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ABSTRACT 
 
This document provides a high level description of the physical basis of the enterprise 
fog/low stratus (FLS) detection algorithm. The enterprise FLS detection product is 
designed to quantitatively identify clouds that produce at least Marginal Visual Flight 
Rules (MVFR) conditions, defined as having a cloud ceiling between 1000-3000 ft (305-
914 m) above ground level (AGL) or surface visibility between 3-5 mi (4.8-8.1 km). 
Additionally, the enterprise FLS algorithm also quantitatively identifies clouds that 
produce Instrument Flight Rules (IFR) conditions, defined as having a cloud ceiling 
between 500-1000 ft (152-305 m) or surface visibility between 1-3 mi (1.6-4.8 km), or 
Low Instrument Flight Rules (LIFR), defined as having a cloud ceiling below 500 ft (152 
m) AGL or surface visibility less than 1mi (1.6 km). At night, the algorithm utilizes the 3.9 
and 11 µm channels to detect FLS.  Fog/low stratus detection during the day is determined 
using the 0.65, 3.9, and 11 µm channels.  The FLS detection algorithm utilizes textural and 
spectral information, as well as modeled relative humidity data and the difference between 
the cloud radiative temperature and surface temperature. The FLS detection scheme is 
probabilistic in nature using a naïve Bayes model to combine information from all the data.  
At night, the cloud geometric thickness (FLS depth) is estimated using a 3.9 µm based 
empirical relationship.  During the day, FLS depth is calculated using the cloud Liquid 
Water Path (LWP) product and an assumption regarding the vertical distribution of cloud 
water. 
 
There are a few important caveats that users need to be aware of. Passive satellite 
measurements do not provide direct information on cloud base or ceiling, so the properties 
of the cloud layer actually sensed by the radiometer must be used to indirectly infer 
information on cloud base.  Since the properties of the cloud base are not directly measured, 
variations in cloud base due to local boundary layer effects (e.g. local moisture 
sources/sinks and local turbulent mixing processes) generally will not be captured.  
Secondly, limited spatial resolution and errors in forecast model temperature data may 
make accurate fog/low cloud detection difficult in mountainous regions due to underlying 
terrain that may not be accurately accounted for. As such, not every surface observation 
underneath a detected low cloud will necessarily indicate a ceiling below 3000 ft AGL or 
surface visibility less than 5 miles, however, when pixels with Visual Flight Rules (VFR) 
conditions are included the probability is usually relatively low, which is desirable. 
 
The enterprise fog/low cloud detection algorithm is required to achieve a detection 
accuracy of 0.70 and thickness accuracy of within 500 m.  Validation efforts indicate the 
algorithm meets these specifications. 
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1 INTRODUCTION 
 

1.1 Purpose of This Document 
 
The fog/low cloud detection algorithm theoretical basis document (ATBD) provides a high 
level description of the physical basis for detecting low cloud and fog which produces at 
least Marginal Visual Flight Rules (MVFR), Instrument Flight Rules (IFR) or Low 
Instrument Flight Rules (LIFR) conditions, with images taken by NOAA’s geostationary 
GOES-NOP imagers and the Advanced Baseline Imager (ABI).  MVFR conditions occur 
when the cloud base is between 1000-3000 ft (305-914 m) above ground level (AGL) or 
the surface visibility is between 3-5 mi (4.8-8.1 km), IFR conditions occur when the cloud 
base is between 500-1000 ft (152-305 m) or the surface visibility is between 1-3 mi (1.6-
4.8 km), and LIFR conditions occur when the cloud base is less than 500 ft (152 m) or the 
surface visibility is less than 1 mi (1.6 km). Rather than a yes/no binary mask, the fog/low 
stratus algorithm (herein called the FLS algorithm) provides a quantitative probability that 
MVFR/IFR/LIFR conditions are present as well as an estimate of the fog/low cloud 
thickness for a given satellite pixel.  
 

1.2 Who Should Use This Document 
 
The intended users of this document are those interested in understanding the physical basis 
of the FLS algorithm. This document also provides information useful to anyone 
maintaining or modifying the original algorithm.   
 

1.3 Inside Each Section 
 
 This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of current geostationary satellite 
imagers and a brief description of the products generated by the algorithm. 

 
• Algorithm Description: Provides all the detailed description of the algorithm 

including its physical basis, its input and its output. 
 

• Test Data Sets and Outputs: Provides a detailed description of the data sets used 
to develop and test the enterprise FLS algorithm and describes the algorithm output. 

 
• Practical Considerations: Provides a description of algorithm programming and 

quality control considerations.  
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• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

 

1.4 Related Documents 
 

• GOES-NOP/R Functional & Performance Specification Document (F&PS) 
• GOES-NOP/R Fog/Low Cloud Detection Validation Plan Document 
• Algorithm Interface and Ancillary Data Description (AIADD) Document 

 

1.5 Revision History 
 

• 9/30/2009 - Version 0.1 of this document for the GOES-R FLS algorithm was 
created by Corey Calvert (UW-CIMSS).  Version 0.1 represents the first draft of 
this document. 

 
• 7/31/2010 – Version 1.0 of this document for the GOES-R FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis (NOAA/NESDIS).  
In this revision, Version 0.1 was revised to meet 80% delivery standards. 

 
• 9/15/2010 – Version 1.0 of this document for the GOES-R FLS algorithm was 

revised by Corey Calvert (UW-CIMSS) and Michael J Pavolonis 
(NOAA/NESDIS/STAR).  In this revision, Version 1.0 was revised based on 
reviewer comments. 

 
• 7/1/2011 – Version 2.0 of this document for the GOES-R FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 
(NOAA/NESDIS/STAR). In this revision, Version 1.0 was revised to meet 100% 
delivery standards. 

 
• 9/1/2015 – Version 3.0 of this document for the GOES-NOP FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 
(NOAA/NESDIS/STAR) by editing and updating the previous version created for 
the GOES-R FLS algorithm. 

 
• 7/18/2018 – Version 4.0 of this document for the enterprise FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 
(NOAA/NESDIS/STAR) by editing and updating the previous version created for 
the GOES-NOP/GOES-R FLS algorithm. 
 

• 3/2/2021 – Version 5.0 of this document for the enterprise FLS algorithm was 
created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 
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(NOAA/NESDIS/STAR) by editing and updating Version 4.0 created for the 
GOES-NOP/GOES-R FLS algorithm to include content for GOES-17. 

 

2 OBSERVING SYSTEM OVERVIEW 
 
This section describes the products generated by the FLS algorithm and the requirements 
it places on the sensor.  
 

2.1 Products Generated 
 
The FLS algorithm is responsible for detecting fog/low stratus clouds (those that produce 
MVFR/IFR/LIFR Conditions) and estimating its geometric thickness (FLS depth). 

2.1.1 Product Requirements 
 
The F&PS requirements for fog/low cloud are listed in Table 1 and Table 2. 
 
Table 1: F&PS requirements for GOES-NOP fog/low cloud products. 

