free or overcast by clouds in a 
well-defined layer. The variance approaches zero when the mean cloud cover in a region 
approaches zero. If the mean cloud cover is zero, then the fractional cover in every pixel is 
also zero (i.e. C=C =0). Where the clouds become sufficiently extensive so that several 
image pixels are overcast, then for analogous reasons, the variance approaches zero 
because C=C =1. Often when cloud systems become sufficiently extensive that they cover 
several image pixels, they also become opaque. A notable exception can be cirrus. For 
opaque, overcast clouds the variance again becomes zero because ticld = tcld = 0 and εicld =   
εcld = εcldmax. , where, tcld is the cloud transmissivity and εcldmax is the emissivity that the 
clouds obtain when they become opaque (i.e., where rcldmax is the reflectivity). When pixels 
become overcast with opaque clouds, the variance in emitted radiances also becomes zero. 
When pixels become overcast by semitransparent clouds, like cirrus, pixel-to-pixel 
variations in the cloud optical properties, i.e. εcld and tcld, prevent the variance from 
dropping to zero. Because clouds appear to vary incoherently on the ~1 km × 1 km scale 
available to current satellite imagers, (2) indicates that variances in the emitted radiances 
for regions that are covered by several image pixels will be nonzero when the region 
contains broken cloud. The variability will be caused partly by differences in the fractional 
cloud cover from pixel to pixel and partly by variations in the average cloud optical 
properties from pixel to pixel. The spatial-coherence method identifies pixels that are 
overcast by layered clouds where the clouds become opaque, and pixels that are cloud-free 
by relying on the near-zero variances in emitted radiances for localized collections, or 
clusters, of the pixels. Collections of pixels that are partly covered by clouds or are overcast 
by clouds that are semitransparent invariably exhibit relatively larger variances. The 
application of a simple threshold on the variance of emitted radiances over local sub-
regions within each target scene is performed as part of the target selection process in order 
to identify coherent pixels representative of cloud features and the surface.  
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The cluster analysis method is designed to filter out hard to track multi-layered cloud 
scenes. It is related to the spatial coherence method in that it starts with the same radiance 
information (mean and standard deviation values for small sub-regions of the target box), 
but takes the analysis further to determine if more than one cloud layer is present in the 
target scene. This analysis involves constructing a histogram of pixel level radiance values 
within the target scene and then identifying the clusters of warm and cold samples that are 
assumed to correspond to the surface and the elevated cloud layer, respectively. A second 
cloud layer is assumed to exist in the target scene if more than a pre-determined percentage 
(20%) of the radiance values fall outside of the two clusters of warm and cold samples. If 
a second cloud layer is determined to exist, the target scene is rejected as a suitable target 
for feature tracking.    
 
Further details about how both of these tests are applied are provided in Section 3.4.2.1.1 
 

3.4.1.2 Feature Tracking 
 
If a target scene survives the selection criteria, then attempts to track this target in the image 
sequence can commence. Feature tracking involves coherent tracking of clouds or water 
vapor features over a specified time interval. A key assumption made in this process is that 
cloud or water vapor features are passive tracers that move with the ambient wind flow. Of 
course, it is understood that cloud tracers (in particular) are not always passive. There may 
be growth, decay, or change in cloud top height over the time interval being assessed. 
Further complicating matters is the fact that some clouds do not move with the wind (i.e. 
wave clouds) while others track with the wind at a level lower than cloud top (i.e. marine 
cumulus). Therefore it is important to apply robust quality control to remove retrieved 
DMWs that are in error as a result of these complicating factors (discussed in Section 
3.4.2.4). 
 
Clouds grow and decay with lifetimes that vary with their size and location (i.e., land versus 
ocean). To be effectively tracked, the lifetime of the tracer must be at least as long as the 
time interval of the image sequence used. The resolution of the imagery is also an important 
consideration when tracking features in satellite imagery. Merill (1989) and Schmetz et al. 
(1993) discuss this at length. It is important that the size of the target scene (spatial 
resolution) is consistent with the temporal resolution of the imagery in order to capture the 
scale of the intended feature being tracked. For example, estimation of low level winds 
over land is improved by using smaller target scenes and higher temporal resolution 
imagery. Early work by Hamada (1983) suggested that the temporal resolution of images 
should be less than 15 minutes in order to accommodate the short lifetime and rapid 
deformation of cloudy tracers over land. Shenk (1991) suggested that the temporal 
resolution needed to properly track low level cumulus over land was in the range of 10 
minutes to less than a minute. More recently, Velden et al. (2000) experimented with 
special GOES-10 rapid scan imagery to determine the optimal temporal resolution to use 
for different spectral channels. A general finding, that was not unexpected, was that a 
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higher number of high quality winds can be derived with decreasing time intervals and 
increasing spatial resolution.  
 
A critical factor that has a significant impact on the quality of the derived winds, especially 
at higher temporal resolutions, is the image registration; that is, the stability of the image-
to-image navigation. If the stability of the image-to-image navigation is poor for an image 
sequence, the result will be added noise to the tracking process and poor quality DMWs. 
Furthermore, use of imagery with high temporal resolution, but coarse spatial resolution, 
can result in poor quality DMWs. This is especially true for small tracer displacements 
(i.e., low wind speeds) where image registration uncertainties will dominate the resulting 
true displacements.  
 
Jedlovek and Atkinson (1998) discuss the development of a Tracking Error Lower Limit 
(TELL) parameter,ℑ , that provides guidance for understanding the trade-offs between 
spatial and temporal resolution for varying image registration performances. The TELL 
parameter is given by: 
 

t/)2/( ρ+ℜ=ℑ                                                             (3) 
 
where: ℜ  is the image registration accuracy, ρ  is the image spatial resolution, and t is the 
image separation interval. Figure 2 shows the magnitude of the TELL parameter for various 
values of the image registration accuracy and image separation. 
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Figure 2. Tracking Error Lower Limit (TELL) is a function of image registration accuracy 
and image separation time. (Jedlovek and Atkinson, 1998) 
 
Small values of TELL (small wind errors) are achieved with good image registration, high 
resolution data, and relatively large image separation times. However, for atmospheric 
applications where trackable features change considerably over a short period of time, large 
separation intervals are not desirable, making values of image resolution and registration 
accuracy critical parameters in DMW accuracy. 

3.4.1.3 Target Height Assignment 
 
Assigning a representative height to each cloudy target is achieved by processing pixel-
level cloud heights, derived via the GOES-R ABI cloud height algorithm, within the target 
scene. A detailed description of the GOES-R ABI cloud height algorithm can be found in 
the GOES-R ABI Cloud Height Algorithm Theoretical Basis Document. For clear-sky 
water vapor targets, NCEP GFS forecast temperature profiles are used as ancillary data and 
compared to brightness temperatures calculated from the clear-sky water vapor channel 
brightness temperatures. The pressure height is determined as the level where the 
brightness temperature fits the forecast temperature. 
 
Target height assignment is considered to be the major source of error for DMWs. A 
perfectly tracked feature can be rendered useless if it is assigned to the wrong level in the 
atmosphere. There is also the consideration of how well the final wind actually represents 
the local wind field at a singular location, height (level) and time. Some clouds do not move 
with the wind while others follow the wind at a level lower than the cloud top. Additionally, 
DMWs tend to represent the movement of a layer of the atmosphere, as opposed to the 
movement of the atmosphere at a particular level (Velden and Bedka 2009).  
 

3.4.2 Mathematical Description 
 
The GOES-R DMWA approach to derive an individual vector consists of the following 
general steps, each of which is described in detail in the following sections.  
 

• Locate and select a suitable target in second image (middle image; time=t0) of a 
prescribed image triplet 

• Assign an estimated representative height to the target 
• Use a pattern matching algorithm to locate the target in the earlier and later image. 

Track the target backward in time (to first image; time=t-Δt) and forward in time 
(to third image; time=t+Δt) and compute corresponding displacement vectors. 
Compute the mean vector displacement from the two displacement vectors and 
assign this final DMW to time = t0. 

• Perform quality control procedures on the DMW to edit out or flag suspect vectors. 
Compute and append quality indicators to each DMW. 
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3.4.2.1 Target Selection 
 
Targets are selected from the middle image of the sequence. The size of each target scene 
will depend on the channel being processed and the scale of the motion being estimated. 
The target scene is traditionally a square with sides of equal length (in pixels). Table 4 
summarizes the target scene size and image time separation interval to be employed for 
each ABI channel used to derive DMWs.  It should be noted that the horizontal resolution 
of the DMW product is driven by the size of the target scene used. Consequently, the 
horizontal resolution of the wind products derived from the ABI 0.64um band, will be 
7.5km, the resolution of the wind products generated from the water vapor bands will be 
30km and the resolution of the winds generated with the long wave infrared band will be 
38km. 
 
 
Table 4. Summary of target scene sizes and image time intervals that should be used to 
derive DMWs for pertinent ABI channels. 
 

Channel 
Number 

Center 
Frequency (µm) 

Target Scene Size 
(Image lines x 

elements) 

Image Time 
 Interval (mins) 

2 0.64 15x15 
Full disk:   5 or 15 
CONUS:    5 
Mesoscale: 5 

7 3.90 15x15 
Full disk:   5 or 15 
CONUS:    5 
Mesoscale: 5 

 
8 (cloudy targets) 

 
----------------------
- 
8 (Clear targets) 

6.15 15x15 

Full disk:   5 or 15 
CONUS:    5 
Mesoscale: 5 
------------------------- 
FD, CONUS, 
Mesoscale: 30 

9 7.0 15x15 FD, CONUS, 
Mesoscale: 30 

10 7.4 15x15 FD, CONUS, 
Mesoscale: 30 

14 11.2 19x19 
Full disk: 5 or 15 
CONUS: 5 
Mesoscale: 5 

 
 
Before the target selection process begins, the brightness temperature gradient magnitude 
for each pixel location is computed from equation (4).  
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                          BT is the pixel level channel brightness temperature 
                          Ele refers to an image column 
                          Line refers to an image row 
 
   
Figure 3 shows an example of a brightness temperature gradient image (right side) derived 
from brightness temperatures (left side) for the GOES-12 imager. The dark areas on the 
right side of Figure 3 indicate locations where the magnitudes of the brightness temperature 
gradients are large. These locations exist on the edges of clouds and in the interior of cloud 
systems where cloud structure exists. It is in these locations where potential acceptable 
targets are expected to be found. The white boxes shown on the left-side of Figure 3 show 
the original target scene locations and the yellow dots show the location of the maximum 
gradient magnitude in each of these target scenes. The center of every target scene is then 
repositioned at the pixel containing the maximum gradient magnitude. If the same gradient 
value occurs in multiple pixels within a target scene, then the first occurrence of the 
maximum gradient value is the one chosen. The repositioned target scenes are shown in 
green. The intent of repositioning the target scene at the maximum gradient is twofold. 
First, it focuses the target scene on a strong feature that is expected to be effectively tracked 
over time. Secondly, it establishes a link between pixels containing the feature being 
tracked and the pixels contributing to its height assignment (discussed later). Repositioning 
of the target scenes can result in an irregular spatial distribution of target scenes, and hence, 
an irregular spatial distribution of the DMW product. The white arrows indicate the 
direction of the image processing, which begins at the top left of the image and moves left 
to right along the image and then downwards.  
 

 

 where:    Wk =    -1/12, 8/12, 0, -8/12, 1/12     ; for k= -2 to 2 
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Figure 3. Image of 11um brightness temperature (left) and the 11um brightness temperature 
gradient (right) from the GOES-12 imager instrument. The white boxes show the target 
scenes at there original locations. The green boxes show the target scenes which have been 
repositioned at the pixel location containing the maximum brightness temperature gradient 
as indicated by the yellow dot. 
 

3.4.2.1.1 Target Selection Tests 
 
All of the potential target scenes undergo a series of quality control tests to determine if 
the target is a suitable tracer. These ‘target selection’ tests are described below. If a target 
fails any one of these tests, the target is determined to be a non-suitable tracer and is 
flagged. Each failure is associated with a unique “flag” value which is saved in the DMW 
output file. These values are shown in Table 5. 
 
Table 5.  GOES-R ABI Derived Motion Winds Failure Codes. 

GOES-R Derived Motion Wind Quality Control Codes 
QC_Flag Definition 

0 Good wind 
1 Maximum gradient below acceptable threshold 
2 Target located on earth edge 

3 Cloud amount failure (less than 10% cloud cover for cloud track winds or greater than 
0% cloud cover for water vapor clear-sky winds) 

4 Median pressure failure 
5 Bad or missing brightness temperature in target scene 
6 Multiple cloud layers present 
7 Target scene too coherent (not enough structure for reliable tracking) 
8 Tracking correlation below 0.6 (not used for nested tracking) 

9 u-component acceleration greater than 10 m/s (5 m/s for visible) 

10 v-component acceleration greater than 10 m/s (5 m/s for visible) 
11 u- and v- component accelerations greater than 10 m/s (5 m/s for visible) 
12 Derived wind slower than 3 m/s 
13 Target scene too close to day/night terminator (visible and SWIR only) 

14 Median pressure used for height assignment outside acceptable pressure range 
(channel dependent) 

15 Match found on boundary of search region 
16 Gross difference from forecast wind (channel dependent) 

17 
Median pressure (used for height assignment) of largest cluster for first image pair is  
too different from median pressure of largest cluster for second image pair – only 
valid for nested tracking  

18 Search region extends beyond domain of data buffer 
19 Expected Error (EE) too high 
20 Missing data in search region 
21 No winds are available for the clustering algorithm 
22 No clusters were found 

Catastrophic Failures 
Invalid time interval 

Temporal data not available 
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Line segment swath too small (must contain at least the same number of lines as target box size, usually 15 
lines) 

Search region must be larger than target scene 
 
Table 5 describes every possible failure code from the initial target selection step through 
the final QC process. Because target selection is the first step in the AMV derivation 
process the tests associated with it are described first. The target selection tests are applied 
in the following order: 
 

1. Zero gradient check 
2. Proximity to day/night terminator check 
3. Earth edge test (no space pixels allowed)  
4. Fractional cloud cover/clear sky test 

Note: when processing the upper-level water vapor channel for clear-
sky tracers pixels with low-level clouds (CTP >= 600 mb) are 
considered clear. 

5. Contrast test – channel dependent 
6. Channel validity test 

 
#6 is the extent of target QC for WV processing 
 
Additional target QC  performed for visible, SWIR and LWIR winds: 
  

7. Spatial coherence check 
8. Multi-layer cloud check 

 
If a target scene fails test #1 the next adjacent target box is processed. 
If a target fails any of the 2-8 tests the box is shifted by ½ the width of the target box. 
 
Zero gradient Test 
 
If the maximum gradient found in the target scene is zero the target is discarded and the 
next adjacent box is processed. 
 
Contrast Test 
 
Each target scene is required to contain sufficient contrast, which is computed from the 
range of channel measurements (brightness temperature or reflectance percent) within the 
target scene. The contrast threshold used is channel dependent and is the product of the 
contrast constant (shown in Table 6) and the ratio of the target scene size used (see Table 
4) and the nominal target scene size (7 or 15).  
                 
 
 
 
 
 



 33 

 Table 6. Contrast constants and thresholds used for target selection. 
 

Channel 
Number 

 
Wavelength 
Range (µm) 

 
Contrast Constant 

 
Contrast 

Threshold 
2 0.59-0.69 12% (reflectance) 12% 
7 3.80-4.00 3K 6.43K 

8 (clear-sky) 5.77-6.6 1K 1K 
8 (cloud-top) 5.77-6.6 2K 2K 

9 6.75-7.15 1K 1K 
10 7.24-7.44 1K 1K 
14 10.8-11.6 4K 5.07K 

 
 
 
Earth Edge Test 
 
The earth edge test is applied under the following conditions: 
 

• When channel 2 (0.65um), 7 (3.9um), 8 (6.15um), 9 (7.0um), 10 (7.3um), or 14 
(11.2um) is used. 

 
All pixels within the target scene must have valid earth navigation associated with it. If any 
pixel within the target scene is determined to be located in space (i.e., off the earth edge) 
the target scene fails, and is flagged. The space mask provided by the framework is used 
for this purpose. It is assumed that a space mask will be passed down by the framework to 
the L2 product algorithm level for use by the various algorithms. 
 
Fractional Cloud Cover  Test 
 
The fractional cover cloud test is applied under the following conditions: 
 

• When channel 2 (0.65um), 7 (3.9um), 8 (6.15um), 9 (7.0um), 10 (7.3um), or 14 
(11.2um) is used. 

 
The clear-sky mask product associated with each pixel is used to classify the target scene 
as cloudy or clear. When the intent is to track clouds, a minimum threshold of 10% is used 
to make a determination as to whether the target scene is cloudy or clear. In other words, 
if at least 10% of the pixels in a target scene are deemed as being cloudy or probably 
cloudy, then the target scene is classified as cloudy. When the intent is to track clear-sky 
water vapor features, then a minimum threshold of 0% is used to make a determination as 
to whether the target scene is cloudy or clear. In other words, every pixel in the target scene 
must be deemed clear for this target scene to be deemed a suitable clear-sky water vapor 
target. An exception is made, however, when the upper-level water vapor band (6.15 um) 
is used to track clear-sky moisture gradient features. Because this band senses radiation 
only from the middle and upper layers of the atmosphere, any pixel which is clear above a 
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low-level cloud is considered clear instead of cloudy. In practice, a pressure threshold of 
600 hPa is used to identify the low cloud. In other words, a cloudy pixel assigned a cloud-
top pressure greater than 600 hPa is considered to be clear instead of cloudy. This exception 
is made to increase the coverage of these winds.    
 
The cloudy or clear designation given to the target scene has implications on the target 
selection tests (described in sections 3.4.2.1.1-3.4.2.1.3) and/or thresholds used as well as 
which algorithm is used to assign a height to the target (described in section 3.4.2.2). 
 
Channel Validity Test 
The channel validity test is applied under the following conditions: 
 

• When channel 2 (0.65um), 7 (3.9um), 8 (6.15um), 9 (7.0um), 10 (7.3um), or 14 
(11.2um) is used. 

 
The channel brightness temperature or reflectance percent of each pixel in a target scene is 
checked to ensure its value falls within a valid range. The valid range of reflectance percent 
for a visible channel is 1-200. For the IR channels, the valid range of brightness temperature 
is 150-340K. If the channel brightness temperature or percent  of any pixel in the target 
scene falls outside the valid range the target fails and is flagged. 
 
Spatial Coherence Test 
 
The spatial coherence test is applied under the following conditions: 
 

• When channel 2 (0.64um), 7 (3.9um), or 14 (11.2um) is used 
• Target scene has been classified as cloudy 
 

Originally proposed by Coakley and Bretherton (1982), the spatial coherence method 
utilizes the local spatial structure (local mean and standard deviation) of the IR-window 
radiance field to determine the radiances associated with cloud-free and completely cloud-
covered fields of view and to infer the radiances associated with partially filled fields of 
view. In the context of the DMW algorithm, the method is first used to filter out target 
scenes that are too uniform to track reliably, and second, to filter out scenes that may 
contain multiple cloud layers. For both purposes it is necessary to compute the local mean 
and standard deviation of the radiance field derived from 3x3 sub-regions within the larger 
target box. The mean and standard deviation values are computed for the entire line 
segment (with data surrounding the target box). Near the edges these values are computed 
with however many pixels are available. 
 
After computing the mean and standard deviation radiance values for all possible 3x3 pixel 
sub-regions in the target box, a standard deviation threshold (1.0 Wm-2 sr-1 um-1) is applied 
that results in a “filtered” or coherent sample. The standard deviation threshold value is 
chosen arbitrarily with consideration given to the range of possible data values expected in 
the imagery.  The resulting “filtered” or coherent sample represents either cloud-free or 
completely cloud-covered pixels from the less-coherent sample that is likely to include 
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partially filled fields of view.  If more than 80% of the total number of 3x3 pixel sub-
regions within the target scene have a standard deviation below the defined threshold, the 
scene is deemed to be too coherent and it fails to be a viable target for subsequent feature 
tracking. Target scenes that contain a mixture of cloud-free and cloud-covered pixels 
exhibit a characteristic arch shape as shown in Figure 4. 
 
 
Multi-Layer Cloud Test 
 
The multi-layer cloud test is applied under the following conditions: 
 

• When channel 2 (0.64um), 7 (3.9um), or 14 (11.2um) is used 
• Target scene has been classified as cloudy 

 
Target scenes that contain multiple cloud layers in them can be difficult to track since 
clouds at different levels of the atmosphere may be moving in different directions and/or 
speeds. Furthermore, the assignment of a representative cloud height in these situations is 
difficult given the existence of clouds at different levels of the atmosphere. 
 
In order to avoid these troublesome target scenes, the filtered sample from the spatial 
coherence approach described above is used in a cluster analysis approach in order to 
identify the possible existence of multiple cloud layers. The basic idea behind the method 
is to use the local mean and standard deviation information to identify clusters of points 
sharing common characteristics (such as mean radiance and low variance). If more than 
two clusters (one of which is implicitly assumed to be the surface in clear sky conditions) 
is found in a target box then the scene is rejected. The key concept of this approach is that 
peaks in the frequency histogram can be described by Gaussian distribution functions 
(Simmer et al., 1982; Rossow et al., 1985; Nieman et al., 1993). 
 
Using the filtered sample, the method starts by identifying the peak in the 1-D histogram 
of local mean IR radiance values. A Gaussian curve is then fitted to the peak of the 
histogram and all points falling within +/- 3 standard deviations of the peak value are added 
to the dominant cluster sample. Likewise, a second Gaussian is fitted to the “cold peak” of 
the histogram and the cold cluster is identified. Lastly, the total number of points falling 
within the dominant and cold clusters is summed and compared to the total number of 
points in the filtered sample. If the total number of points from both clusters is less than 
80% of the original filtered sample it is assumed that a third, unidentified, cluster exists (in 
theory representing another cloud layer) and the target is rejected. The example shown in 
Figure 5 is for a target scene that was partly filled by a single cloud  
layer. 
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Figure 4. Scatter diagram of window channel IR local mean radiance and standard 
deviation values for a single target scene. Each point in the figure represents a 3x3 array of 
pixels constructed from 4-km GOES IR radiance data. The cluster of points near 80 is 
associated with clear sky while the cluster near 30 is associated with a single cloud layer. 
The points in the arch represent partly filled fields of view. 
 
 
The step by step procedure for the above procedure is defined below: 
  

1. Construct histogram of radiance values from 0 to 199 using bin width of 1. 
 

2. Estimate the variance using a two point method (one end point is always the peak 
frequency) for the three bins closest to the peak (Note: if there is more than one 
peak the first one is selected) on the LHS with the formula: 
 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 = �𝑥𝑥𝑖𝑖−𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2

2 ln�
𝑓𝑓𝑖𝑖

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�

                                 (5) 

 
 
 
 
Where x is the bin value (i.e., radiance), f is the number of points in the bin 
(i.e., frequency), 
 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1+𝑥𝑥𝑖𝑖
2

                                                         (6) 
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and 
 
 

 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1+𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

                                         (7) 
 

 
NOTE: If fi is 0 then the variance is set to a value of 0. 

 
3. Average the three variance estimates to obtain the final variance for the LHS half 

curve.  
 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿 = 1
3
∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖3
𝑖𝑖=1                          (8) 

NOTE: If the computed variance is greater than 25 it is set to a value of 25. 
Also, only non-zero variance values are used to compute the average. This 
means any bin having a zero count will not be used in the average.  
 

4. Repeat steps 2 and 3 for the three bins closest to the peak on the RHS of peak 
frequency. 
 

5. Compute the full Gaussian curve using LHS and RHS variance values. The full 
Gaussian spans the interval ±5 standard deviations about the peak frequency and is 
computed using: 

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑥𝑥𝑥𝑥 �−
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2

2�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿,𝑅𝑅𝑅𝑅𝑅𝑅�
�                            (9) 

NOTE: If the exponent is less than -10.0 it is set to a value of 0.0. 

6. Find peak frequency of 5 coldest non-zero clusters and repeat steps 2 to 5 for the 
cold peak. 

7. Total the number of pixels engulfed by the two Gaussian curves according to the 
following rules: 

±1 standard deviation of peak, sum up all histogram points 
±1to3 standard deviations of peak, sum up points in Gaussian histogram 
(from step 5) 
Do not count pixels outside this range   

 
8. If the total number of points from both clusters is less than 80% of the original 

filtered sample, it is assumed that a third, unidentified cluster, exists and the target 
scene is flagged. DMWA assignsQC_Flag=6 to the processed target scene and 
moves to the next target scene. 
 

Note: If the cold peak corresponds with the overall peak this implies a single cloud layer 
exists in the target scene. This would be an acceptable target. 
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Figure 5. Histogram plots of local mean infrared radiance values for a single target scene: 
(Left) For the entire target scene, (Right) Filtered sample with Gaussian curves fitted to the 
peaks.  The peak on the left is associated with a single cloud layer. 
 
 
 
Day/Night Terminator Test 
 
The Day/Night terminator test is applied under the following conditions: 
 

• When channel 2 (0.65um) or channel 7 (3.9um) is used 
 

When the VIS or SWIR band is being used, a test is invoked in order to avoid the day/night 
terminator. If the VIS channel is being used, then the solar zenith angle of the center pixel 
of the target scene must be less than or equal to 80o for the target to be deemed a suitable 
target. If the SWIR channel is being used, then the solar zenith angle of the center of the 
target scene cannot be less than 90o or greater than 200o for the target scene to be deemed 
a suitable target.  
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3.4.2.2 Feature Tracking 
 
Correlation-based methods are commonly used to track cloud and clear-sky water vapor 
features in image sequences. A widely used correlation approach to feature tracking is the 
Sum of Squared Differences (SSD).  This correlation method, like all others, aims to locate 
a target scene, at some time t, in a larger search scene at some earlier or later time.  This 
process is illustrated in Figure 6. A similarity criterion is computed that measures the 
correlation between the target and search area pixel scenes in the two images. In the DMW 
algorithm a feature or target is selected from the middle of three images and is tracked 
backwards and forwards in time, thus generating two displacements. These two 
displacements are then averaged to generate an average wind vector that is taken to  
 
 

 

FIG. 6. Schematic showing the basic concepts associated with the feature tracking 
algorithm. Targets are selected from the middle image of a three-image loop and tracked 
forward and backward in time via the SSD method. The two displacements are averaged 
to produce a final motion estimate.  Only the forward vector is shown in the figure. 
 
 
represent the motion of the target over the time interval spanned by the image triplet. This 
average vector is assigned to the middle image target location. This approach is what we 
will refer to as the conventional feature tracking approach. This approach is used when 
tracking clear-sky water vapor features when using the ABI water vapor channels 8 
(6.15um), 9 (7.0um), and 10 (7.4um). 
 
When tracking cloud features involving ABI bands 2 (0.64um), 7 (3.9um), 8(6.15um), and 
14 (11.2um), however, an approach referred to as nested tracking (Daniels and Bresky, 
2010) is used. Nested tracking uses the SSD method to compute local motions nested 
within a larger target scene together with a clustering algorithm, to arrive at a superior 
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motion solution for the larger target scene. The details of this approach are described below 
in Section 3.4.2.2.2. 
 
A short term GFS model forecast wind is used in the feature tracking step to center the 
location of the search area in the other images. This is done for two reasons. First, it 
minimizes computational time required for tracking and secondly, minimizes the number 
of false solutions generated by the SSD method.  It should be emphasized that the search 
region must be sufficiently large to allow for substantial departures from the forecast. It 
has been shown by Merrill (1989) that the derived wind is inherently constrained to the 
forecast wind by the following relationship: 
 

                                               t
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≤−                                                  (10) 

 
where u (m/s) is the east-west component of the satellite wind, ug (m/s) is the east-west 
component of the forecast wind, L is referred to as the lag size and is the max displacement 
of a target scene within a given search box, t is the time interval (in seconds) between 
images and x is the resolution of the imagery in meters. A similar relationship holds for the 
north-south component, but is omitted for brevity. For a given image sequence time interval 
and pixel resolution, the ratio given by the right hand side of equation (10) yields a value 
that represents the maximum departure of the feature tracking wind solution from the 
forecast wind. It is important that this ratio be sufficiently large to minimize the 
dependency of the forecast wind in the tracking step. Furthermore, the magnitude of this 
ratio must be considered when different size target scenes and/or sequence time intervals 
are used. For example, for a given image resolution, if smaller image time intervals are 
desired, then a corresponding reduction in the lag size must be made in order to keep the 
magnitude of the ratio constant. By specifying a maximum forecast departure of 30 m/s in 
Equation (10), the equation for keeping the lag size constant is given by: 
 

Lt
x

=+ 260
          (11) 

 
By specifying the desired time interval between images to use and the resolution of the 
imagery in Equation 11), the lag size can be computed. Once the lag size is known, the size 
of the search scene can be computed from: 
 

            S = T + (L/2) * 2             (12) 
 

Where:  S is the search scene size in pixels 
  T is the target scene size in pixels 
  L is the lag size in pixels 

 
In summary, the step by step procedure for tracking is as follows: 
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1. Compute forecast displacement, in pixels, using the forecast wind valid at the 
target lat/lon and interpolated to the initial height estimate. 

2. Use forecast displacement to center search box. 
3. Fill search box with data from image buffer 
4. Find matching scene in the first and third images and compute AMV 

displacement via the conventional or nested tracking algorithm (displacement is a 
real value not an integer value). 

5. Compute end point of AMV displacement vector in pixel coordinates 
6. Compute earth location (lat/lon) of end point 
7. Compute U/V components using the beginning (target  center pixel) and ending 

(match location) lat/lon values 
 

3.4.2.2.1  Sum-of-Squared Difference (Euclidean Distance) 
Method 

 
The sum-of-squared-differences method (SSD) is the correlation routine used by the DMW 
algorithm. In the SSD routine the following sum is minimized: 

 
 

                                                            
2

2
,

1 )],(),([ yxIyxI
yx

−∑                                              (13)                
 

where: I1 is the brightness temperature at pixel (x,y) of the target scene, I2 is the brightness 
temperature at pixel (x,y) of the search window, and the summation is performed over two 
dimensions. In practice, the region over which the search is conducted is substantially 
larger than the size of the target scene and the above summation is carried out for all target 
box positions within the search region. The array of positions that the target box can assume 
in the search region is often referred to as the “lag coefficient” or “lag” array and the field 
of values is referred to as the correlation surface. The size of the search and lag arrays are 
given by Equations (11) and (12) in the previous section. 
 