Name 
 

Fog/Low Stratus Clouds 

User & Priority 
 

Enterprise GS 

Geographic Coverage FD (full disk) 
Temporal Coverage 
Qualifiers 
 

Day and Night 

Product Extent Qualifier 
 
 

Quantitative out to at least 70 degrees LZA and qualitative 
beyond 

Cloud Cover Conditions 
Qualifier 
 

All cloud cover conditions 

Product Statistics 
Qualifier 
 
 

Over low cloud and FLS cases with at least 42% 
occurrence in the region 

Vertical Resolution 
 

0.5 km (Depth) 

Horizontal Resolution 
 

4 km 

Mapping Accuracy 
 

1 km 
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Measurement Range 
 

0 – 100 % 

Measurement Accuracy 
 

70% Correct Detection 

Refresh Rate/Coverage 
Time Option (Mode 3) 

15 min 

Refresh Rate Option 
(Mode 4) 

5 min 

Data Latency 
 

159 sec 

Long-Term Stability 
 

TBD 

Product Measurement 
Precision 

Undefined 

 
Table 2 - F&PS requirements for ABI fog/low cloud products. 

Name 
 

Fog/Low Stratus Clouds 

User & Priority 
 

Enterprise GS 

Geographic Coverage FD (full disk) 
Temporal Coverage 
Qualifiers 
 

Day and Night 

Product Extent Qualifier 
 
 

Quantitative out to at least 70 degrees LZA and qualitative 
beyond 

Cloud Cover Conditions 
Qualifier 
 

All cloud cover conditions 

Product Statistics 
Qualifier 
 
 

Over low cloud and FLS cases with at least 42% 
occurrence in the region 

Vertical Resolution 
 

0.5 km (Depth) 

Horizontal Resolution 
 

2 km  

Mapping Accuracy 
 

1 km 

Measurement Range 
 

0 – 100 % 

Measurement Accuracy 
 

70% Correct Detection 
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Refresh Rate/Coverage 
Time Option (Mode 3) 

Full Disk - 15 min 
CONUS - 5 min 

Refresh Rate Option 
(Mode 4) 

Full Disk - 15 min 
CONUS - 5 min 

Data Latency (Mode 3) 
 

Full Disk - 806 sec 
CONUS - 266 sec 

Long-Term Stability 
 

TBD 

Product Measurement 
Precision 

Undefined 

 
 

2.2 Instrument Characteristics  
 
The FLS algorithm will be applied to each earth-located satellite pixel with valid L1b data. 
Table 3 and Table 4 summarize the channels used by the FLS algorithm.  Even though the 
FLS algorithm directly utilizes only a few channels, it indirectly utilizes many more 
channels through its dependence of up-stream cloud mask, cloud phase, and daytime 
optical properties algorithms. 
 
Table 3: Channel numbers and wavelengths for the GOES-NOP imagers. 

Channel Number Wavelength (µm) Used in FLS Detection 
1 0.65  
2 3.9  
3 6.7  
4 10.7  
6 13.3  

 
Table 4: Channel numbers and wavelengths for the ABI 

Channel Number Wavelength (µm) Used in ACT 
1 0.47  
2 0.64  
3 0.86  
4 1.38  
5 1.61  
6 2.26  
7 3.9  
8 6.15  
9 7.0  
10 7.4  
11 8.5  
12 9.7  
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13 10.35  
14 11.2  
15 12.3  
16 13.3  

 
The FLS algorithm relies on spectral tests and is therefore sensitive to any imagery artifacts 
or instrument noise.  Due to the use of other cloud algorithms, any instrument-related 
artifacts, which impact the cloud mask, cloud phase or cloud optical properties may impact 
the FLS algorithm. The channel specifications are given in the F&PS section 3.4.2.1.4.0.  
We are assuming the performance outlined in the F&PS during our development efforts. 
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3 ALGORITHM DESCRIPTION 
 
This section offers a complete description of the enterprise FLS algorithm. 
 

3.1 Algorithm Overview 
 
The enterprise fog/low stratus algorithm is designed to quantitatively identify clouds that 
produce at least Marginal Visual Flight Rules (MVFR) conditions, defined as having a 
cloud ceiling between 1000-3000 ft (305-914 m) above ground level (AGL) or surface 
visibility between 3-5 mi (4.8-8.1 km), Instrument Flight Rules (IFR) conditions, defined 
as having a cloud ceiling between 500-1000 ft (152-305 m) AGL or surface visibility 
between 1-3 mi (1.6-4.8 km), or Low Instrument Flight Rules (LIFR) conditions, defined 
as having a cloud ceiling below 500 ft (152 m) AGL or surface visibility less than 1 mi (1.6 
km). The enterprise FLS products return the probability MVFR/IFR/LIFR conditions are 
present. At night, the algorithm utilizes the 3.9 and 11 µm channels to detect FLS.  FLS 
detection during the day is determined using the 0.65, 3.9, and 11 µm channels.  The FLS 
detection algorithm utilizes textural and spectral information, as well as modeled relative 
humidity (RH) and the difference between the cloud radiative temperature and surface 
temperature.  The FLS detection scheme is probabilistic in nature using a naïve Bayes 
model to combine information from all the data.  At night, the FLS geometric thickness 
(FLS depth) is estimated using a 3.9 µm based empirical relationship.  During the day, FLS 
depth is calculated using the cloud Liquid Water Path (LWP) product and an assumption 
regarding the vertical distribution of cloud water. 
 
The enterprise FLS detection algorithm derives the following products listed in the F&PS 

• Probability that MVFR conditions are present 
• Probability that IFR conditions are present 
• Probability that LIFR conditions are present 
• FLS depth (the geometric thickness of the stratus layer) 

 
All of these products are derived at the pixel level. 
 
In addition, the FLS detection algorithm derives the following products that are not 
included in the F&PS. 

• Quality Flags (defined in section 3.5.1.1) 
• Product Quality Information (defined in section 3.5.1.2) 
• Metadata (defined in section 3.5.1.3) 

 

3.2 Processing Outline 
 
As discussed earlier, the FLS algorithm is dependent on several cloud products.  Thus, 
prior to calling the FLS algorithm, the cloud mask, cloud phase, and daytime cloud optical 
properties must be generated.  While the FLS algorithm does not directly utilize output 
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from the cloud height algorithm, the daytime optical properties algorithm does depend on 
the cloud height output.  As such, the algorithm processing precedence required to generate 
the FLS products is as follows: cloud mask  cloud phase/type  cloud height  daytime 
microphysical properties  FLS detection and depth. The FLS detection algorithm 
requires at least 3 scan lines of satellite data due to the spatial analysis that is utilized in the 
algorithm.  The processing outline of the FLS detection algorithm is summarized in Figure 
1.
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Figure 1 - High-level flowchart of the enterprise FLS algorithm illustrating the main 
processing sections. 
 
The FLS algorithm is run in a framework that reads in all model and ancillary data, 
performs all clear sky radiance calculations, performs all necessary input/output and runs 
all other algorithms needed by the FLS algorithm. When the framework was run using 2 
km resolution GOES-16 full disk and CONUS images the entire run time from start to 
finish was 12 min 7 sec for full disk and 1 min 53 sec for CONUS. The following list 
breaks down how long each part of the framework took to run: 
 
Full Disk (pixel dimensions: 5424x5424): 

Overall runtime: 12:07 (minutes: seconds) 
 Reading of ancillary data, clear sky calculations, input/output, etc.: 8:10 
 Upstream Algorithms (cloud mask, cloud phase, etc.): 2:08 
 FLS algorithm: 1:49 
 
CONUS (pixel dimensions: 2500x1500): 

Overall runtime: 1:53 (minutes: seconds) 
 Reading of ancillary data, clear sky calculations, input/output, etc.: 1:17 
 Upstream Algorithms (cloud mask, cloud phase, etc.): 0:16 
 FLS algorithm: 0:20 
 
Note: These times are machine-specific, but they do give the user a rough idea of an 
example computational timeline. 
 

3.3 Algorithm Input 
 
This section describes the input needed to process the FLS algorithm. While the products 
are derived for each pixel, the use of spatial information requires knowledge of the 
surrounding pixels. Therefore, a minimum of 3 scan lines is required by the spatial analysis 
routines. 
 

3.3.1 Primary Sensor Data 
 
The lists below contain the primary and derived sensor data used by the FLS algorithm.  
By primary sensor data, we mean information that is derived solely from the imager 
observations and geolocation information. 
 

• Calibrated reflectances for the 0.65 µm and 3.9 µm channels 
• Calibrated radiances for the 11 µm channel 
• Calibrated brightness temperature for the 11 µm channel 
• Imager-specific L1b quality information from calibration for 0.65 µm, 3.9 µm and 

11 µm channels 
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• Space mask (is the pixel geolocated on the surface of the Earth?) 
• Solar zenith angle 

 

3.3.2 Derived Data 
 
The FLS algorithm needs the following upstream-derived products: 
 

• Cloud mask output (product developed by cloud team) 
• Cloud phase output (product developed by cloud team) 
• Cloud Liquid Water Path (LWP) (product developed by the cloud team) 

3.3.3 Ancillary Data 
 
The following lists and briefly describes the ancillary data required to run the FLS 
algorithm.  By ancillary data, we mean data that requires information not included in the 
satellite imager observations or geolocation data. 

 
• Relative Humidity 

Fog/low stratus, like all water clouds are composed of water droplets formed as the 
moisture in the air condenses. Condensation occurs as the RH approaches 100% 
and the air becomes saturated. In order to identify areas with high humidity, RH 
information from a Numerical Weather Prediction (NWP) model is required. 
Accurate information on the spatial gradients of the RH is very important so NWP 
models with the highest spatial resolution are preferred. The enterprise FLS 
algorithm was developed using the Rapid Refresh (RAP) and Global Forecast 
System (GFS) NWP models. The RAP is not a global model so three meso-scale 
Rapid Refresh (RAP) domains were used to cover Alaska at a spatial resolution of 
11.25 km, the continental United States (CONUS) at a resolution of 13 km and 
North America at a resolution of 32 km. Where the RAP was not available the GFS 
was used at a resolution of 0.5 deg (see Figure 6). For any given satellite point, data 
from the highest spatial resolution NWP model available is used. The GOES-NOP 
FLS algorithm was developed using 12-hour GFS forecasts initialized four times 
per day (0Z, 6Z, 12Z and 18Z) and 2- and 3-hour RAP forecasts initialized every 
hour. Although any model forecast in the 0-24 hr range is acceptable, it is highly 
recommended to use same model forecasts (or ones with higher spatial/temporal 
resolution) the algorithm was developed with. Details concerning the NWP data 
can be found in the AIADD Document. 

 
• Surface temperature 

Relative to other cloud types, fog/low stratus has a very similar temperature as the 
surface.  In order to identify clouds that have a similar temperature as the surface, 
surface temperature information from a NWP model is required.  Once again, 
although any forecast in the 0 to 24 hour range is acceptable, it is highly 
recommended to use same GFS (12-hr) and RAP (2- and 3- hr) model forecasts (or 
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ones with higher spatial/temporal resolution) the algorithm was developed with. 
Details concerning the NWP data can be found in the AIADD Document. 

3.3.4 Radiative Transfer Models 
 
The following lists and briefly describes the data that must be calculated by a radiative 
transfer model and derived prior to running the FLS detection algorithm.  See the AIADD 
Document for a more detailed description. 
 

• Clear sky transmittance profile for the 11 µm channel 
The FLS detection algorithm requires a profile (from the surface to the Tropopause) 
of clear sky transmittance, where the transmittance at a given level in the profile is 
the upwelling clear sky transmittance integrated from that level to the top of the 
troposphere. 
 

• Clear sky radiance profile for the 11 µm channel 
The FLS detection algorithm requires a profile (from the surface to the Tropopause) 
of clear sky radiance, where the radiance at a given level in the profile is the 
upwelling clear sky radiance integrated from that level to the top of the troposphere. 

 

3.4 Theoretical Description 
 
FLS detection is the process of determining the probability that pixels contain clouds with 
bases and/or corresponding surface visibilities that meet MVFR, IFR and LIFR 
requirements. The thickness of the fog/low stratus cloud is the vertical distance between 
the cloud base and the cloud top. The channel combination used to detect FLS depends on 
the solar zenith angle.  At night, the FLS detection algorithm directly utilizes the 3.9 µm 
(GOES-NOP channel 2, ABI channel 7) and 11 µm (GOES-NOP channel 4, ABI channel 
14) channels.  During the day, the FLS detection algorithm directly utilizes the 0.65 
(GOES-NOP channel 1, ABI channel 2), 3.9 µm (GOES-NOP channel 2, ABI channel 7), 
and 11 µm (GOES-NOP channel 4, ABI channel 14) channels.  The central wavelength of 
each channel will be used throughout this document in lieu of GOES-NOP or ABI channel 
numbers. 
 

3.4.1 Physics of the Problem 
 
Fog/low stratus has the following physical properties (among others) (e.g. Pruppacher and 
Klett, 1997; Rogers and Yau, 1989). 
 

• Composed mainly of liquid water 
• Low cloud base 
• Fog/low stratus layers are highly spatially uniform in both temperature and 

reflectance since vertical velocities are typically weak 
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• FLS has a similar temperature as the surface 
• Fog/low stratus is generally composed of small droplets due to the high 

concentration of cloud condensation nuclei in the boundary layer and reduced 
collision/coalescence processes 

• Low water content (primarily due to low vertical velocities). 
 
The above physical properties allow FLS to be differentiated from other cloud types (when 
it is the highest cloud layer) using a combination of visible, near-infrared, and infrared 
observations from passive satellite sensors like the GOES-NOP imager or ABI.  For 
instance, a common method for detecting fog/low cloud at night involves using the 
difference between the 11- and 3.9-µm brightness temperatures on a variety of instruments 
(Eyre et al. 1984; Turner et al. 1986; Ellrod 1995; Lee et al. 1997; Bendix 2002). Ellrod 
(2003) also used the difference between the 11 µm temperature and surface temperature at 
night to estimate the probability that cloud base heights were below 1000 ft, the threshold 
for IFR. Daytime FLS detection is more challenging due to solar contamination of the 3.9 
µm channel.  Cermak and Bendix (2008) address this problem by using spatial metrics and 
the microphysical properties of clouds to estimate cloud thickness and height to detect 
fog/low cloud during the day for both MODIS and SEVIRI. The final enterprise algorithm 
will be a quantitative, probabilistic naïve Bayesian algorithm (see section 3.4.2.2.1) based 
on common FLS detection methods. 