To speed up the search for the minimum SSD value, the tracking algorithm first 
constructs a table (a square array) of values specifying the order of positions to search 
within the lag matrix. This is illustrated in Figure 7. The first point in the table 
corresponds with the middle of the lag matrix, which also corresponds with the center of 
the search region, which also corresponds with the location predicted by the forecast. The 
search then “spirals” outward in a clockwise fashion about the central point. By starting 
the search in the middle of the search region we are hopefully maximizing our chance of 
finding a match sooner than if we were to start in the top left corner of the search region. 
The spiral search, when used in conjunction with the practice of terminating the SSD 
summation early once a current minimum has been exceeded, can significantly reduce the 
number of computations required during the tracking step of the DMW algorithm. 
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Figure 7.  Table (a square array) of values specifying the order of positions to search within 
the lag matrix as part of the spiral search algorithm. 
 
 
A typical correlation surface for the SSD method for the GOES-12 imager is shown in 
Figure 8. Each pixel in this figure represents a SSD value for a potential matching scene in 
the search region. The cool colors (blues) indicate minimum values while the warm colors 
(yellows) indicate relative maxima. The minimum SSD solution value results in a discrete, 
pixel displacement being identified as a possible DMW tracer. Unaltered, these integer 
displacements would cause an artificial binning of the satellite derived wind estimates. To 
avoid this effect, the SSD values of the four points surrounding the minimum SSD are used 
to linearly interpolate to sub-pixel accuracy. The following equation is used to compute the 
fractional element displacement: 
 

𝛥𝛥 = (𝑙𝑙1−𝑙𝑙3)
2(𝑙𝑙1+𝑙𝑙3−2𝑙𝑙2)

                                                      (14) 
 
where l_1 is the lag array value at (x-1, y), l_2 is the lag array value at (x, y) (i.e., the 
minimum SSD value) and l_3 is the lag array value at (x+1, y). 
 
The fractional value is added to the integer displacement to produce a Real (ie., non-
integer) estimate of the displacement.. 
 
A similar equation is used for the fractional line displacement, but it uses the lag array 
values above (x, y-1) and below (x, y+1) the minimum lag location. 
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Figure 8.  Example of a typical correlation surface for the Sum-of-Squared Difference 
(SSD) tracking method for the GOES-12 imager. The cool (blue) colors indicate 
minimum values while the warm (yellows) colors indicate relative maxima. 
 

3.4.2.2.2 Nested Tracking 
 
When tracking cloudy target scenes using ABI channels 2 (0.64um), 7 (3.9um), 8 (6.15um), 
or 14 (11.2um), a technique referred to as “nested tracking” is employed. This approach 
involves nesting smaller (5x5 pixels) target scenes within a larger target scene (ie., whose 
size is specified in Table 4) so that a field of local motion vectors can be derived over the 
interior pixels.  
 
A schematic of this approach is shown in Figure 9 alongside one example of the vector 
field produced by the approach. Differences in orientation and magnitude can arise between 
the local motion vectors if more than one cloud layer is being tracked or if multiple scales 
of motion are being detected. Outliers vectors – those vectors that differ greatly from most 
of the sample – can result if the cloud is evolving or if the smaller box is insufficiently 
large to resolve the true motion. The second contributor to vector outliers is often referred 
to as the aperture effect and is discussed at length in the field of computer vision (Trucco 
and Verri, 1998). The red vector shown in Figure 9 makes it clear that averaging conflicting 
motions within a target scene can produce a slow motion estimate. The challenge is to 
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derive a dominant motion vector from a subset of all possible solutions that best represents 
the flow of the larger target scene. This can be accomplished by analyzing all of the local 
displacements within the larger target scene with a cluster analysis program. More 
specifically, a cluster analysis of the line and element displacements is done to produce 
clusters that represent unique displacements.  
 
 

 
Figure 9. Schematic of the nested tracking approach. The white vectors show the local 
motion vectors successfully derived for each possible 5x5 box within a larger 15 x 15 
target scene. The red vector on the right is the resulting motion vector if one were to take 
an average of all the successfully derived local motion vectors.  
 
 
The justification for using a cluster analysis algorithm to analyze the local motion field is 
twofold. First, as was discussed above, the local motion field can be quite noisy. The field 
of vectors often reveals motion associated with two or more cloud layers and/or spatial 
scales. Removing noise and separating the sample into coherent motion clusters can 
prevent the excessive averaging of motion occurring at multiple levels or for different 
scales that can lead to a slow speed bias. Second, identifying clusters in the local motion 
field provides a means for directly linking the tracking step with the height assignment 
step. In other words, the pixels belonging to the coherent clusters allow us to limit the 
sample of pixels used for height assignment. 
 
For the DMW algorithm we selected a cluster analysis program called DBSCAN (Ester et. 
al., 1996), a density based algorithm for identifying clusters in spatial databases with noise. 
It was selected because it is very effective at identifying clusters of varying shapes and, 
unlike other methods such as K-means (Lakshmanan  et al., 2009a, 2009b, 2003), does not 
require the user to specify apriori the number of clusters to find. Two parameters must be 
specified before running DBSCAN: the minimum number of points in a cluster (currently 
set at 4) and the radius around the point to search for neighbors in the cluster (currently set 
at 0.5 pixels). Basically, DBSCAN steps through each point (each point being a 
displacement in line and element space) and classifies it in one of three ways. A “core” 
cluster point has at least 4 neighbors within its neighborhood (radius).  A boundary point 
has fewer than 4 neighbors but is still connected to a cluster by at least one other point. The 
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third possibility is that the point does not belong to any cluster and is “noise.” Output from 
DBSCAN consists of a list of clusters found and the number of points in each cluster. 
 

 
Figure 10. Motion clusters identified by DBSCAN clustering routine. Green dots 
indicate line and element displacements belonging to the largest cluster. Red dots 
indicate line and element displacements belonging to the second largest cluster. 
Blue dots represent incorrect or noisy line and element displacements. 

 
 
One example of output from DBSCAN is shown in Figure 10. This figure shows that noisy 
motions have been removed from the scene leaving two distinct motion clusters. The DMW 
algorithm selects the largest cluster to represent the dominant motion and computes a final 
derived motion vector by averaging the displacements belonging to the largest cluster. 
Figure 11 shows the vector field that remains after the analysis is complete. 
 
 

 
 



 46 

Figure 11. Example of the vector field produced with nested tracking before (left) and 
after (right) DBSCAN is applied to find the largest cluster. The forecast vector (blue) is 
shown for comparison. 

3.4.2.2.3 Feature Tracking Gross Error Tests 
 
All retrieved wind values undergo a series of quality control tests to determine if the 
derived wind is valid. This series of tests are described below. If a retrieved wind fails any 
one of these tests, it is deemed to be an invalid wind and is flagged appropriately. Each 
failure is associated with a unique “flag” value which is saved in the DMW output file. 
These unique flag values are listed in Table 6. 
 
The tests are applied in the following order: 
 

a. Match on boundary check 
b. Correlation check 
c. u-component acceleration check 
d. v-component acceleration check 
e. u- and v-component acceleration check 
f. Slow wind speed check 
g. Channel-specific NWP wind speed and direction comparison tests 

 
 
Correlation Test 
 
As mentioned in Section 3.2, one of two correlation tests is applied when matching the 
feature of interest to the original target scene. When nested tracking is employed, each 
matching 5x5 sub-scene must have a correlation score of 0.8 or higher. Otherwise, the 
displacement associated with the match is discarded and will not be analyzed by the cluster 
analysis routine. When conventional tracking is used instead of nested tracking, a lower 
threshold of 0.6 is applied. In this case, the correlation scores of each of the intermediate 
(i.e., the reverse and forward) matching scenes (derived from the SSD method described 
in Section 3.4.2.3.1) are checked to see if they exceed the minimum threshold value of 
0.60. If either scene fails this correlation test, the DMW product is flagged as unacceptable 
in the output file.  
 
A higher correlation threshold is used for nested tracking because the scene being matched 
is much smaller and this increases the likelihood of finding a false positive. The higher 
threshold is a way of accounting for the higher variance in the estimated displacement and 
is used to remove gross errors from the matching process. 
. 
u/v-acceleration Test 
 
If the DMWA is performing as intended, it is reasonable to expect that the wind estimates 
derived from each image pair of the image triplet will be similar to one another. While real 
accelerations are certainly plausible, especially in certain weather regimes (near jet 
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streams, for example) testing for unrealistic accelerations is prudent, especially given the 
time and space scales we are concerned with. The existence of an unrealistic acceleration 
in either the u-component or v-component of the DMW is likely to be the result of a false 
positive in the tracking step. Large, unrealistic u- or v-accelerations are dealt with by 
imposing an upper limit of 10 m/s on the difference between the two individual u and v- 
components of DMWs derived for any of the spectral channels except the visible channel, 
where a 5 m/s limit is imposed. Any DMW that fails the u/v acceleration test is flagged. 
 
Slow Wind Speed Test 
 
The speed of every DMW is checked against a minimum speed threshold of 3 m/s. If any 
DMW is slower than this speed threshold, then the DMW is flagged. 
 
Correlation Boundary Test 
 
If either of the intermediate matching scenes derived from the SSD method described in 
Section 3.4.2.3.1 are found on the boundary of the search scene, then the match scene is 
flagged. This condition may indicate the true matching solution is located beyond the 
domain of the search scene. In terms of the lag array, this implies that the tracer is rejected 
if the minimum SSD value is found along the edges of the lag array. Likewise, when nested 
tracking is used, any matches found on the boundary of the lag array are discarded from 
influencing the dominant motion calculation. 
 
It should be noted that when tracking the entire target scene with the conventional 
approach, the correlation boundary test results in a failed tracer. This is not true when 
nested tracking is employed. In this case, the match is rejected, and the algorithm moves 
to the next pixel where it attempts to compute another local motion vector.In other words,  
the small 5x5 sub-target is discarded, not the entire target scene. 

 
NWP Vector Difference Test 
 
An additional quality control component of the derived motion winds is the removal of 
wind estimates that differ significantly from a short term numerical weather prediction 
(NWP) forecast wind. The goal of this test is to remove those winds that are grossly 
different from the forecast due to a poor motion estimate, a poor height assignment, or 
both. Previously this test examined the difference between the speed and direction 
components of the wind vector separately but has since been combined into a single vector 
difference threshold that is band dependent. The threshold was determined, more or less 
quantitatively, by examining the relationship between the product accuracy (relative to 
ground truth radiosonde observations), as defined by the mean vector difference and the 
standard deviation about the mean, and the maximum vector difference. The upper limit 
was identified as the vector difference value at which the precision specification dropped 
sufficiently below the requirement (4.2 m/s set forth in the F&PS document) but did not 
reduce the coverage (i.e., sample size) excessively. The plot used to determine the vector 
difference threshold for the LWIR winds is shown below in Figure 12. 
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Figure 12. AMV-radiosonde wind verification statistics for the ABI LWIR winds for the 
period November 1, 2017- January 23, 2018. The Mean Vector Difference (MVD) statistic 
is used to determine the accuracy of the wind whereas the standard deviation is used to 
quantify the precision. Note that the accuracy specification (7.5 m/s) is not shown in this 
figure.   
 
Although the standard deviation curve (red) first dips below the precision specification 
value when a vector difference threshold of 16 m/s is selected, it is clear from the diagram 
that the sample size isn’t adversely impacted until the limit drops below 10 m/s. For this 
reason, a threshold of 10 m/s was selected as the upper limit for the LWIR winds, meaning 
any wind having a vector difference from the forecast of more than 10 m/s is rejected. This 
threshold is applied as a final check on the AMV before it is classified a good wind. In a 
similar fashion, vector difference thresholds were determined for all wind product bands. 
Table 7 summarizes the various band-dependant vector thresholds in current use by the 
DMW algorithm. 
 

Table 7. Summary of the vector difference thresholds used in the DMW algorithm. 
Channel 
Number 

 
Tracer Type 

 
Vector Difference 
Threshold  (m/s) 

2 Cloud-top 6.0 
7 Cloud-top 7.0 
8  Cloud-top 10.0 
8  Clear-sky water vapor 12.0 
9 Clear-sky water vapor 12.0 
10 Clear-sky water vapor 12.0 
14 Cloud-top 10.0 
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3.4.2.3 Target Height Assignment 
 
Each suitable target (ie., those passing all of the target selection tests described in Section 
3.4.2.1.1) is assigned a height using information from the middle image of the loop 
sequence. The cloudy or clear designation for each target scene (per the fractional cloud 
cover test described in Section 3.4.2.1.1) has implications on how a representative height 
assignment is computed for each target scene.  
 
The process of assigning a representative height to the DMW tracer involves selecting the 
appropriate sample of pixels from the target scene and using these pixels to compute a 
representative height for the target scene being processed. The following factors drive the 
selection of the appropriate sample of pixels to use, as well as the approach, to compute a 
representative height for each target: 
 

• Target is deemed clear or cloudy 
• Channel used to derive the wind 
• Whether or not the nested tracking methodology is used 

 
Cloudy Target Scenes 
 
When  ABI channels 2 (0.64um), 7 (3.9um), 8 (6.15um, cloud top), or 14 (11.2um) are 
used to track cloudy target scenes,  pixel-level cloud-top pressures provided by the GOES-
R  cloud height algorithm (see GOES-R ABI Cloud Height ATBD for details) are used to  
compute a representative  height for the target scene. Since the nested tracking approach is 
used when using these channels, only cloud-top pressures associated with pixels belonging 
to the largest cluster (as defined in the nested tracking discussion in Section 3.4.2.2.2) are 
used to derive a representative height. Because two unique large clusters are identified – 
one for the reverse time step and one for the forward time step – the cloud-top pressure 
samples from both of these clusters are combined and the median cloud-top pressure value 
is assigned as the representative height for this target.  
 
A key benefit of this approach is that the assigned height is inherently linked to the tracking 
solution since the same sample of pixels contributes to each of these derived quantities. 
Figure 12 highlights the fact that this approach will usually produce a lower height 
assignment in the atmosphere (higher pressure) than the traditional method of assigning 
the height based on an arbitrary cold sample (typically 20%) of pixels.  
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Figure 12. Cloud-top pressure distribution for a single target scene. The values associated 
with the largest cluster are shown in green. 
 
In situations where a low level cloudy target scene over ocean is partially or totally located 
in an area experiencing a low level temperature inversion, the DMWA must apply a 
different approach to compute a representative height assignment to the target scene.  
Low-level temperature inversions occur frequently over the ocean in the vicinity of the 
subtropical high where large-scale subsidence contributes to their formation. These regions 
are often covered by extensive sheets of marine stratocumulus cloud located at the base of 
the temperature inversion (see Figure 13). Cloud height algorithms often overestimate the 
height of these cloud layers by 200 hPa or greater (Gustafsson and Lindberg, 1999). The 
problem arises when there are two elevations in the temperature profile at which the cloud 
temperature is reached. In this scenario the actual cloud layer is found at the bottom of the 
inversion.  
 
The DMWA uses the low-level temperature inversion flag output by the cloud height 
algorithm to identify those pixels in a target scene where a low level temperature inversion 
is present. In these situations, the DMWA keeps track of pixels within the largest nested 
tracking clusters, whose heights are derived at the base of the inversion versus those 
derived radiometrically via the cloud height algorithm. The DMWA uses only the cloud 
heights (pressures) belonging to the larger of these two samples to assign a height to the 
derived wind. The representative height assigned to the derived motion wind is the median 
pressure of the larger sample. 
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Figure 13. Idealized temperature profile highlighting the cloud height assignment 
problem posed by low-level temperature inversions. 
 
 
Clear Target Scenes 
 
When ABI channels 8 (6.15um, clear sky), 9 (7.0um), or 10 (7.4um) are used for targeting 
clear-sky target scenes (i.e. elevated moisture gradients are being tracked), only clear pixels 
in the target scene are used. Specifically, a histogram of the target scene brightness 
temperature values is constructed from all of the clear pixels in the target scene. Next, the 
20% coldest pixels of this histogram are identified and the median brightness temperature 
is calculated. This median brightness temperature is then converted to a height (in pressure) 
value through linear interpolation of the associated GFS forecast temperatures that bound 
this brightness temperature. 
 
 
Initial Cold Sample Height 
 
Regardless of whether nested tracking or traditional tracking is being used an initial “cold 
sample” height assignment must be computed. The primary purpose of computing an initial 
height is to use it as a look up index to obtain the forecast wind from a profile. The forecast 
wind is subsequently used to center the search box in the subsequent (or previous) image. 
Depending on the channel being processed either a histogram BT values or cloud top 
temperature values is used to construct a 1-D histogram. The following steps are carried 
out in constructing the histogram: 
 

1. Loop through each pixel in the target scene and check the cloud mask, temperature 
(BT or CTT) and low-level inversion flag. For clear sky tracers retain all clear and 
probably clear pixels. For cloudy tracers retain all pixels having a valid cloud top 
pressure (not missing). Next, check that the temperature value is in the range 150 – 
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340 K and exclude those outside of the range. Lastly, determine how many pixels 
are located in a low-level inversion region (low-level inversion flag=1) and how 
many pixels are outside a low-level inversion region (low-level inversion flag=0). 
Determine which sample is larger. 

2. Using the larger sample, a histogram is constructed for the range 150 K – 340 K. 
With a scale factor of 10 the range of the histogram is actually 1500 – 3400. Each 
CTT or BT from the larger sample is placed in a slot on the histogram rounding up 
or down to the nearest bin. 

3. A point cutoff is computed using the cold threshold: 
 
Point_Cutoff = NINT(REAL(Histogram_Points) * Cold_Threshold) 
 
where ‘Histogram_Points’ is the size of the screened sample from step 1 and 

Cold_Threshold is: 
 

Band 2 0.25 
Band 7 0.25 
Band 8 0.20 clear sky, 0.99 cloud top 
Band 9 0.20 clear sky, 0.99 cloud top 
Band 10 0.20 clear sky 
Band 14 0.25 

 
 

4. Starting from the cold end scan the histogram to find the cutoff slot. One of three 
conditions must be met: 
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  threshold_loop: DO BrtTemp = Lower_Bound, Upper_Bound 
 
    Cold_Sample = Cold_Sample + Histogram(BrtTemp) 
 
    IF (Histogram(BrtTemp) .GT. 0) Number_Of_Bins = Number_Of_Bins + 1 
 
    IF (Cold_Sample .GT. Point_Cutoff .AND. Number_Of_Bins .GT. 1) THEN 
 
      Cold_Sample = Cold_Sample - Histogram(BrtTemp) 
      Cold_Slot_Threshold = BrtTemp - 1 
      EXIT 
 
    ! Keep at least one histogram bin 
    ELSE IF (Cold_Sample .GT. Point_Cutoff .AND. Number_Of_Bins .EQ. 1) THEN 
 
      Cold_Sample = Cold_Sample 
      Cold_Slot_Threshold = BrtTemp 
      EXIT 
 
    ELSE IF (Cold_Sample .LE. Point_Cutoff .AND. BrtTemp .EQ. Upper_Bound) THEN 
 
      Cold_Sample = Cold_Sample 
      Cold_Slot_Threshold = BrtTemp 
      EXIT 
 
    ENDIF 
 
  END DO threshold_loop 
 

 
Cold sample arrays of BT or CTT, cloud top pressure and cloud top height are created 
using the cold slot threshold as the highest value allowed 
 
 

3.4.2.3.1 Derived Motion Wind Height Assignment Quality Tests 
 
All retrieved wind height (in pressure) values undergo a couple of quality control tests to 
determine if the derived heights are valid. These tests are described below. If a retrieved 
height fails any one of these tests, it is deemed to be invalid and is flagged appropriately. 
Each failure is associated with a unique “flag” value which is saved in the DMW output 
file. These unique flag values are also listed in Table 5. 
 
Acceptable Height Assignment Check 
 
An acceptable height assignment check is done for each derived motion wind that is 
attempted. The derived height is checked to determine if it falls within an acceptable height 
(in pressure) range. The minimum and maximum pressures belonging to this range are a 
function of which channel is being used to derive the wind and shown in Table 8.  
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Table 8. Acceptable height range to use as a function of channel used and tracer type 
Channel 
Number 

 
Tracer Type 

 
Central Frequency  (µm) 

 
Acceptable 

Height Range  
(hPa) 

2 Cloud-top 0.64 700 - 1000 
7 Cloud-top 3.9 700 - 1000 
8  Cloud-top 6.15 100 –  350 
8  Clear-sky water vapor 6.15 100 - 1000 
9 Clear-sky water vapor 7.0 100 - 1000 
10 Clear-sky water vapor 7.4  450 - 700 
14 Cloud-top 11.2 100 - 1000 

                 
 
Height Consistency Check 
 
When nested tracking is performed, a height consistency checked is performed between 
the median pressure computed from the largest cluster belonging to the first and second 
image pairs, respectively. If the difference in these two pressures exceeds 100 hPa, then 
the derived motion wind is flagged as bad.  
 

3.4.2.4 Product Quality Control 
 
Quality control of the retrieved DMWs is performed in two ways. The first is through the 
application of target selection, feature tracking, and height assignment error checks as 
described in the previous sections. The second way involves the calculation of two quality 
indicators for each of the DMWs using two different, but related, algorithms: the Quality 
Indicator (QI) (Holmlund, 1998; Holmlund et al., 2001) and the Expected Error (EE) 
(LeMarshall et al., 2004; Berger et al. 2008).  
 
.  

3.4.2.4.1  Quality Indicator (QI) Method 
 
The statistically-based quality indicator (QI) developed at EUMETSAT estimates the 
reliability of each derived DMW based on several quality control tests (Holmlund, 1998, 
Holmlund et. al 2001). These tests not only analyze the consistency in space and time of 
each of the intermediate DMW vector components, but also the height and temperature of 
the tracers used in the vector determination, the symmetry of vector pairs achieved from 
tracking tracers between consecutive images, differences with surrounding vectors, and 
differences from a forecast field (optional). There are a total of seven individual 
components that contribute to the final QI score that is appended to each DMW.  A 
weighted average value is computed for the final quality test function value fi(x) for each 
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vector.  In order to combine the results of the different test functions, each result must be 
normalized into a specific range.  This is done using a tanh-based function: 
 
                                                                                                                                                   (15) 
 
After normalization of all of the tests, QI values will be distributed from zero (poor quality) 
to one (perfect quality). 
 
Direction Consistency Check 
 
This calculation is a measure of the direction consistency of the DMW.  A quality tracer 
should provide sub-vectors that are similar in direction.  In function space it is calculated 
as: 
 
              Direction:                            (16) 
 
Di(x, y), Vi(x, y) are the direction (degrees) and speed (m/s) derived from the first image (i 
= 1) pair (image 1 and image 2) or the second imager (i = 2) pair (image 2 and image 3) 
of an image triplet at location (x, y). 
 
The normalized component used in the software is constructed as such: 
  
                      QIdir = 1 – (tanh(|D2(x, y)-D1(x, y)|/(A*exp(-vel/B)+C)))**D                 (17) 
 
Where: 
 
vel = (V1(x, y) + V2(x, y))/2  
 
The values of the constants are: 
 
A 20 
B 10 
C 10 
D 4 

 
 
Speed Consistency Check 
 
This calculation is a measure of the speed consistency of the DMW.  Intermediate DMWs 
should show agreement in speed.  In function space it is calculated as: 
 
       Speed:  |V2(x, y)-V1(x, y)|/(A*(V2(x, y)+(V1(x, y))+B)                           (18) 
 
Vi(x, y) is the speed (m/s)  derived from the first image (i = 1) pair (image 1 and image 2) 
or the second image  (i = 2) pair (image 2 and image 3) of an image triplet at location (x, 
y). 
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The normalized component used in the software is constructed as such: 
 
                            QIspd = 1 – (tanh(|V2(x, y)-V1(x, y)|/(A*vel+B)))**C                         (19) 
  
Where: 
 
 vel = (V1(x, y) + V2(x, y))/2 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
 
Vector Consistency Check 
 
This calculation is a measure of the vector consistency of the DMW.  This test looks at the 
vector pairs that make up the final DMW.  It should reject acceleration errors, but allow 
for real acceleration changes (jet entrance and exit regions).  In function space it is 
calculated as: 
 
             Vector: |S2(x, y)-S1(x, y)|/(A*(V2(x, y)+(V1(x, y))+B)                              (20) 
 
Si(x, y) is the vector (m/s) derived from the first image (i = 1) pair (image 1 and image 2) 
or the second image  (i = 2) pair (image 2 and image 3) of an image triplet at location (x, 
y). 
 
The normalized component used in the software is constructed as such: 
 
                       QIvec = 1 – (tanh(|S2(x, y)-S1(x, y)|/(A*vel+B)))**C                                (21) 
 
Where: 
 
 vel = (V1(x, y) + V2(x, y))/2 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
 
Spatial Consistency Check (i.e. Best Buddy Check) 
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This calculation is a measure of the spatial wind consistency of the DMW with its best 
neighbor. To do this, the DMW values are compared with the DMWs computed at the 
neighboring grid points.  
 
In function space it is calculated as: 
 
                 Spatial: |S(x, y)-S(x-i, y-j)|/(A*(|S(x, y)+(S(x-i, y-j)|)+B)                         (22) 
 
Here, S(x, y) = S1(x, y) + S2(x, y).  S(x-i, y-j) refers to the vectors (m/s) in the surrounding 
locations.  This spatial test is only applied to vectors within a predefined pressure range ( 
50 hPa), and location range (within 1 degree). 
 
The normalized component used in the software is constructed as such: 
 
              QIspatial = 1 – (tanh(|S(x-i, y-j)-S(x, y)|/(A*|S(x, y)+(S(x-i, y-j)| +B)))**C       (23) 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
 
Forecast Check 
 
This is currently set as an optional test, and is a measure of the consistency of the satellite 
DMW with the forecast wind at the height of the satellite DMW. The vector difference of 
the DMW values and the forecast vector interpolated to the same location and pressure 
level is computed to calculate it.  In function space it is represented as: 
 
               Forecast: |S2(x, y)-F1(x, y)|/(A*(|S2(x, y)+(F1(x, y)|)+B)                            (24) 
 
Where S2(x, y) is the vector (m/s) from the final DMW at location (x, y).  F1(x, y) is the 
interpolated forecast vector (m/s) at location (x, y). 
 
The normalized component used in the software is constructed as such: 
 
                 QIfc = 1 - (tanh(|S2(x, y)-F1(x, y)|/(A*fc_spd+B)))**C                                (25) 
 
In practice, fc_spd is the speed (m/s) of the forecast at the DMW location.  The values of 
the constants are: 
 
A 0.4 
B 1.0 
C 2.0 
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U-Component Consistency Check 
 
This calculation is a measure of the DMW’s u-component (m/s) consistency from each 
intermediate vector. In function space it is calculated as: 
 
            U-component:  |u2(x, y)-u1(x, y)|/((A*|u2(x, y)+(u1(x, y)|)+B)               (26) 
 
The normalized component used in the software is constructed as such: 
 
              QIuc = 1 - (tanh(|u2(x, y)-u1(x, y)|/(A*|u2(x, y)+u1(x, y)|+B)))**C                 (27) 
 
The values of the constants are: 
 
A 1.0 
B 1.0 
C 2.0 

 
 
V-Component Consistency Check 
 
This calculation is a measure of the DMW’s v-component (m/s) consistency from each 
intermediate vector. In function space it is calculated as: 
 
            V-component:  |v2(x, y)-v1(x, y)|/((A*|v2(x, y)+(v1(x, y)|)+B)              (28) 
 
The normalized component used in the software is constructed as such: 
 
                 QIvc = 1 - (tanh(|v2(x, y)-v1(x, y)|/(A*|v2(x, y)+v1(x, y)|+B)))**C            (29) 
 
The values of the constants are: 
 
A 1.0 
B 1.0 
C 2.0 

 
 
To achieve a single QI value to represent the quality of each DMW, a weighted average of 
each normalized QI component is computed: 
 
          QI = Σ (Test Weight * Normalized QI Component test) / Σ Test Weights     (30) 
 
The test weights used for each normalized QI component is shown in Table 9. 
 
 
Table 9. Test weights used for each normalized QI component test. 
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Direction Component 1.0 
Speed Component 1.0 
Vector Component 1.0 
Spatial Component 2.0 
Forecast Component 1.0 
U Component 0.0 
V Component 0.0 

 
 
Figure 14 shows an example of the final (weighted) QI distribution for winds generated 
from the 12 UTC 04 August 2006 Meteosat-8/SEVIRI proxy dataset. DMWs that possess 
QI values less than 0.60 are currently flagged as unacceptable quality. 
 

 
Figure 14. Histogram of the final (weighted) QI values for Meteosat-8 DMWs at 12 UTC 
on 04 August 2006. 
 
 

3.4.2.4.2  Expected Error Method 
 
The Expected Error (EE) algorithm, originally developed at the Australian Bureau of 
Meteorology (LeMarshall et al, 2004) is an extension of the QI algorithm described in the 
previous section. It is designed to express quality in terms of a physical vector error metric 
(meters/second, m/s), rather than a normalized score such as the QI. A slightly modified 
version of the EE algorithm described in Berger et al. 2008 has been adopted for use with 
the GOES-R DMWA. As shown in (31), the algorithm regresses several DMW variables 
against the natural logarithm of the EE, which represents the vector difference (in m/s) 
between a large sample of collocated DMWs and radiosonde winds. 
  

                                                                                                                                              (31) 
 
 
where EE is the expected (or estimated) error, a0 is a constant, and an  values are regression 
coefficients multiplied by their corresponding predictors (xn). The coefficients are applied 
in real time to compute and assign an EE to each DMW using: 
 

                                                                                            (32) 
                                                                    
The (-1) term constrains the minimum EE value to be zero. The current predictors are: 
 

1.   Constant (spectrally dependent) 
2. QI Speed Test 
3. QI Direction Test 
4. QI Vector Difference 

)1log(... 9922110 +=+++ EExaxaxaa

( ) 19922110 ... −= +++ xaxaxaaeEE
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5. QI Local Consistency Test 
6. QI Forecast Test 
7. DMW Speed 
8. Assigned DMW Pressure Level (height) 
9. NWP Wind Shear (200 hPa Above – 200 hPa below DMW height) 
10. NWP Temperature Gradient (200 hPa Above – 200 hPa below DMW height) 

 
 
Table 10.  Expected Error coefficients and predictors for different Meteosat-8 channels 
derived from the period August – October 2007. 