3.4.2 Mathematical Description 
 
These subsections describe in detail how the FLS detection algorithm is implemented.  
First, the metrics used to determine if FLS is potentially present are described. 
 
It is important to note that the methodology used to detect FLS is solar zenith-angle 
dependent.  At solar zenith angles < 90°, the daytime methodology is used.  The nighttime 
methodology is used when the solar zenith angle > 90°. It should also be noted that FLS 
detection between solar zenith angles of 70°-90° (terminator) can be very difficult so 
temporal data (up to 1 hour old) is used to smoothly transition through the terminator region 
until the daytime methodology can again produce valid results. 

3.4.2.1 FLS Property Metrics 
 
A series of radiometric and textural metrics are used to determine which, if any, of the 
physical properties of FLS are present.  These metrics are described in the following 
sections. 

3.4.2.1.1 The 3.9 µm Pseudo-emissivity 
 
The 3.9 – 11 µm brightness temperature difference (BTD(3.9-11 µm)) has been 
traditionally used to identify potential areas of fog/low cloud (e.g. Ellrod 1995).  In lieu of 
the BTD(3.9-11 µm), we utilize the 3.9 µm pseudo-emissivity (ems(3.9 µm)) shown in 
Equation 1.  The 3.9 µm pseudo-emissivity is simply the ratio of the observed 3.9 µm 
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radiance (numerator) and the 3.9 µm blackbody radiance calculated using the 11 µm 
brightness temperature (denominator).  In Equation 1, BT is “brightness temperature” and 
B is the Planck Function.  The 3.9 µm pseudo-emissivity is preferred over the BTD(3.9-11 
µm) because it is less sensitive to the scene temperature.  The ems(3.9 µm) was used 
previously by Pavolonis and Heidinger (2004) to infer cloud phase at night.  Figure 2 shows 
the maximum amount of skill (see section 4.2.2.1 for details of skill score calculation) both 
the ems(3.9 µm) and BTD(3.9-11 µm) have when detecting fog/low clouds alone. SEVIRI 
data were used in this analysis. As Figure 2 shows, the ems(3.9 µm) parameter results in a 
greater possible skill score (blue line) when an optimal threshold of 0.7 is used compared 
to the optimal threshold of -7.0 for the BTD(3.9-11 µm). For the ems(3.9 µm) parameter, 
a maximum skill score of 0.69 can be obtained compared to 0.59 when using the BTD(3.9-
11 µm), further backing up the reasoning behind using the ems(3.9 µm) parameter over the 
BTD(3.9-11 µm) for fog/low cloud detection.   
 

      Eq. 1 
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Figure 2 - The calculated skill score (blue line) obtained using the ems(3.9 µm) 
parameter (top) or BTD(3.9-11 µm) (bottom) when attempting to detect fog/low cloud 
alone. SEVIRI data were used in this analysis. The peak of the blue line represents 
the optimal threshold (x-axis) for each parameter, which resulted in the highest skill 
score. The red line represents the false alarm rate obtained using any given threshold. 
The dotted line represents the accuracy goal of the enterprise fog/low cloud detection 
algorithm. 
 
The same skill analysis was performed using the ems(3.9 µm) and BTD(3.9-11 µm) 
measurements from GOES-12. The results are shown in Figure 3. Unlike with SEVIRI 
data, the skill results using GOES-12 data were very similar. This is because the 3.9 µm 
channel on SEVIRI has a significantly broader spectral width than current GOES satellites 
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(including the GOES-NOP and ABI) that overlaps the CO2 absorption band near 4 µm 
leading to the difference in skill between the ems(3.9 µm) and BTD(3.9-11 µm). On current 
GOES imagers the spectral width of the 3.9 µm channel is smaller and does not overlap 
into the CO2 absorption band so there is less of a difference. Although the max skill scores 
were very similar, and to be consistent with the SEVIRI analysis, the ems(3.9 µm) was 
chosen over the BTD (3.9-11 µm) because it has less sensitivities to the spectral response 
functions. 
 

 

 
Figure 3 - The calculated skill score (blue line) obtained using the ems(3.9 µm) 
parameter (top) or BTD(3.9-11 µm) (bottom) when attempting to detect fog/low cloud 
alone. GOES-12 data were used in this analysis. The peak of the blue line represents 
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the optimal threshold (x-axis) for each parameter, which resulted in the highest skill 
score. The red line represents the false alarm rate obtained using any given threshold.  
 

3.4.2.1.2 Radiometric Surface Temperature Bias 
 
In window channels, infrared radiances can be used to retrieve the surface temperature 
(Tsfc) if the surface emissivity (εsfc), total gaseous atmospheric transmittance (tatm), and the 
top of atmosphere upwelling clear sky atmospheric radiance (Ratm) are all known. The 
radiometric surface temperature bias can then be calculated as the difference between the 
modeled surface temperature (skin temperature) and the retrieved surface temperature. 
Equations 2 and 3 show the steps required to calculate the 11 µm surface temperature.  
 

      Eq. 2 

 

      Eq. 3 

 
where B-1( ) is the inverse Plank function. The radiometric surface temperature bias is then 
calculated using Equation 4 by taking the difference between the radiometric surface 
temperature and the surface temperature from an NWP model. 

 
       Eq. 4 

 
In an ideal scenario, where the surface emissivity (εsfc), total gaseous atmospheric 
transmittance (tatm), and the top of atmosphere upwelling clear sky atmospheric radiance 
(Ratm) are all known exactly and the modeled surface temperature was also correct, the 
radiometric surface temperature bias where clouds are not present should be very close to 
0 K. However, errors in the modeled surface temperature and the variables needed to 
calculate the radiometric surface temperature result in biases in the radiometric surface 
temperature difference calculation. Heidinger and Pavolonis (2009) used Advanced Very 
High Resolution Radiometer (AVHRR) data to determine the bias between the retrieved 
11 µm surface temperature and modeled surface temperature where clouds were not 
present. That study found that the biases were the greatest over land around the local solar 
noon (when the Sun is directly overhead), while over water the biases stayed small. This is 
most likely due to solar heating of the land that may not be fully accounted for in the 
modeled surface temperature.  The same analysis performed by Heidinger and Pavolonis 
(2009) was replicated using GOES-12 data for a 24-hour period on July 1, 2009 and is 
shown in Figure 4. The biases over land again were found to be greatest (~ 6±6 K) around 
the local solar noon while the bias at night and over water remained relatively small (~ -
2±2 K). Although currently not being taken into account, these biases may be helpful to 
diurnally correct the radiometric surface temperature bias for use in the fog/low cloud 
algorithm. 
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Figure 4 – 24-hour analysis of the clear sky, full disk radiometric surface temperature 
bias (GOES-12 11 µm retrieved temperature – modeled surface temperature) over 
land (top) and water (bottom) at each pixel’s local solar time. The black lines and 
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symbols represent the average temperature difference while the red error bars 
represent the standard deviation. 
 
The radiometric surface temperature bias is useful for distinguishing FLS from liquid water 
clouds with high bases that do not meet the fog/low cloud criteria. Fog and low stratus 
clouds are close to the surface and therefore should have a radiometric surface temperature 
that is similar to the actual surface temperature. Higher-based and non-stratus clouds tend 
to be colder than the surface and usually have a radiometric surface temperature that is 
significantly colder than the surface temperature.  Ellrod (2000) used a similar metric to 
help identify clouds that cause Instrument Flight Rule (IFR) conditions.  Figure 5 shows 
an example RGB image and the corresponding radiometric surface temperature bias for a 
GOES-13 scene over the continental United States (CONUS). 
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Figure 5 – GOES-13 false color image (top) using the 0.65, 3.9 and 11 µm channels 
(top) and corresponding radiometric surface temperature bias (bottom) calculated 
over CONUS from January 10, 2014 at 17:45 UTC. White-circled area shows stratus 
clouds with relatively low surface temperature bias meaning they are likely close to 
the surface. Red-circled area indicates stratus clouds with relatively large bias 
meaning they are not likely to be close to the surface. 
 
In Figure 5, the areas colored in yellow to red indicate where there is clear sky or very low 
clouds. The blue to black areas show where higher, colder clouds are likely present. 
 

3.4.2.1.3 Relative Humidity 
 
Fog and low stratus cloud form in environments where the air is saturated and the water 
vapor condenses onto condensation nuclei to form water droplets. For the enterprise FLS 
algorithm RH data is read in from NWP models such as the GFS and RAP. Although fog 
is defined as a cloud with a base that touches the surface, low stratus decks that meet 
MVFR/IFR/LIFR criteria often have ceilings above the surface where the RH will be 
higher than at ground level. For this reason the modeled surface RH and RH profiles are 
used for the enterprise FLS algorithm. Using the RH profiles the highest RH within a 
3000/1000/500 ft layer AGL are stored to help identify areas that meet MVFR/IFR/LIFR 
criteria respectively. An example of the maximum modeled RH in a 1000 ft layer AGL is 
shown in Figure 6. 
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Figure 6 – Maximum modeled relative humidity within a 1000 ft layer AGL from the 
RAP over CONUS for January 10, 2014 at 17:45 UTC. The white line denotes the 
boundary of the RAP domain to the west and the GFS to the east. 

3.4.2.1.4 Spatial Uniformity 
 
Fog and low cloud usually form in relatively stable environments with little vertical 
motion. For this reason fog/low cloud tend to be spatially uniform in both temperature and 
reflectivity. The spatial uniformity metric is used in the FLS detection algorithm for the 
0.65 µm reflectance. The spatial uniformity is determined by calculating the standard 
deviation of a 3x3 pixel array centered on any given pixel. The standard deviation of the 9 
pixels is stored as the spatial uniformity value for the central pixel. This calculation is 
performed for each valid pixel in a given scene.  
 

3.4.2.1.5 Identifying a Pixel’s Local Radiative Center 
 
As previously mentioned, during the daytime, FLS is generally spatially uniform in 
reflectance. Therefore, one of the parameters used to detect FLS during the day is the 0.65 
µm reflectance spatial uniformity metric. However, using this spatial uniformity at cloud 
edges becomes troublesome. This is due to relatively low reflectance (unless snow/ice is 
present) from clear sky pixels adjacent to relatively high reflectance from cloud pixels at 
the cloud edge being included in the spatial uniformity calculation, causing the spatial 
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uniformity metric to be relatively high near cloud edges compared to one that is calculated 
inside a cloud but away from the edges. To address this problem, the gradient filter 
procedure, which is described in detail in the AIADD Document, is used to determine the 
Local Radiative Center (LRC) of each valid pixel.  A pixel is valid if it has a valid Earth 
latitude and longitude and has valid spectral data (based on the L1b calibration flags).  The 
0.65 µm reflectance is used to compute the LRC.  The gradient filter inputs (which are 
described in detail in the AIADD Document) for this application are listed in Table 5. 
 

Gradient 
Variable 

Minimum Valid 
Value of Gradient 
Variable 

Maximum Valid 
Value of Gradient 
Variable 

Gradient 
Stop Value 

Apply Gradient Filter 
To 

0.65 µm 
reflectance 

0.0 110.0 110.0 All pixels with a valid 
Earth lat/lon and valid 
spectral data for the 0.65 
µm channel 

Table 5: Inputs used in calculation of Local Radiative Center (LRC).  The gradient 
filter function used in the calculation is described in the AIADD document. 
 
The gradient filter allows one to consult the spectral information at an interior pixel within 
the same cloud in order to avoid using the spectral information offered by pixels with a 
very weak cloud radiative signal or sub-pixel cloudiness associated with cloud edges.  
Overall, this use of spatial information allows for a more spatially and physically consistent 
product.  This concept is also explained in Pavolonis (2011). Once the spatial uniformity 
at the LRC is performed on all pixels, a median filter is used to reduce noise in the scene. 
The median filter simply replaces the value at each pixel with the median value of a 3 x 3 
pixel array centered on that pixel.  The generic median filter procedure is described in the 
AIADD Document.  
 

3.4.2.1.6 Cloud Mask and Phase 
 
The enterprise FLS detection algorithm requires cloud mask and cloud phase products. 
During the day, the cloud mask is used to eliminate all pixels flagged by the cloud mask as 
being cloud free. The cloud phase is used during the day and at night to determine which 
pixels contain clouds composed of liquid water, clouds composed of ice or multilayered 
clouds. The cloud mask output is not used at night, as it was not specifically designed to 
detect low clouds at night. The FLS algorithm currently does not specifically look to 
identify ice FLS due to its rare occurrence (temperature below -30°F with a sufficient 
amount of water vapor), although previous analysis of ice fog events in the Yukon Territory 
of Canada indicate that ice fog events can be detected by the enterprise FLS algorithm 
because these cloud layers are often classified as mixed phase by the cloud phase algorithm. 
Figure 7 shows an example GOES-13 false color image and the corresponding cloud 
phase/type product.  
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Figure 7 - GOES-13 false color image (top) using the 0.65, 3.9 and 11 µm channels 
with accompanying cloud type product (bottom) from the GOES-NOP cloud type 
algorithm. The cloud type category ‘SC’ refers to super cooled-type clouds. 
Therefore, light green areas indicate where clouds composed of super cooled water 
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droplets are present and light blue areas indicate where clouds composed of liquid 
water droplets are present. 
 

3.4.2.2 Assessing FLS Probability 
 
The enterprise FLS algorithm uses a “naïve Bayes” probabilistic approach to detect fog 
and low stratus clouds. Therefore, after the cloud mask and type check is performed the 
next step is to use the Bayesian model to estimate the probability that each pixel contains 
fog/low cloud. This is done using pre-determined look-up tables (LUT’s). The naïve Bayes 
model and associated LUT’s are described in detail in the following sections. 
 

3.4.2.2.1 Naïve Bayes Probabilistic Model 
 
The enterprise FLS algorithm utilizes a “naïve” Bayes probabilistic model and classifier 
(Zhang 2006; Domingos and Pazzani 1997). Wilks (2006) and Kossin and Sitkowski 
(2008) provide detailed descriptions of Bayes’ theorem along with examples of how it can 
be used for meteorological applications. The discussion herein summarizes the description 
of the naïve Bayesian probabilistic model from Kossin and Sitkowski (2008). 
  
The Bayes’ model returns a conditional probability that an “event” will occur given a set 
of measureable features and can be described by the following equation. 
 