Predictor Band-1 
(0.60um) 

Band-4 
(3.9um) 

Band-5 
(6.2um) 

Band-6 
(7.3um) 

Band-9 
(10.8um) 

CONST 3.073 3.13 2.42 2.42 2.871 

QI Speed Check 0.176 0.003 0.0660 0.0660 -0.0664 

QI Direction Check 0.290 -0.171 0.199 0.199 0.1394 

QI Vector -0.101 -0.0471 -0.331 -0.331 -0.176 

QI Local Consistency -0,280 0.244 -0.173 -0.173 -0.252 

QI Forecast Check -0.585 -1.46 -0.552 -0.552 -0.509 

DMW Speed 0.014 -3.61x10-3 7.10x10-3 7.10x10-3 6.26x10-3  

DMW Pressure -1.63x10-3 -9.43x10-4 -6.79x10-4 -6.79x10-4 -7.42x10-4  

NWP Wind Shear 0.011 0.015 7.80x10-3 7.80x10-3 9.81x10-3 

NWP Temp Gradient 0.011 -7.47x10-3 6.89x10-3 6.89x10-3 0.0126 

 
 
Table 10 shows a set of predictors and their respective coefficients used to calculate EE for 
different bands from the SEVIRI instrument (proxy to the ABI) onboard the Meteosat-8 
satellite, generated from a dataset containing collocated Meteosat-8 DMWs and radiosonde 
wind observations that covered the period August – October 2007.  
 
Synergistic Use of the EE and QI Quality Indicators 
 
The outputted EE and QI quality indicators associated with each DMW estimate can be 
used synergistically in order to optimize the quality and geographic coverage of the final 
DMW dataset passed onto the user community. The synergistic use of these quality 
indicators is designed to take advantage of the strengths of each. The EE is superior at 
identifying the quality of relatively slow DMWs, whereas the QI is better at identifying the 
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quality of relatively fast DMWs. A study conducted under the GOES-R Risk Reduction 
(Berger et al. 2008) seeked to identify  thresholds for each parameter that could serve as a 
potential starting point for users to use, if so desired, in any process they may have 
established to select a subset of the highest quality DMWs.  Table 11 summarizes what 
these thresholds are, and shows that they vary as a function of the channel used to derive 
the DMW and the DMW speed. DMWs whose speeds are slower than the indicated speed 
thresholds are considered higher quality if their respective EE quality indicators are less 
then or equal to the EE threshold shown in Table 11. DMWs whose speeds exceed the 
speed thresholds are considered higher quality DMWs if their respective QI indicators 
exceed the QI thresholds shown in Table 11.  
 
Table 11.  Recommended thresholds for synergistic use of the QI and EE indicators 

 
In order to validate the established thresholds in Table 11, Meteosat-8 DMWs were 
generated for an independent dataset covering February 2007 and compared to collocated 
radiosonde wind observations. The EE values were calculated using the generated 
coefficients from Table 10, and the QI was calculated as described in the previous section.  
Table 12 shows an example of DMW-RAOB verification statistics looking at QI > 0.6, QI 
> 0.8 and the specific EE/QI threshold for IR DMWs from Table 11. The statistics are for 
all available DMW heights in the dataset. A 0.8 QI threshold produces a lower RMSE, 
mean vector difference, and standard deviation than the 0.6 threshold (as expected). 
However, the QI/EE combination threshold results in the lowest RMSE error, mean-vector 
difference and speed bias of the three quality indicator choices. Use of the combined QI/EE 
thresholds generally results in the retention of more (less) DMWs when using the QI > 0.8 
(0.60) threshold alone. These findings also hold for the other channel DMWs. 
 
 

Table 12: Comparison statistics (m/s) between DMWs computed from the SEVIRI 
IR-Window channel (10.8um) and collocated radiosonde winds during Feb 2007.  

QC QI > 0.6 QI > 0.8 

EE<=4.5  
.OR. 
(QI>90 and 
 Speed>25 m/s 

RMSE  7.62 7.30 6.14 
Bias    -1.62 -1.19 -1.02 
Number of matches 23692 17501 16861 
Mean Vector Difference 6.08 5.82 5.03 

Channel         EE (m/s)  <           OR             (QI >         &     Speed (m/s) > 
1  (0.64um) 5.5                 95                         30 

                95                         30 
                95                         30 
                95                         30 
                90                         25 

4  (3.90um) 5.0 
5  (6.15um) 5.0 
6  (7.30um) 5.0 
9  (10.8um) 4.5 
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Standard Deviation 4.60 4.39 3.53 
Avg. DMW Speed 17.16 18.48 17.21 

 
 

3.4.3 Algorithm Output 
 

Derived motion winds will be generated separately from each of the six ABI bands 
identified in Table 2. Collectively, the derived motion winds generated from each of these 
ABI bands contribute are the derived motion wind product. The Mode 3 full disk DMW 
product has a 60 minutes refresh while the Mode 3 full disk product has a 15 minute refresh. 
To create these products, the DMW algorithm should be run once an hour and once every 
15 minutes respectively. The DMW is considered as a “list” product as it is not output on 
a grid. The contents of the output of the DMWA are described in the following subsections. 

 
 
 
 
 

3.4.3.1     Product Output 
 

ID Description 

1 
Time of wind from the middle image in image triplet (secs since 1970-
01-01 00:00:00) 
Time 

2 Latitude (degrees north)  
Latitude 

 3 Longitude (degrees east) 
Longitude 

 4 Speed of wind vector (m/s) 
Wind_Speed 

 5 Direction of wind vector (degrees) 
Wind_Dir 

 6 Pressure assignment of tracer (hPa) 
MedianPress (hPa) 

 7 Temperature associated with the pressure assignment of tracer (K) 
MedianBT 

 8 Local Zenith Angle (degrees) 
SatZen  

 9 Time interval between image pairs (minutes)   
TimeInterval 
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3.4.3.2     Diagnostic Information 
ID Description 

1 u-component of vector 1 (m/s) [backward in time] 
UComponent1 

2  v-component of vector 1 (m/s) [backward in time] 
VComponent1 

3 u-component of vector 2 (m/s) [forward in time]  
UComponent2 

4 v-component of vector 2 (m/s) [forward in time]   
VComponent2 

5 Speed of forecast wind (m/s) at pressure assigned to satellite wind  
Fcst_Spd 

6  
Direction of forecast wind (degrees) at pressure assigned to satellite 
wind  
Fcst_Dir  

7  Tracking correlation of vector 1 [backward in time] 
CorrCoeff 

8  Tracking correlation of vector 2 [forward in time] 
CorrCoeff2 

9  Standard deviation of cloud top pressure values in target scene (hPa)  
VariancePress 

10  Cold sample counter in brightness temperature histogram 
PointIndex 

11  Latitude of vector 1 (degrees north) [backward in time] 
LatMatch 

12  Longitude of vector 1 (degrees east) [backward in time]  
LonMatch 

13  Latitude of vector 2 (degrees north) [forward in time] 
LatMatch2 

14  Longitude of vector 2 (degrees east) [forward in time]  
LonMatch2 

15  Standard deviation of largest 5x5 cluster (sample 1 – reverse vector)  
StdDevMVD1 

16  Standard deviation of largest 5x5 cluster (sample 2 – forward vector)  
StdDevMVD2  

17  
Standard deviation of sample 1 divided by magnitude of average 
displacement 
 PctOfAvg1 

18  
Standard deviation of sample 2 divided by magnitude of average 
displacement 
 PctOfAvg2 

19  
Number of distinct motion clusters from DBSCAN analysis  (sample 1 – 
reverse vector)  
NumClusters1 

20   Size of largest DBSCAN cluster (sample 1 – reverse vector) 
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MaxClusterSize1 

21  
Number of distinct motion clusters from DBSCAN analysis  (sample 2 – 
forward vector)  
NumClusters2 

22  Size of largest DBSCAN cluster (sample 2 – forward vector) 
MaxClusterSize2 

23  Height  assignment of tracer (m)  
Altitude  

24  Date of 1st image (year and Julian day) 
PriorImageDate 

25  Time of 1st image (hour and minute) 
PriorImageTime 

26  Date of 3rd image (year and Julian day) 
NextImageDate 

27  Time of 3rd image (hour and minute)  
NextImageTime  

28  Minimum cloud-top pressure (hPa) in largest cluster 
MinCTP 

29  Maximum cloud-top pressure (hPa) in largest cluster 
MaxCTP 

30  Minimum cloud-top temperature (K) in largest cluster 
 MinCTT 

31  Maximum cloud-top temperature (K) in largest cluster 
 MaxCTT 

32  Dominant cloud phase of target scene 
CloudPhase 

33  Dominant cloud type of target scene 
CloudType 

34  
NWP vertical temperature gradient  (K) [+/- 200 hPa about pressure 
assignment of tracer]  
TempGrad 

35  
NWP vertical wind shear (m/s) [+/- 200 hPa about pressure assignment 
of tracer]  
Wind_Speed_Shear 

36  Land mask  
LandFlag 

37  Low-level inversion flag 
 InversionFlag 

 

3.4.3.3     Product Quality Information 
 

ID Description 
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1 

Product Quality Flag (0=DMW product passes all quality tests; > 0 
DMW product fails quality tests. (See Table 5 in Section 3.4.2.1.1 for 
description of DMW failure codes)  
Flag  

2 Expected Error estimate of derived wind (m/s) 
ExpectedErr 

3 Quality Indicator (QI) of derived wind (0-100, with 100 being the best) 
QI 

4 QI Test 1 value (speed consistency)  
QISpdFlag 

5 QI Test 2 value (direction consistency)  
QIDirFlag 

6 QI Test 3 value (vector consistency)  
QIVecFlag 

7 QI Test 4 value (local consistency)  
QILocConsistencyFlg 

8 QI Test 5 value (forecast consistency) 
 QIFcstFlag  

9 Representative height error (hPa)  
CombinedMedianHgtErr 

10 Representative temperature error (K)  
CombinedMedianTempErr 

 
 
 
 

3.4.3.4     Metadata Information 
 

ID Description 

1 Satellite ID  
SatID 

2 Number of ABI channels   
NumOfChn 

3 ABI channel number   
AMVChannel 

4 Target box size (in pixels)   
BoxSize 

5 Lag size (in pixels)  
LagSize 

6 
Nested tracking flag (0=nested tracking disabled, 1= nested tracking 
enabled) 
 NestedTrackingFlg 

7 Target type (0 = clear; 1 = cloudy)  
Target_Type 
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8 Number of QC flag values:  23 
 NumQAVals 

9 
Percent of targets associated with a QC flag value 0 
Good wind; passes all QC checks 
QA_Value_0 

10 
Percent of targets associated with a QC flag value 1  
Maximum gradient below acceptable threshold 
QA_Value_1 

11 
Percent of targets associated with a QC flag value 2 
Target located on earth edge 
QA_Value_2   

12 

Percent of targets associated with a QC flag value 3 
Cloud amount failure (less than 10% cloud cover for cloud track winds 
or greater than 0% cloud cover for water vapor clear sky winds)   
QA_Value_3 

13 
Percent of targets associated with a QC flag value 4  
Median pressure failure  
QA_Value_4 

14 
Percent of targets associated with a QC flag value 5 
Bad or missing brightness temperature in target scene  
QA_Value_5 

15 
Percent of targets associated with a QC flag value 6  
More than 1 cloud layer present 
QA_Value_6 

16 
Percent of targets associated with a QC flag value 7 
Target scene too coherent (not enough structure for reliable tracking) 
 QA_Value_7 

17 
Percent of targets associated with a QC flag value 8 
Tracking correlation below 0.6 (not used for nested tracking) 
 QA_Value_8 

18 

Percent of targets associated with a QC flag value 9 
u-component acceleration greater than 5 m/s (for winds generated from 
visible channel) or 10 m/s (for winds generated from any other channel) 
QA_Value_9 

19 

Percent of targets associated with a QC flag value 10  
v-component acceleration greater than 5 m/s (for winds generated from 
visible channel) or 10 m/s (for winds generated from any other channel)  
QA_Value_10 

20 

Percent of targets associated with a QC flag value 11 
u- and v- component accelerations greater than 5 m/s (for winds 
generated from visible channel) or 10 m/s (for winds generated from any 
other channel)  
QA_Value_11 

21 
Percent of targets associated with a QC flag value 12 
Derived wind slower than 3 m/s 
QA_Value_12   
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22 
Percent of targets associated with a QC flag value 13 
Target scene too close to day/night terminator (visible and SWIR only) 
QA_Value_13 

23 

Percent of targets associated with a QC flag value 14  
Median pressure used for height assignment outside acceptable pressure 
range (channel dependent)  
QA_Value_14 

24 
Percent of targets associated with a QC flag value 15 
Match found on boundary of search region  
QA_Value_15  

25 
Percent of targets associated with a QC flag value 16 
Gross difference from forecast wind (channel dependent)  
QA_Value_16  

26 

Percent of targets associated with a QC flag value 17 
Median pressure of largest cluster for first image pair is too different 
from median pressure of largest cluster for second image pair – only 
valid for nested tracking  
QA_Value_17 

27 
Percent of targets associated with a QC flag value 18  
Search region extends beyond domain of data buffer  
QA_Value_18 

28 
Percent of targets associated with a QC flag value 19   
Expected Error (EE) too high 
QA_Value_19 

29 
Percent of targets associated with a QC flag value 20 
Missing data in search region  
QA_Value_20  

30 
Percent of targets associated with a QC flag value 21 
No winds are available for the clustering algorithm  
QA_Value_21  

31 
Percent of targets associated with a QC flag value 22 
No clusters were found  
QA_Value_22  

32 Total targets identified 
 NumTargets_Total  

33 Mean wind speed (m/s) for all good derived winds  
WndSpdMean 

34 Minimum wind speed (m/s) for all good derived winds  
WndSpdMin 

35 Maximum wind speed (m/s) for all good derived winds  
 WndSpdMax 

36 
Standard deviation about mean wind speed (m/s) for all good derived 
winds  
WndSpdStdDev 

37 Number of Atmospheric Layers  
 NumOfAtmosLayers 



 68 

38 
Number of good winds in atmospheric layer 1 
  (100 - 399.9 hPa) 
NumGoodWnds_Layer1 

39 
Number of good winds in atmospheric layer 2  
 (400 – 699.9 hPa) 
NumGoodWnds_Layer2 

40 
Number of good winds in atmospheric layer 3  
 (700 – 1000 hPa) 
NumGoodWnds_Layer3 

41 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
1 
 CldHgtMean_Layer1 

42 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 1 
 CldHgtStdDev_Layer1 

43 Minimum height (hPa) assigned to good winds in atmospheric layer 1 
 CldHgtMin_Layer1 

44 Maximum height (hPa) assigned to good winds in atmospheric layer 1 
CldHgtMax_Layer1 

45  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 1 
WndSpdStdDev_Layer1 

46 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
2 
 CldHgtMean_Layer2 

47 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 2  
CldHgtStdDev_Layer2 

48 Minimum height (hPa) assigned to good winds in atmospheric layer 2 
CldHgtMin_Layer2  

49 Maximum height (hPa) assigned to good winds in atmospheric layer 2 
 CldHgtMax_Layer2 

50  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 2 
WndSpdStdDev_Layer2 

51 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
3 
CldHgtMean_Layer3 

52 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 3 
 CldHgtStdDev_Layer3 

53 Minimum height (hPa) assigned to good winds in atmospheric layer 3  
CldHgtMin_Layer3 

54 Maximum height (hPa) assigned to good winds in atmospheric layer 3 
CldHgtMax_Layer3  
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55  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 3 
WndSpdStdDev_Layer3 

56 Percent good winds generated 
GoodWndClrCld 

 
 

4 TEST DATA SETS AND OUTPUTS 

4.1 GOES-R Proxy and Simulated Input Data Sets 
 
The data used in the pre-launch phase to develop, test, and validate the ABI DMW products 
fall into these two categories: 
 

1) ABI proxy data from another observing system 
2) ABI simulated data that are derived from use of a radiative transfer model where 

the atmospheric and earth surface representations are provided by a high 
resolution numerical weather prediction forecast model 

 
The GOES-R Algorithm Working Group Proxy Data Team is responsible for the 
generation of the proxy and simulated instrument data sets.  
 