      Eq. 5 

 
The term  is the probability that the event will occur given no measured features. 
For a meteorological application this can be represented by a climatological probability 
that the event occurs.  represents the conditional probability that the set of 
features are observed given the event occurs and  is the probability that the set of 
features are observed independent of event occurrence. The conditional probabilities 

, and its counterpart , are obtained by training the model using known 
data. A problem that arises with this method is that even with a relatively small number of 
features the calculations can become very computationally expensive, growing 
exponentially with respect to the number of features used. A way around this issue is to 
make a reasonable assumption that all the features are independent of one another. This 
assumption produces the “naïve” aspect of the Bayes’ classifier (Kossin and Sitkowski 
2008). With this assumption the term  can be represented by  

where  is a single feature of the set  and Equation 5 can be written as 
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      Eq. 6 

 
Due to the relationship  the denominator in Equation 6 can be 
rewritten as 
 

      Eq. 7 

 
Equations 6 and 7 now represent a more computationally friendly model initially described 
by Equation 5. 
 
For the enterprise FLS algorithm the “event” in the naïve Bayesian model is that FLS is 
present at a given pixel and the measureable features are RH, radiometric surface 
temperature bias, 3.9 µm pseudo-emissivity (night only), 3.9 µm reflectance (day only) and 
0.65 µm reflectance spatial uniformity (day only). The MVFR/IFR/LIFR climatological 
‘yes’ probabilities for FLS ( ) were calculated using 12 weeks of satellite data (one 
week for each month to cover all seasons) with collocated surface observations and are 
summarized in Table 6 and Table 7. 
 
Table 6 – Climatological probabilities that MVFR/IFR/LIFR FLS is present based on 
GOES-13-collocated surface observations of cloud ceiling and surface visibility 
calculated using 12 weeks of data from 2013.  

FLS Category Distinction Climatological Probability 
of FLS 

MVFR 0.23 

IFR 0.09 

LIFR 0.04 

 
Table 7 - Climatological probabilities that MVFR/IFR/LIFR FLS is present based on 
GOES-16-collocated surface observations of cloud ceiling and surface visibility 
calculated using 12 weeks of data from 2017-2018. 

FLS Category Distinction Climatological Probability 
of FLS 

MVFR 0.21 

IFR 0.10 
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LIFR 0.06 

 
To get to climatological ‘no’ probabilities for FLS ( ) you simply subtract the 
climatological ‘yes’ probabilities from 1.0. The following sections describe in detail the 
LUT’s that were created, or “trained”, to get the conditional probabilities using these 
features for the naïve Bayesian model. Final results of the FLS probability output are shown 
in section 3.4.2.2.4. 

3.4.2.2.2 Nighttime Probability 
 
There are two LUT’s used to determine the nighttime probability that FLS is present. The 
first nighttime LUT is dependent on the following two parameters: 
 

1. 3.9 µm pseudo-emissivity (ems(3.9µm)) 
2. Radiometric surface temperature bias (Tbias) 

 
The 3.9 µm pseudo-emissivity, which was discussed in Section 3.4.2.1.1, is a key 
parameter in the nighttime FLS probability LUT.  Low water clouds with small particles 
have a smaller cloud emissivity at 3.9 µm than 11 µm.  In addition, FLS tends to be located 
in vertical layers that have a very small lapse rate, which limits the impacts of cloud 
transmission on the observed radiance.  Thus, the 11 µm brightness temperature will be 
larger than the 3.9 µm brightness simply because the 11 µm cloud emissivity is greater 
than the 3.9 µm cloud emissivity and the impact of cloud transmission is minimal due to 
the small lapse rate.  As such, the ems(3.9µm) is most often << 1.0 when FLS is present, 
and clouds that have a ems(3.9µm) << 1.0 will have a higher FLS probability.  Figure 8 
shows an example false color image and the corresponding ems(3.9µm) for a GOES-13 
scene over CONUS. Values of ems(3.9µm) < 0.9 often correspond to areas of FLS. 
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Figure 8 – GOES-13 false color image (top) using the 13-11 BTD, 3.9-11 BTD and 11 
µm channels and 3.9 µm pseudo-emissivity (bottom) over CONUS on January 28, 
2007 at 7:45 UTC. The darker blue to purple areas indicate relatively low 3.9 µm 
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pseudo-emissivities meaning they are clouds composed of small liquid water particles 
and might be FLS depending on their cloud ceilings. 
 
The radiometric surface temperature bias (see Section 3.4.2.1.2) is also a predictor in the 
FLS probability LUT.  As described earlier, FLS and low stratus clouds generally form in 
an isothermal or near-isothermal atmosphere with little vertical motion and vertical extent. 
Since fog/low stratus clouds are close to the ground the temperature of the cloud should be 
similar to the surface temperature. Due to the atmospheric lapse rate, clouds located above 
the boundary layer generally cool with respect to height; therefore cloud decks higher 
above the surface should be colder and thus have a larger radiometric surface temperature 
bias. 
 
The second nighttime LUT is dependent on relative humidity (see Figure 6). The maximum 
RH within the lowest 3000/1000/500 ft layer AGL is determined from the NWP surface 
RH and RH profiles and is used for the RH metric. As the modeled RH increases the 
probability that FLS is present also increases. In Figure 9, this relationship is illustrated as 
the probability that FLS is present in a given pixel increases rapidly as the RH increases 
above about 70%. 
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Figure 9 – Probability that fog/low stratus is present during day/night (red/black) 
given the modeled relative humidity. Surface observations of cloud ceiling and surface 
visibility were used to determine whether fog/low stratus was present. 
 
The two LUT’s described above must be created, or “trained”, separately for MVFR, IFR 
and LIFR conditions and for each NWP model. Therefore three sets of LUT’s are needed 
for both the GFS and RAP. 
 

3.4.2.2.2.1 Nighttime FLS Probability LUT’s 
 
Using the parameters described above in section 3.4.2.2.2, two sets of LUT’s were created 
to estimate the probability that fog/low stratus clouds are present given a pixel’s spectral 
information and modeled RH. Each set is used to determine the probability that MVFR, 
IFR and LIFR conditions are present. Twelve weeks of GFS, RAP and GOES-13 data (one 
week for each month of 2013) along with collocated surface observations (see section 4.1.3 
for information about source and accuracy) were used to create the GOES-NOP LUT’s. 
Twelve weeks of GFS, RAP and GOES-16 data (one week for each month of 2017-2018) 
along with collocated surface observations were used to create the ABI LUT’s. Surface 
observations of cloud ceiling and surface visibility were used to identify pixels that met 
MVFR, IFR and LIFR criteria. These LUT’s represent the conditional probabilities that a 
pixel’s spectral information and modeled RH are measured given that FLS is and is not 
present. These conditional probabilities are used by the naïve Bayesian model to calculate 
the final probability that FLS is present at a given pixel. Once again, it is important to note 
that in order for the naïve Bayesian model to work properly the probability that a pixel’s 
spectral information and modeled RH are measured given that FLS is present (
) and also the probability given that FLS is not present ( ) are needed. 
 
The first LUT is two-dimensional with respect to ems(3.9µm) and surface temperature bias. 
The surface temperature bias is separated into 22 bins ranging from -20 K to 0 K with a 
bin size of 1 K. The first bin contains all values that are less than -20 K and the last bin is 
for all values greater than 0 K. The 3.9 µm pseudo-emissivity is separated into 15 bins 
ranging from 0.80 to 1.06 with a bin size of 0.02. Again, the first bin contains all values 
less than 0.80 and the last bin contains all values greater than 1.06. This results in a 2x15x22 
bin array LUT where the first 15x22 array stores the ‘conditional yes’ probabilities and the 
second 15x22 array stores the ‘conditional no’ probabilities. All pixels with a collocated 
surface observation for the sample period were separated into their respective bin 
depending on their pseudo-emissivity and surface temperature bias. A count of surface 
observations that indicated FLS or no FLS was recorded for each bin and used to calculate 
the conditional probabilities (2 sets of probabilities - ‘conditional yes’ and ‘conditional no’) 
that specific values of a pixel’s 3.9 µm pseudo-emissivity and surface temperature bias 
information were measured when fog/low stratus was or was not found to be present. The 
impacts of the conditional probabilities alone are difficult to fully-understand by simply 
illustrating them. The actual values of the conditional probabilities are not really apparent 
until the Bayesian model combines them all together. For this reason, instead of showing 
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the conditional probability LUT’s, the ratio of the IFR conditional yes/no probabilities for 
given a pixel’s measured 3.9 µm pseudo-emissivity and surface temperature bias 
information (see Figure 10) is illustrated to show which values are generally associated 
with a higher probability of FLS. Again, the ratio that is shown is not a conditional 
probability (probability that the features’ measured values are seen when FLS is present or 
is not present) used in the naïve Bayesian model, but rather a ratio of the yes/no conditional 
probabilities given the measured features. 
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Figure 10 – Ratio of the nighttime IFR yes/no conditional probabilities depending on 
the 3.9 µm pseudo-emissivity and radiometric surface temperature bias for GOES-
NOP (top) and ABI (bottom). Surface observations of cloud ceiling and surface 
visibility were used to determine whether fog/low stratus, in this case IFR conditions, 
were present. 
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The second LUT is one dimensional with respect to RH. The maximum RH in the lowest 
3000/1000/500 ft layer AGL from the NWP surface RH and RH profiles is separated into 
100 bins ranging from 0-100 % with a bin size of 1 %. Once again a count of surface 
observations that indicated FLS or no FLS was recorded for each bin and used to calculate 
the conditional probabilities that specific values of a pixel’s RH was modeled when fog/low 
cloud was or was not determined to be present. Once again, instead of the conditional 
probabilities, the ratio of the IFR yes/no conditional probabilities is illustrated in Figure 11 
to show which values of RH are generally associated with a higher probability of FLS. 
 

 
Figure 11 – Ratio of the IFR conditional yes/no probabilities from the modeled 
relative humidity. Surface observations of cloud ceiling and surface visibility were 
used to determine whether fog/low stratus, in this case IFR conditions, were present. 
 

3.4.2.2.3 Daytime Probability 
 
Like nighttime, two LUT’s are used during the day. The first daytime LUT used to estimate 
the probability that fog/low cloud is present is dependent on the following three parameters: 
 

1. 3.9 µm reflectance 
2. 0.65 µm reflectance spatial uniformity at the LRC 
3. Radiometric surface temperature bias 
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As previously discussed, fog/low stratus clouds tend to be spatially uniform in 0.65 µm 
reflectance. This is because FLS and low stratus clouds form in relatively stable 
environments with little vertical motion. This is in contrast to cumulus clouds that form in 
unstable environments with large spatial variations in vertical motion creating the puffy, 
bubbly texture seen in the visible satellite channels. The 3x3 (pixel array) 0.65 µm 
reflectance spatial uniformity calculation at the LRC, paired with the radiometric surface 
temperature bias, can be used to identify pixels that are located in a low cloud that is 
spatially uniform in reflectance, and therefore have a higher probability of being a stratus 
cloud meeting MVFR/IFR/LIFR criteria. The 0.65 µm reflectance spatial uniformity metric 
is available for solar zenith angles less than 85° and, along with the radiometric surfaced 
temperature bias, is smoothed using a median filter to remove noise before use. The median 
filter simply replaces the value at each pixel with the median value of a 3 x 3 pixel array 
centered on that pixel.  The generic median filter procedure is described in the AIADD 
Document. Figure 12 shows an example false color image, the 3.9 µm reflectance and 
smoothed 0.65 µm reflectance spatial uniformity at the cloud LRC for a GOES-13 scene 
over CONUS. FLS clouds usually consist of smaller water droplets (except for ice fog) 
compared to higher liquid water cloud layers. Smaller water droplets have a higher 
reflectivity at 3.9 µm than larger droplets (see Figure 12). Therefore, the 3.9 µm reflectance 
is used to help identify clouds that are composed of smaller droplets.  
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Figure 12 – False color image (top), 3.9 µm reflectance (middle) and the 3x3 pixel 0.65 
µm reflectance spatial uniformity at the LRC (bottom) calculated for a GOES-13 
scene over CONUS on January 10, 2014 at 17:45 UTC. Circled area represents cloud 
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with relatively high 3.9 µm reflectance and relatively low 0.65 spatial uniformity 
meaning it should have a high probability of being FLS. 
 
The second daytime LUT is the same as the nighttime LUT based solely on the maximum 
RH within the lowest 3000/1000/500 ft layer AGL.  
 
The two LUT’s described above must be created, or “trained”, separately for MVFR, IFR 
and LIFR conditions and for each NWP model. Therefore three sets of LUT’s are needed 
for both the GFS and RAP. 
 

3.4.2.2.3.1 Daytime Fog/Low Cloud Probability LUT 
 
Using the parameters described above, two sets of two LUT’s were created to estimate the 
probability that MVFR/IFR/LIFR FLS is present during the day. Twelve weeks of modeled 
RAP, GFS and GOES-13 data (one week for each month of 2013) along with collocated 
surface observations were used to create the GOES-NOP LUT’s. Twelve weeks of modeled 
RAP, GFS and GOES-16 data (one week for each month of 2017-2018) along with 
collocated surface observations were used to create the ABI LUT’s. Again, surface 
observations of cloud ceiling were used to identify pixels that contained fog/low cloud 
meeting MVFR/IFR/LIFR conditions. 
 
The 3.9 µm reflectance is separated into 4 bins (0-10, 10-15, 15-20, >20) with varying size 
in order to capture the most detail or the clouds of interest. The surface temperature bias is 
separated into 22 bins ranging from -20 K to 0 K with a bin size of 1 K. The first bin 
contains all values that are less than -20 K and the last bin is for all values greater than 0 
K. The 0.65 µm reflectance spatial uniformity is separated into 11 bins ranging from 0.0 to 
20.0 with a bin size of 2.0. The last bin contains all values greater than 20.0. This results 
in a 2x4x11x22 bin array LUT where the first 4x11x22 array stores the ‘conditional yes’ 
probabilities and the second 4x11x22 array stores the ‘conditional no’ probabilities. All 
pixels with a collocated surface observation for the sample period were separated into their 
respective bin depending on their 3.9 µm reflectance, 0.65 µm reflectance spatial 
uniformity and surface temperature bias. A count of surface observations that indicated 
FLS or no FLS was recorded for each bin and used to calculate the conditional probability 
that specific values of a pixel’s spectral, spatial and surface temperature bias information 
were measured when fog/low stratus was or was not found to be present. As previously 
noted, the impacts of the conditional probabilities alone are difficult to fully-understand by 
simply illustrating them as the true values of the conditional probabilities are not really 
apparent until the Bayesian model combines them all together. For this reason, instead of 
showing the conditional probability LUT’s, the ratio of the IFR conditional yes/no 
probabilities for given a pixel’s measured 3.9 µm reflectance, 0.65 µm reflectance spatial 
uniformity and surface temperature bias information (see Figure 13) is illustrated to show 
which values are generally associated with a higher probability of FLS. Again, the ratio 
that is shown is not a conditional probability (probability that the features’ measured values 
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are seen when FLS is present or is not present) used in the naïve Bayesian model, but rather 
a ratio of the yes/no conditional probabilities given the measured features. 
 