4.1.1 SEVIRI Data 
 
In terms of the ABI proxy data, the Spinning Enhanced Visible and Infra-red Imager 
(SEVIRI) instrument onboard the European Meteosat Second Generation (MSG) satellite 
(Schmetz et al, 2002) is being used since it is the best surrogate system for the future ABI.  
The spectral coverage and pixel level resolution of the SEVIRI instrument is very similar 
to that expected from the ABI instrument as is the noise level of the various channels. 
Furthermore, the navigation and registration performance of the SEVIRI instrument is 
comparable to the expected ABI instrument performance. Finally, the scanning rate of the 
SEVIRI instrument is similar to the nominal scanning strategies for the ABI instrument. 
Table 13 lists the SEVIRI bands that are being used in DMWA development and validation 
pre-launch phase activities. For reference, the corresponding ABI channels are also listed 
in this table. 
 
Table 13:  SEVIRI channels serving as GOES-R ABI proxy data for the GOES-R 
DMWA. 

SEVIRI 
Band 
Number 

SEVIRI 
Wavelength 
Range 
(μm) 

SEVIRI 
Central 
Wavelength 
(μm) 

SEVIRI 
Sensor  
Noise 

ABI 
Band 
Number 

ABI 
Wavelength 
Range 
(μm) 

ABI 
Central 
Wavelength 
(μm) 

1 0.56 - 0.71 0.60 
0.39@ 
5.3 
W/m2 

2 0.59 - 0.69 0.64 
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4 3.48 - 4.36 3.90 0.24 K 
@ 300K 7 3.80 - 4.00 3.90 

5 5.35 - 7.15 6.20 0.40 K 
@ 250K 8 5.70 - 6.60 6.19 

6 6.85 - 7.85 7.30 0.48 K 
@ 250K 10 7.24 – 7.44 7.30 

9 9.80 - 11.80 10.80 0.13 K 
@ 300K 14 10.80 – 11.60 11.20 

 
SEVIRI datasets being used for DMWA product development and validation activities 
include full-disk Meteosat-8 SEVIRI data for the months of August 2006 and February 
2007 and Meteosat-8 SEVIRI rapid-scan data for the period June 1-8, 2008. The temporal 
resolution of these data, 15 minute for Full Disk and 5-minute for the rapid scan, mimic 
what is to be expected from the scanning rates of the ABI, making them invaluable for 
testing and validating the DMWA. Use of these SEVIRI observations enabled an analysis 
of the performance of the DMWA over a full range of conditions.  

4.1.2 Simulated ABI Data 
Simulated ABI radiances can be derived using a detailed radiative transfer model over a 
wide range of atmospheric and surface conditions that originate from short-term forecasts 
output by a high-resolution numerical weather prediction model. The GOES-R AWG 
Proxy Data team has created several ABI simulations. This section details work on a 
CONUS simulation which mimics one of the proposed scan segments on the future ABI 
(Otkin et al., 2007).  Two flexible scanning scenarios are currently under review for the 
ABI.  The first mode allows the ABI to scan the full disk (FD) every 15 minutes, 3 CONUS 
scenes, and scan a 1000 km x 1000 km selectable area every 30 seconds.  A second mode 
would program the ABI to scan the FD every 5 minutes (Schmit et al. 2005). Figure 15 
shows an example of simulated ABI imagery and corresponding actual GOES-12 IR/WV 
images over the CONUS at 00 UTC 05 June 2005. The simulated data captures the general 
features and locations well. Some differences can be observed in the cloud structures. 
 
The synthetic GOES-R ABI imagery begins as a high resolution Weather Research and 
Forecasting (WRF) model simulation. The CONUS simulation was performed at the 
National Center for Supercomputing Applications (NCSA) at the University of Illinois at 
Urbana-Champaign by the GOES-R AWG proxy data team.  Simulated atmospheric fields 
were generated using version 2.2 of the WRF model (ARW core).  The simulation was 
initialized at 00 UTC on 04 June 2005 with 1° GFS data and then run for 30 hours using a 
triple-nested domain configuration. The outermost domain covers the entire GOES-R 
viewing area with a 6-km horizontal resolution while the inner domains cover the CONUS 
and mesoscale regions with 2-km and 0.667-km horizontal resolution, respectively.  
 
WRF model output, including the surface skin temperature, atmospheric temperature, 
water vapor mixing ratio, and the mixing ratio and effective particle diameters for each 
hydrometeor species, were ingested into the Successive Order of Interaction (SOI) forward 
radiative transfer model in order to generate simulated top of atmosphere (TOA) radiances.  
Gas optical depths were calculated for each ABI infrared band using the Community 
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Radiative Transfer Model (CRTM).  Ice cloud absorption and scattering properties were 
obtained from Baum et al. (2005), whereas the liquid cloud properties were based on 
Lorenz-Mie calculations. 
 
 

                       
  

                   
 
Figure 15. Simulated GOES-R ABI versus actual GOES-12 imager imagery at 00 UTC on 
05 June 2005. Top Left: Simulated 11.2 µm imagery from the GOES-R ABI. Top Right: 
Actual 10.7 µm imagery from the GOES-12 imager. Bottom Left: Simulated 6.19 µm 
imagery from the ABI.  Bottom right: Actual 6.5 µm imagery from the GOES-12 imager.  
 
 

4.2 Output from Proxy and Simulated Data Sets  

4.2.1 Derived Motion Winds Generated from SEVIRI Data 
 
The DMW product has been generated from full disk SEVIRI imagery for the entire month 
of August 2006 and February 2007 as well as from the rapid-scan SEVIRI imagery for the 
period June1-8, 2008. Figures 16 and 17 show examples of cloud-drift winds generated 
from tracking cloud features observed in the SEVIRI 10.8um channel over the full disk and 
the area covered by the rapid-scans. Figures 18 and 19 show examples of low level (at or 
below 700 hPa) cloud-drift winds over the full disk generated from tracking cloud features 
observed in the SEVIRI 0.60um and 3.9um channels, respectively. Figure 20 shows an 
example of cloud-top water vapor winds over the full disk generated from tracking cloud 
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features observed in the SEVIRI 6.2um channel. Figure 21 shows an example of clear-sky 
water vapor winds over the full disk generated from tracking clear-sky moisture features 
observed in the 6.2um and 7.3um channels.  

 
Figure 16.  Cloud-drift winds derived from full disk 15-minute Meteosat-8 10.8um 
SEVIRI data for 12 UTC on 01 February 2007. These winds are derived from tracking 
cloud features using the 10.8um channel. High level (100-400 hPa) winds are shown in 
violet; mid-level (400-700 hPa) winds are shown in cyan; and low level winds (below 
700 hPa) are shown in yellow. 
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Figure 17.  Cloud-drift winds derived from rapid-scan 5-minute Meteosat-8 10.8um 
SEVIRI data for 2359 UTC on 31 May 2008. These winds are derived from tracking 
cloud features using the 10.8um channel. High level (100-400 hPa) winds are shown in 
violet; mid-level (400-700 hPa) winds are shown in cyan; and low level winds (below 
700 hPa) are shown in yellow. 
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Figure 18.  Cloud-drift winds derived from full disk 15-minute Meteosat-8 0.60um 
SEVIRI data for 12 UTC on 01 February 2007. These winds are derived from tracking 
cloud features using the 0.60um channel. All winds derived from this channel are at low 
levels of the atmosphere (below 700 hPa) during the day and are shown in yellow. 
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Figure 19.  Cloud-drift winds derived from full disk 15-minute Meteosat-8 3.9um 
SEVIRI data for 00 UTC on 02 February 2007. These winds are derived from tracking 
cloud features using the 3.9um channel. All winds derived from this channel are at low 
levels of the atmosphere (below 700 hPa) during the night and are shown in yellow. 
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Figure 20.  Cloud-top Water Vapor Winds derived from full disk 15-minute Meteosat-8 
SEVIRI 6.2um data for 12 UTC on 01 February 2007. These winds are derived from 
tracking cloud features using the 6.2um channel. In dark blue are winds found in the 
range 100-250 hPa; in cyan are winds found in the range 250-350 hPa; in yellow are  
winds in the range 350 – 550 hPa. 
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Figure 21.  Clear-sky Water Vapor Winds derived from full disk 30-minute Meteosat-8 
6.2um and 7.3um SEVIRI data for 12 UTC on 01 February 2007. These winds are 
derived from tracking clear-sky water vapor features using the 6.2um and 7.3um 
channels. In dark blue are winds found in the range 100-250 hPa; in cyan are winds found 
in the range 250-350 hPa; in yellow are  winds in the range 350 – 550 hPa. 
 

4.2.2 Derived Motion Winds Generated from Simulated ABI Data 
 
The DMW products can also be generated from simulated GOES-R ABI imagery. Figure 
22 shows an example of the IR cloud-drift wind product generated from tracking cloud 
features observed in simulated 11.2um channel imagery at 00 UTC on 05 June 2005. In 
this example, an image triplet with a temporal resolution of 5 minutes was used. Figure 23 
is an example of clear-sky water vapor winds using a 30-minute time step. Channel 8 
(6.19um) and channel 10 (7.34um) are included in the plot. Figure 24 shows the result of 
tracking channel 2 (0.64 µm), which is the heritage visible channel, at a 5-minute interval. 
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Figure 22. Cloud-drift winds derived from simulated ABI 11um data at 00 UTC on 05 
June 2005. The time interval of the image sequence is 5 minutes. High-level (100-400 
hPa) winds are shown in violet; mid-level (400-700 hPa) winds are shown in cyan; low-
level (> 700 hPa) winds are shown in yellow. 
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Figure 23. Clear-sky water vapor winds derived from simulated ABI 6.19um and 7.34um 
data at 00 UTC on 05 June 2005. The time interval of the image sequence is 30 minutes. 
High-level (100-400 hPa) winds are shown in violet; mid-level (400-700 hPa) winds are 
shown in cyan. 
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Figure 24. Low-level cloud-drift winds derived from simulated ABI 0.64um data at 2230 
UTC on 05 June 2005. The time interval of the image sequence is 5 minutes. Mid-level 
(600-700 hPa) winds are shown in cyan; low-level (> 700 hPa) winds are shown in 
yellow. 
 

4.3 Precision and Accuracy Estimates 
 
This section describes the predicted performance and product quality of the DMWA 
relative to the DMW specifications found within the GOES-R Functional and Performance 
Specification Document (F&PS). To estimate the precision and accuracy of the DMW 
product requires coincident measurements of reference (“truth”) atmospheric winds values 
for the full range of observing geometry and environmental conditions that cover multiple 
seasons.  
 
The reference (“truth”) datasets used include radiosonde wind observations and Global 
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Forecast System (GFS) analyses winds. The radiosonde wind observations are used 
primarily to validate the DMW product over land and coastal regions. A DMW/radiosonde 
wind collocation is considered a valid match if the radiosonde observation is within one 
hour in time within 150km in the horizontal, and within 50 hPa in the vertical of the DMW. The 
GFS model analysis wind fields are used to measure the performance of the DMW product 
over oceanic regions. Here, the analysis winds must be within 30 minutes of the DMW, and are 
spatially (horizontally and vertically) interpolated to the DMW location. An advantage of this 
approach is that a DMW/Analysis wind collocation match can be generated for every 
DMW produced. 
 
The accuracy and precision estimates for the DMW products are determined by computing 
the Mean Vector Difference (MVD) and Standard Deviation (SD) metrics. The mean 
vector difference between retrieved and reference (“truth”) wind representing the accuracy 
(average error) of the GOES-R ABI wind product is computed from: 
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                                          ui = u-component of satellite wind 
                                          vi = v-component of satellite wind 
                                          ur = u-component of the reference wind 
                                          vr = v-component of the reference winds 
                                          N = size of collocated sample 
                                           

The Standard Deviation (SD) about the mean vector difference between the retrieved 
GOES-R ABI DMW product and the reference wind data represents the precision 
(random error) of the ABI DMW product and is computed from: 
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Certainly, assessment of algorithm performance depends on the validation samples from 
which the comparison statistics are derived. For example, validation of DMW products 
performed at different locations, heights in the atmosphere, different wind speeds, or local 
zenith angle could generate different accuracy and precision values for the same algorithm. 
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The accuracy and precision of the DMW product will depend largely on a number things 
that include: (1) Calibration and navigation accuracy of the ABI measurements, (2) ABI 
band that is used for feature tracking, (3) Height of the DMW in the atmosphere, and (4) 
Accuracy and precision of the input ABI cloud mask and cloud height products.  
 
Comparisons of DMW Products Derived from Meteosat-8 SEVIRI Imagery to 
Radiosonde Wind Observations 
 
Tables 14-19 show DMW product validation results as a function ABI band used and AMV 
height assignment for August 2006 and February 2007 over the earth’s full disk when using 
collocated radiosonde wind observations. These tables include the accuracy and precision 
metrics and also the speed bias metric which is of particular interest to the NWP user 
community. Also included in these tables are statistical comparison metrics between NCEP 
short-term GFS forecast winds (valid at the same time of the satellite winds and at satellite 
wind height assignment) and radiosonde wind observations. These statistics are included 
primarily for reference and as a source of information for NWP users of the DMW product. 
 
The comparison statistics for the low level DMWs computed using the visible band are 
shown in Table 14. The accuracy of these DMWs for August 2006 and February 2007 are 
3.26 m/s and 3.10 m/s, respectively, with corresponding precision values of 2.88 m/s and 
2.16 m/s. These statistics indicate that these visible DMWs possess some small seasonal 
dependence, however, this behavior is also evident in the GFS forecast winds. It is 
interesting to note that the overall performance of the visible DMWs is on par or even 
slightly better than the GFS forecast winds as measured against collocated radiosonde wind 
observations. The accuracy and speed bias metrics actually indicate that visible DMWs 
actually outperform the NCEP GFS forecast winds at low levels of the atmosphere below 
700 hPa. This is a very good result and brings high expectations that they can contribute to 
improving NWP forecast performance when properly assimilated into NWP data 
assimilation systems.  

 
Table 14. Comparison statistics between DMWs computed using the Visible (0.64um) 
band from full disk Meteosat-8, NCEP GFS short-term forecast winds, and radiosonde 
wind observations for the months of August 2006 and February 2007. These estimates were 
determined from comparisons to collocated radiosonde winds at 00 and 12 UTC.  
 

Low Level 
(P > 700hPa)   

Visible (0.64um) Winds vs. 
Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 3.26 3.10 3.29 3.11 
Precision 2.88 2.16 2.81 2.07 
Speed bias 0.28 -0.01 0.55 0.54 
Speed 8.76 9.43 9.02 9.99 
Sample 4976 3372 4976 3372 
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The comparison statistics for the low level DMWs computed using the SWIR band are 
shown in Table 15. The accuracy of these DMWs for August 2006 and February 2007 are 
3.52 m/s and 3.57 m/s, respectively, with corresponding precision values of 2.25 m/s and 
2.42 m/s. Like the visible DMWs, the SWIR winds are derived at low levels of the 
atmosphere below 700 hPa. Their performance in terms of accuracy and precision is very 
similar to the performance of the visible DMWs. This is an important result as these two 
datasets are complimentary given that the visible DMWs are generated during daytime and 
the SWIR DMWs are generated during nighttime. This behavior is very important in terms 
of their use and potential impact in NWP data assimilation systems. 
 

 
Table 15. Comparison statistics between DMWs computed using the SWIR (3.9um) band 
from full disk Meteosat-8, NCEP GFS short-term forecast winds, and radiosonde wind 
observations for the months of August 2006 and February 2007. These estimates were 
determined from comparisons to collocated radiosonde winds at 00 and 12 UTC.  
 

Low Level 
(P > 700hPa)   

SWIR (3.9um) Winds vs. 
Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 3.52 3.57 3.33 3.41 
Precision 2.25 2.42 1.97 2.21 
Speed bias -0.15 -0.07 -0.06 0.29 
Speed 9.40 10.89 9.51 11.25 
Sample 993 1062 993 1062 

 
 
The comparison statistics for the DMWs computed using the LWIR band are shown in 
Table 16. The comparison statistics are shown for all levels of the atmosphere and are also 
broken down as a function of height in the atmosphere. The overall accuracy of these 
DMWs for August 2006 and February 2007 are 4.51 m/s and 5.21m/s, respectively, with 
corresponding precision values of 3.62 m/s and 4.06 m/s. Both sets of DMW metrics 
indicate some seasonal dependence, but this is not unexpected. This same behavior is also 
observed with the NCEP GFS forecast winds and reflects the fact that the average wind 
speeds are higher in February than in August. When the LWIR DMW performance is 
evaluated as a function of height in the atmosphere, the magnitudes of the accuracy and 
precision metrics are observed to be smallest in the lower atmosphere and increase with 
height. This indicates that the performance of the DMWs vary as a function of wind speed. 
The same is true for GFS forecast winds which also exhibit this same behavior. 
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Table 16. Comparison statistics between DMWs computed using the LWIR (10.8um) band 
from full disk Meteosat-8, NCEP GFS short-term forecast winds, and radiosonde wind 
observations for the months of August 2006 and February 2007. These estimates were 
determined from comparisons to collocated radiosonde winds at 00 and 12 UTC.  
 

All Levels 
(100-1000 hPa) 

LWIR (10.8um) Winds vs. 
Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 4.51 5.21 4.21 4.83 
Precision 3.62 4.06 3.04 3.32 
Speed bias 0.24 -0.54 0.02 -0.30 
Speed 14.56 17.68 14.35 17.92 
Sample 13987 15286 13987 15286 

High Level 
(100-400 hPa) 

 
Aug 2006 Feb 2007 Aug 2006 Feb 2007 

Accuracy 5.65 5.94 5.27 5.54 
Precision 4.25 4.46 3.48 3.47 
Speed bias 0.08 -0.81 -0.05 -0.50 
Speed 19.83 21.49 19.71 21.80 
Sample 5441 7719 5441 7719 

Mid Level 
(400-700 hPa)   

 
Aug 2006 Feb 2007 Aug 2006 Feb 2007 

Accuracy 4.39 5.25 3.95 4.67 
Precision 3.28 3.84 2.59 3.36 
Speed bias 0.62 -0.14 -0.15 -0.33 
Speed 13.25 16.38 12.48 16.19 
Sample 4445 4264 4445 4264 

Low Level 
(700-1000 hPa)   

 
Aug 2006 Feb 2007 Aug 2006 Feb 2007 

Accuracy 3.12 3.39 3.07 3.33 
Precision 2.34 2.42 2.31 2.17 
Speed bias 0.02 -0.42 0.32 0.19 
Speed 8.90 10.32 9.21 10.93 
Sample 4053 3249 4053 3249 

 
 
The comparison statistics for the cloud-top water vapor DMWs computed using the 6.2um 
band are shown in Table 17. The comparison statistics are shown only for upper levels of 
the atmosphere above 400 hPa since these winds are only generated above 400 hPa. The 
accuracy of these DMWs for August 2006 and February 2007 are 5.98 m/s and 6.05 m/s, 
respectively, with corresponding precision values of 4.45 m/s and 4.36 m/s. Both sets of 
DMW metrics indicate no seasonal dependence. These statistics indicate that the 
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performance of these cloud-top DMWs is on par with the performance of the NCEP GFS 
forecast winds. In fact, these DMWs outperform the NCEP GFS forecast winds in terms 
of the speed bias metric. This is an extremely good result and brings high expectations that 
they can contribute to improving NWP forecast performance when properly assimilated 
into NWP data assimilation systems.  
Table 17. Comparison statistics between cloud-top DMWs computed using the Water 
Vapor (6.2um) band from full disk Meteosat-8, GFS short-term forecast winds, and 
radiosonde wind observations for the months of August 2006 and February 2007. These 
estimates were determined from comparisons to collocated radiosonde winds at 00 and 12 
UTC.  
 

High Level 
(100-400 hPa)   

Cloud-top Water Vapor 
(6.2um) Winds vs. 

Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 5.98 6.05 5.76 5.65 
Precision 4.45 4.36 3.99 3.78 
Speed bias 0.04 0.00 -0.27 -0.79 
Speed 21.04 22.91 20.73 22.12 
Sample 13945 16976 13945 16976 

 
The comparison statistics for the clear-sky water vapor DMWs computed using the 6.2um 
and 7.3um bands are shown in Tables 18 and 19. The comparison statistics for the 6.2um 
clear-sky DMWs are shown only for upper levels of the atmosphere above 400 hPa since 
these winds are only generated above 400 hPa. The comparison statistics for the 7.3um 
clear-sky DMWs are shown only for the atmospheric layer between 450 hPa and 700 hPa, 
since this is the layer over which these winds are generated and most representative.  
 
The accuracy of the clear-sky water vapor (6.2um) DMWs for August 2006 and February 
2007 are 5.64 m/s and 6.35 m/s, respectively, with corresponding precision values of 4.33 
m/s and 5.00 m/s. The clear-sky water vapor (7.3um) DMWs for August 2006 and February 
2007 had accuracies of 4.82 m/s and 6.31 m/s, respectively, with corresponding precision 
values of 3.32 m/s and 4.86 m/s. Both sets of DMW metrics indicate that the performance 
of the clear-sky DMWs will vary by season with the most challenging season being winter 
when the atmosphere is much drier. It is clear from these statistics that the clear-sky DMWs 
are the most challenging to derive. The primary reason for this is that the feature being 
tracked in these cases is a clear-sky moisture gradient which lacks a sharp radiometric 
signal typically observed with clouds. Complicating matters further is the fact that the 
radiometric signal being tracked emanates from a rather broad layer of the atmosphere. 
Thus, the motion retrieved from tracking clear-sky water vapor features is more 
representative of the average motion over a broad atmospheric layer. Statistical 
comparisons of these DMWs versus single level reference/ground truth wind observations 
like radiosondes, then, reflect this phenomenon with the result being slightly worse 
performance (e.g., lower accuracy and reduced precision). 
 
 



 86 

 
 
 
 
 
Table 18. Comparison statistics between clear-sky DMWs computed using the Water 
Vapor (6.2um) band from full disk Meteosat-8, GFS short-term forecast winds, and 
radiosonde wind observations for the months of August 2006 and February 2007. These 
estimates were determined from comparisons to collocated radiosonde winds at 00 and 12 
UTC.  
 

High Level 
(100-400 hPa)   

Clear-sky Water Vapor 
(6.2um) Winds vs. 

Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 5.64 6.35 4.48 4.89 
Precision 4.33 5.00 3.24 3.70 
Speed bias -0.25 0.87 -0.55 -0.33 
Speed 14.96 18.68 14.67 17.49 
Sample 5309 2478 5309 2478 

 
 
 
Table 19. Comparison statistics between clear-sky DMWs computed using the Water 
Vapor (7.3um) band from full disk Meteosat-8, GFS short-term forecast winds, and 
radiosonde wind observations for the months of August 2006 and February 2007. These 
estimates were determined from comparisons to collocated radiosonde winds at 00 and 12 
UTC.  
 

Mid Level 
(450-700 hPa)   

Clear-sky Water Vapor 
(7.3um) Winds vs. 

Radiosonde Winds (m/s) 

GFS Forecast Winds vs. 
Radiosonde Winds (m/s) 

Aug 2006 Feb 2007 Aug 2006 Feb 2007 
Accuracy 4.82 6.31 3.56 4.03 
Precision 3.32 4.86 2.26 2.87 
Speed bias 0.00 0.86 -0.55 -0.99 
Speed 11.50 13.84 10.94 11.99 
Sample 3351 1907 3351 1907 

 
 
 
Comparisons of DMW Products Derived from Meteosat-8 SEVIRI Imagery to GFS 
Analysis Winds 
 
Tables 20-25 show DMW product validation results as a function ABI band used and AMV 
height assignment for August 2006 and February 2007 over the earth’s full disk and over 
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ocean when using collocated NCEP GFS analysis winds.  These tables include the accuracy 
and precision metrics and also the speed bias metric which is of particular interest to the 
NWP user community. It needs to be noted that use of NCEP GFS analysis winds as the 
reference/ground truth wind observations leads to smaller magnitudes in the accuracy and 
precision metrics as compared to the magnitudes of these metrics when using radiosonde 
wind observations. Two reasons likely contribute to this. First, the horizontal and temporal 
resolution of the GFS analysis wind field is much coarser than the radiosonde wind 
observations and second, the GFS analysis wind field is influenced by a number of satellite-
derived winds as these are assimilated operationally by NCEP. Despite this, these 
comparison statistics still provide a useful measure of the performance of the DMWA. 
 
The comparison statistics for the low level DMWs computed using the visible band are 
shown in Table 20. The accuracy of these DMWs for August 2006 and February 2007 are 
2.38 m/s and 2.19 m/s, respectively, with corresponding precision values of 1.60 m/s and 
1.55 m/s. These statistics indicate that the visible DMWs possess a very small seasonal 
dependence which is consistent with what was observed when comparing these winds to 
radiosonde wind observations.   
 
The comparison statistics for the low level DMWs computed using the SWIR band are 
shown in Table 21. The accuracy of these DMWs for August 2006 and February 2007 are 
2.40 m/s and 2.55 m/s, respectively, with corresponding precision values of 1.61 m/s and 
1.56 m/s. Like the visible DMWs, the SWIR winds are derived at low levels of the 
atmosphere below 700 hPa. Their performance in terms of accuracy and precision is very 
similar to the performance of the visible DMWs.  As previously mentioned, this is an 
important result as these two datasets are complimentary given that the visible DMWs are 
generated during daytime and the SWIR DMWs are generated during nighttime. This 
behavior is very important in terms of their use and potential impact in NWP data 
assimilation systems. 
 

 
Table 20. Comparison statistics (ocean only) between DMWs computed using the Visible 
(0.64um) band from full disk Meteosat-8 and NCEP GFS Analysis winds (valid at 00 UTC 
and 12 UTC) for the months of August 2006 and February 2007.  
 

Low Level 
(P > 700hPa)   

Visible (0.64um) Winds vs. GFS Analysis  Winds (m/s) 
Aug 2006 Feb 2007 

Accuracy 2.38 2.19 
Precision 1.60 1.55 
Speed bias -0.17 -0.32 
Speed 9.47 9.61 
Sample 284269 219746 
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Table  21. Comparison statistics (ocean only) between DMWs computed using the SWIR 
(3.9um) band from full disk Meteosat-8 and NCEP GFS Analysis winds (valid at 00 UTC 
and 12 UTC) for the months of August 2006 and February 2007.  
 
 

Low Level 
(P > 700hPa)   

SWIR (3.9um) Winds vs. GFS Analysis  Winds (m/s) 
Aug 2006 Feb 2007 

Accuracy 2.40 2.25 
Precision 1.61 1.56 
Speed bias -0.33 -0.36 
Speed 9.68 9.61 
Sample 179276 150664 

 
 
The comparison statistics for the DMWs computed using the LWIR band are shown in 
Table 22. The comparison statistics are shown for all levels of the atmosphere and are also 
broken down as a function of height in the atmosphere. The overall accuracy of these 
DMWs for August 2006 and February 2007 are 3.30 m/s and 3.70m/s, respectively, with 
corresponding precision values of 2.82 m/s and 3.43 m/s. Conclusions to be drawn from 
these statistics are similar to those drawn from statistics computed between these winds 
and radiosonde wind observations. Both sets of DMW metrics indicate some seasonal 
dependence which reflects the fact that the average wind speeds are higher in February 
than in August. When the LWIR DMW performance is evaluated as a function of height 
in the atmosphere, the magnitudes of the accuracy and precision metrics are observed to be 
smallest in the lower atmosphere and increase with height. This indicates that the 
performance of the DMWs vary as a function of wind speed.  
 
 
 
Table 22. Comparison statistics (ocean only) between DMWs computed using the LWIR 
(10.8um) band from full disk Meteosat-8 and NCEP GFS analysis winds (valid at 00UTC 
and 12 UTC) for the months of August 2006 and February 2007. 
 

All Levels 
(100-1000 hPa) 

LWIR (10.8um) Winds vs. GFS Analysis Winds (m/s) 
Aug 2006 Feb 2007 

Accuracy 3.30 3.70 
Precision 2.82 3.43 
Speed bias 0.01 0.15 
Speed 14.31 15.30 
Sample 374979 392282 
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High Level 
(100-400 hPa)   

 
Aug 2006 Feb 2007 

Accuracy 5.16 5.66 
Precision 3.76 4.31 
Speed bias 0.47 0.65 
Speed 23.67 22.46 
Sample 86652 138326 

Mid Level 
(400-700 hPa)   

 
Aug 2006 Feb 2007 

Accuracy 4.81 4.76 
Precision 3.63 3.71 
Speed bias 1.13 1.55 
Speed 21.93 20.93 
Sample 39141 35921 

Low Level 
(700-1000 hPa)   

 
Aug 2006 Feb 2007 

Accuracy 2.42 2.28 
Precision 1.63 1.56 
Speed bias -0.32 -0.39 
Speed 9.85 9.83 
Sample 249150 218003 

 
 
The comparison statistics for the cloud-top water vapor DMWs computed using the 6.2um 
band are shown  in Table 23. The comparison statistics are shown only for upper levels of 
the atmosphere above 400 hPa since these winds are only generated above 400 hPa. The 
accuracy of these DMWs for August 2006 and February 2007 are 5.83 m/s and 5.69m/s, 
respectively, with corresponding precision values of 4.29 m/s and 4.01 m/s. Both sets of 
DMW metrics indicate no seasonal dependence with respect to the performance of the 
DMWA when using this channel to track clouds. A positive speed bias ranging from 1.22-
1.43m/s is evident from these comparison stats which indicate the DMWs are faster than 
the GFS analysis. The exact reasons for this are not known. Positive speed biases for these 
DMWs, however, were not evident in the DMW/radiosonde wind comparison statistics 
shown in Table 18. 
 
 
Table 23. Comparison statistics (ocean only) between cloud-top DMWs computed using 
the Water Vapor (6.2um) band from full disk Meteosat-8 and NCEP GFS analysis winds 
(valid at 00UTC and 12UTC) for the months of August 2006 and February 2007.  
 

High Level 
(100-400 hPa)   

Cloud-top Water Vapor (6.2um) Winds vs. GFS Analysis 
Winds (m/s) 

Aug 2006 Feb 2007 
Accuracy 5.83 5.69 
Precision 4.29 4.01 
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Speed bias 1.43 1.22 
Speed 26.21 24.38 
Sample 190795 254132 

 
 
 
The comparison statistics for the clear-sky water vapor DMWs computed using the 6.2um 
and 7.3um bands are shown in Tables 24 and 25. The comparison statistics for the 6.2um 
clear-sky DMWs are shown only for upper levels of the atmosphere above 400 hPa since 
these winds are only generated above 400 hPa. The comparison statistics for the 7.3um 
clear-sky DMWs are shown only for the atmospheric layer between 450 hPa and 700 hPa, 
since this is the layer over which these winds are generated and most representative.  
 
The accuracy of the clear-sky water vapor (6.2um) DMWs for August 2006 and February 
2007 are 5.21 m/s and 5.52 m/s, respectively, with corresponding precision values of 4.06 
m/s and 4.07m/s. The clear-sky water vapor (7.3um) DMWs for August 2006 and February 
2007 had accuracies of 4.97 m/s and 5.05 m/s, respectively, with corresponding precision 
values of 3.85m/s and 3.73 m/s. Both sets of DMW metrics indicate that the performance 
of the clear-sky DMWs will vary slightly by season with the most challenging season being 
winter when the atmosphere is much drier. It is clear from these statistics that the clear-sky 
DMWs are the most challenging to derive. As previously discussed, the primary reason for 
this is that the feature being tracked in these cases is a clear-sky moisture gradient which 
lacks a sharp radiometric signal typically observed with clouds. Complicating matters 
further is the fact that the radiometric signal being tracked emanates from a rather broad 
layer of the atmosphere. Thus, the motion retrieved from tracking clear-sky water vapor 
features is more representative of the average motion over a broad atmospheric layer. 
Statistical comparisons of these DMWs with single level reference/ground truth wind 
observations like radiosondes or even GFS analysis then, reflect this phenomenon with the 
result being slightly worse performance (e.g., lower accuracy and reduced precision). 
 
 
Table 24. Comparison statistics (ocean only) between clear-sky DMWs computed using 
the Water Vapor (6.2um) band from full disk Meteosat-8 and NCEP GFS analysis winds 
(valid at 00UTC and 12UTC)  for the months of August 2006 and February 2007. 
 

High Level 
(100-400 hPa)   

Clear-sky Water Vapor (6.2um) Winds vs. GFS Analysis 
Winds (m/s) 

Aug 2006 Feb 2007 
Accuracy 5.21 5.52 
Precision 4.06 4.07 
Speed bias 1.30 1.30 
Speed 15.72 17.57 
Sample 103941 76028 
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Table 25. Comparison statistics (ocean only) between clear-sky DMWs computed using 
the Water Vapor (7.3um) band from full disk Meteosat-8 and NCEP GFS Analysis winds 
(valid at 00UTC and 12UTC) for the months of August 2006 and February 2007.  
 

Mid Level 
(450-700 hPa)   

Clear-sky Water Vapor (7.3um) Winds vs. GFS Analysis 
Winds (m/s) 

Aug 2006 Feb 2007 
Accuracy 4.97 5.05 
Precision 3.85 3.73 
Speed bias 1.28 1.60 
Speed 12.74 14.12 
Sample 102526 85434 

 

4.3.1 Error Budget 
 
The GOES-R ABI DMW products are considered validated at the 100% level if the overall 
accuracy and precision of the wind product satisfy the requirements specified within the 
F&PS document. 
 
Conformance of DMW Algorithm Performance to F&PS Accuracy and Precision 
Specifications 
 
This section summarizes the overall accuracy and precision estimates of the DMW 
product based on the use of ABI proxy data described in Sections 4.1 and the reference 
data described in Section 4.3. Tables 26 and 27 list the overall DMW product validation 
results when using collocated radiosonde wind observations and GFS analysis winds, 
respectively. For each case, the DMWA accuracy and precision metrics are shown 
relative to the F&PS specifications for each of these metrics. The DMWA accuracy and 
precision metrics clearly demonstrate that the DMWA meets the F&PS accuracy and 
precision specifications at the 100% level.  
 
Both sets of validation results demonstrate that both the accuracy and precision estimates 
for the DMW product meet the F&PS specifications for these metrics at the 100% level. 
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Table 26. Accuracy and precision estimates of DMWs (whose QI ≥ 60) derived from full 
disk Meteosat-8 imagery for the months of August 2006 and February 2007. These 
estimates were determined from comparisons to collocated radiosonde wind observations 
at 00 and 12 UTC. F&PS accuracy and precision specifications are included in this table 
for comparison.  
 

F&PS Performance 
Metric 

F&PS  
Requirement (m/s) 

Validation with Radiosondes 

Computed Metric (m/s) Sample Size 
Accuracy 7.5 5.20 65603 
Precision 4.2 4.09 65603 

 
 
Table 27. Accuracy and precision estimates of DMWs (whose QI ≥ 60) derived from full 
disk Meteosat-8 imagery for the months of August 2006 and February 2007. These 
estimates were determined from comparisons to collocated GFS analysis winds at 00 and 
12 UTC. F&PS accuracy and precision specifications are included in this table for 
comparison.  
 

F&PS Performance 
Metric 

F&PS  
Requirement (m/s) 

Validation with GFS Analysis 

Computed Metric (m/s) Sample Size 
Accuracy 7.5 4.31 3145211 
Precision 4.2 3.70 3145211 
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5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
 
The pattern matching performed by the DMWA is the most computationally expensive 
aspect of the entire derivation process. It is natural then to focus on this step when 
considering ways to improve the overall performance of the algorithm.  
 
Major efficiency upgrades have recently been made to the tracking portion of the AMV 
algorithm resulting in a 25% improvement in the processing times.  One recent upgrade, 
the spiral search,  terminates the sum-of-squared differences (SSD) calculation early once 
a current minimum value has been exceeded. The rationale for terminating the summation 
early is that any additional calculations would simply increase the summation value above 
the current minimum. 
 
A second implemented upgrade has been to begin the search for the minimum SSD value 
at the forecast location and "spiral" outwards instead of starting at the top left corner of the 
search region where the SSD value is typically much larger.  This has the effect of 
establishing a low threshold right from the start so that the SSD calculation can be 
terminated earlier resulting in fewer calculations.  
 

5.2 Programming and Procedural Considerations 
 
The current version of the DMWA includes a large data buffer that holds information 
(radiance, brightness temperature, cloud mask, etc) from adjacent line segments (also 
called swaths). Such a buffer makes it possible for the algorithm to track features that move 
out of the domain of the middle line segment, which is the only part of the buffer being 
processed for targets. With each new line segment read in, data in the buffer is shifted 
upwards so that the “oldest” data is always at the top of the buffer while the new segment 
data is added to the bottom of the buffer. This involves a substantial amount of copying 
from one segment of the buffer to another. It is anticipated that future versions of the 
algorithm will not have this buffer, as it is expected that the processing framework provided 
by the AIT will take care of this task. This will greatly simplify the algorithm and should 
significantly improve its performance. 
 
The current version of the algorithm is also limited to processing three images of equal 
size. These limitations will need to be addressed in future versions. In addition to adding 
flexibility to the algorithm, having the ability to process images of varying size (mixing 
and matching) will improve the timeliness of the product. 
 
As required by the AIT, a common variable type declaration statement has been used while 
writing the AMV algorithm.   
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5.3 Quality Assessment and Diagnostics 
 
The following information should be monitored/trended for diagnosing the quality of the 
derived motion wind product:  
 

• Number of total targets attempted 
• Number of good winds generated 
• Percent of winds retrieved with specified QA flag values 
• Mean, Min, Max and StdDev of derived wind speed 
• Percent of retrievals with a QA flag value for specified atmospheric layers 
• Mean, Min, Max, and StdDev cloud height for specified atmospheric layers 

 

5.4 Exception Handling 
 
Exception handling is required for the development of robust and efficient numerical 
software. Requirements set forth by the AIT also stress the importance of exception 
handling. The main modules of the DMW program (target_selection.f90 and 
feature_tracking_utils.f90) use AIT-provided subroutine for error messaging.  
 
For the most part, the DMWA assumes that all necessary image, forecast and ancillary data 
are available through the processing framework. The only data that the algorithm explicitly 
checks for is the temporal brightness temperature data, which is necessary for the tracking 
portion of the algorithm. If the temporal data is unavailable, the algorithm outputs an error 
message and control is returned to the processing framework. 
 
As part of the target selection process, the DMWA checks for missing or unrealistic values 
within both the target and search regions. These values are specified in Section 3.4.2.1.1 
(see Channel Validity Test). If either condition is met, the algorithm will flag the scene as 
bad and proceed to the next adjacent scene. 
 

5.5 Algorithm Validation 
 
Validation of the DMW products requires collocated measurements of reference (“truth”) 
atmospheric wind values for the full range of ABI observing geometry and environmental 
conditions. From these collocated measurements, comparison metrics can be calculated 
that characterize the agreement between the satellite-derived DMWs and the reference 
values. 
 
During the pre-launch phase of the GOES-R program, the product validation activities are 
aimed at characterizing the performance and uncertainties of the DMW products resulting 
from parameterizations and algorithmic implementation artifacts. During this phase, there 
is total reliance on the use of GOES-R ABI proxy and simulated datasets as described in 
Section 4.1. Post-launch validation will apply lessons learned to inter-comparisons of 
actual DMW products generated from real ABI measurements and reference (“ground-
truth”) wind observations. Validation methodologies and tools developed and tested during 
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the pre-launch phase will be automated and applied. More specific details on DMW 
product validation activities can be found in the Product Validation Document for the 
DMW product. 

6 ASSUMPTIONS AND LIMITATIONS 
 
The following sections describe the limitations and assumptions used in the current version 
of the DMWA. 

6.1 Algorithm Performance 
 
The following assumptions have been made in developing and estimating the performance 
of the DMWA.  

(1) ABI pixel level channel data (for each line segment) from all three images in the 
sequence are available along with accompanying meta-data (latitude, longitude, 
solar and local zenith angles, image scan times, quality flags). It is further 
assumed that the processing framework will handle any preprocessing needed to 
account for channel imagery whose resolutions may differ  

(2) Forecast temperature and wind profiles, surface skin temperature, and surface 
pressure are available and made available to the DMWA through the processing 
framework 

(3) The pixel level  ABI cloud mask, cloud-top pressure, cloud-top temperature, 
estimated cloud height retrieval error, and cloud height quality flag(s) 
corresponding to each image in the image sequence are available through the 
processing framework  

(4) DMWA  products are validated with reliable ground-based wind measurements 
and/or winds from a NWP model forecast/analysis 

(5) Proxy datasets and simulated ABI radiance fields from NWP models provide a 
suitable surrogate for estimating the DMWA performance/verification 

 

6.2 Sensor Performance 
 
It is assumed the GOES-R ABI sensor will meet its specifications as documented in the 
ABI PORD (417-R-ABIPORD-0017).    
 

6.3  Pre-Planned Product Improvements 
 
While development of the baseline DMWA continues, we expect to focus on the following 
issues. 

6.3.1 Improve the Link between Pixels Dominating the Feature 
Tracking Solution and Target Height Assignment 
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Target height assignment has been identified as a major source of error for the DMW 
products. Deriving a representative height that is consistent with, and has ties to, the 
features being tracked is the goal of an upgraded wind derivation process. Studying and 
improving the link between the features being tracked and the heights assigned to these 
features is the major focus of this future effort. 

6.3.2 Quality Control Indicators 
 
The quality control indicators attached to each DMW vector are important to the users of 
these products. Proper interpretation and application of these quality control indicators 
helps the user community make optimal use of the DMW products. As such, improving 
these quality control indicators so that they more accurately represent the integrity and 
accuracy of the DMW product is vital. Of particular interest by the NWP community is a 
quality indicator that provides information about the estimated accuracy of the height 
assignment associated with the derived motion wind products. This will be an area of future 
study. 
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Appendix 1: Common Ancillary Data Sets 
 

1. LAND_MASK_NASA_1KM 

a. Data description 
 

Description: Global 1km land/water used for MODIS collection 5 
Filename: lw_geo_2001001_v03m.nc 
Origin: Created by SSEC/CIMSS based on NASA MODIS collection 5 
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 

 

2. SFC_TYPE_AVHRR_1KM 

a. Data description 
 

 Description: Surface type mask based on AVHRR at 1km resolution 
 Filename:  gl-latlong-1km-landcover.nc 

Origin: University of Maryland  
Size: 890 MB 
Static/Dynamic: Static 

b. Interpolation description 
 
The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
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3. NWP_GFS 

a. Data description 
 

 Description: NCEP GFS model data in grib format – 1 x 1 degree 
(360x181), 26 levels  

 Filename: gfs.tHHz.pgrbfhh 
Where, 
HH – Forecast time in hour: 00, 06, 12, 18 
hh – Previous hours used to make forecast: 00, 03, 06, 09  

Origin: NCEP  
Size: 26MB 
Static/Dynamic: Dynamic 

b. Interpolation description 
 

There are three interpolations are installed: 
 
NWP  forecast interpolation from different forecast time: 
 

Load two NWP grib files which are for two different forecast time and 
interpolate to the satellite time using linear interpolation with time 
difference. 

 
Suppose: 
 
 T1, T2 are NWP forecast time, T is satellite observation time, and 
 T1 < T < T2. Y is any NWP field. Then field Y at satellite observation 
time T is: 
 

Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2) 
 
Where W is weight and 
   

W(T1) = 1 – (T-T1) / (T2-T1) 
W(T2) = (T-T1) / (T2-T1) 

 
 
NWP forecast spatial interpolation from NWP forecast grid points. 
This interpolation generates the NWP forecast for the satellite pixel 
from the NWP forecast grid dataset.   
 

The closest point is used for each satellite pixel: 
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1) Given NWP forecast grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to 

the satellite pixel. 
 
 

NWP forecast profile vertical interpolation 
 
Interpolate NWP GFS profile from 26 pressure levels to 101 pressure 
levels 
 
For vertical profile interpolation, linear interpolation with Log 
pressure is used: 

 
Suppose: 
  
y is temperature or water vapor at 26 levels, and y101 is temperature 
or water vapor at 101 levels. p is any pressure level between p(i) and 
p(i-1), with p(i-1) < p <p(i). y(i) and y(i-1) are y at pressure level p(i) 
and p(i-1). Then y101 at pressure p level is:  

 
y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ( y[i] – y[i-1] ) / log ( 
p[i] / p[i-1] ) 
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