 

 
Figure 13 – Ratio of the daytime IFR yes/no conditional probabilities for pixels with 
3.9 µm reflectance values between 15-20 % dependent upon the 0.65 µm reflectance 
spatial uniformity and radiometric surface temperature bias for GOES-NOP (top) 
and ABI (bottom). Surface observations of cloud ceiling and surface visibility were 
used to determine whether fog/low stratus, in this case IFR conditions, were present.  
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The second daytime LUT is the same as the nighttime LUT based solely on the maximum 
RH within the lowest 3000/1000/500 ft layer AGL (Figure 11).  
 

3.4.2.2.4 Naïve Bayesian FLS Probabilities 
 
Once the LUT’s are trained the naïve Bayesian MVFR, IFR and LIFR probabilities can be 
calculated using the naïve Bayesian model and LUT’s described above. A median filter is 
used to smooth out any noise in the probabilities. The median filter simply replaces the 
value at each pixel with the median value of a 3 x 3 pixel array centered on that pixel.  The 
generic median filter procedure is described in the AIADD Document. An example of the 
IFR FLS probability output from the enterprise FLS algorithm for a GOES-13 daytime 
scene is shown in Figure 14.  
 

 

 
Figure 14 - GOES-13 false color image (left) using the 0.65, 3.9 and 11 µm channels 
with accompanying daytime IFR FLS probabilities (right) over CONUS on January 
10, 2014 at 17:45 UTC. 
 
Figure 15 shows the same scene as Figure 14 above, zoomed in over the eastern CONUS. 
Surface observations in the false color image are color-coded to correspond to the 
following flight rule categories they report: VFR (green), MVFR (blue), IFR (yellow), 
LIFR (magenta). The MVFR/IFR/LIFR probabilities also contain surface observations 
with the same basic color code, however, for each probability product the magenta colored 
observation points represent those stations reporting the category of interest, or below. For 
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example, the magenta-colored surface observations on the IFR probability image represent 
surface stations reporting IFR or LIFR conditions. 
 

 

 
Figure 15 - GOES-13 false color image (top left) using the 0.65, 3.9 and 11 µm channels 
with accompanying daytime MVFR FLS probabilities (top right), IFR FLS 
probabilities (bottom left) and LIFR FLS probabilities (bottom right) over CONUS 
on January 10, 2014 at 17:45 UTC. In the false color image, ‘crosses’ are colored-
coded to the following aviation flight rule categories representing surface 
observations: VFR (green), MVFR (blue), IFR (yellow), LIFR (magenta). For the 3 
probability images the surface observations colored magenta represent stations that 
report the category being detected, or lower. 
 
An example of the IFR FLS probability output from the enterprise FLS algorithm for a 
GOES-13 nighttime scene is shown in Figure 16.  
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Figure 16 - GOES-13 false color image (left) using the 13-11 µm BTD, 3.9-11 µm 
BTD and 11 µm channels with the nighttime GOES-NOP IFR FLS probabilities 
(right) over CONUS on January 10, 2014 at 05:45 UTC. 
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Figure 17 - GOES-13 false color image (top left) using the 13-11 µm BTD, 3.9-11 µm 
BTD and 11 µm channels with accompanying nighttime MVFR FLS probabilities (top 
right), IFR FLS probabilities (bottom left) and LIFR FLS probabilities (bottom right) 
over CONUS on January 10, 2014 at 05:45 UTC. In the false color image, ‘crosses’ 
are colored-coded to the following aviation flight rule categories representing surface 
observations: VFR (green), MVFR (blue), IFR (yellow), LIFR (magenta). For the 3 
probability images the surface observations colored magenta represent stations that 
report the category being detected, or lower. 
 
Figure 15 and Figure 17 show that although the enterprise probability products do not 
perfectly match the surface reports the higher probabilities for each category do correspond 
well to areas where surface reports indicate those conditions are present and the lower 
probabilities correspond well to areas where reports to not meet the given flight rule 
criteria. When ice or multilayered clouds are present the satellite metrics are not used in 
the Bayesian calculation so only the modeled RH parameter is used to calculate the 
probability. If the modeled RH data do not properly pick up on a low cloud layer the 
probabilities may result in unexpectedly low values since there is no satellite data that may 
otherwise help boost probabilities. This type of issue is seen mostly in the LIFR 
probabilities where only the lowest 500 ft AGL layer is queried for the maximum RH. This 
layer is very thin compared to the vertical resolution of the NWP profiles and therefore the 
accurate representation of the RH can sometimes be difficult, especially with varying 
terrain, to obtain. This issue can be seen along the east coast in the LIFR probabilities from 
Figure 15. Ice clouds are present over the Appalachian mountain chain from Georgia north 
to New York. The cloud type algorithm in Figure 7 verifies the presence of ice clouds. In 
this case the low level RH is not accurately accounted for leading to erroneously low LIFR 
probabilities. When ice and multilayered clouds are not present the satellite metrics can be 
used and usually result in more accurate probabilities. 
 
It should be noted that detecting FLS near the terminator (solar zenith angles between 70°-
90°, called the ‘terminator region’ herein) is difficult due to high solar zenith angles. For 
instance, the daytime cloud mask sometimes has trouble identifying low water clouds in 
the terminator region. Another reason is the daytime radiometric parameters are not 
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accurately available when solar zenith angles are between 85°-90°, which prohibits the 
determination of the probability that FLS is present. For these reasons, temporal 
information is used to make the transition through the terminator region more consistent. 
The enterprise FLS algorithm uses previous data up to one hour old to assist in the 
calculation of FLS probability in the terminator region. Large-scale areas of FLS generally 
do not change (dissipate or grow) drastically in the span of an hour, so using temporal data 
to assist is a logical solution until the full day/night enterprise FLS algorithm can once 
again produce probabilities with better accuracy. 
 
Temporal data is used differently depending on solar zenith angle of a given pixel inside 
the terminator region. For the enterprise FLS algorithm the terminator region is split into 
three zones defined by solar zenith angle. The first zone contains all pixels with solar zenith 
angles between 70°-80°. As previously mentioned, due to the high sun angle the detection 
of low water clouds by the cloud mask is occasionally problematic. The daytime portion 
of the FLS algorithm relies on the cloud mask for cloud detection at solar zenith angles less 
than 80° so if clouds are not detected the FLS probabilities will not be calculated for those 
pixels. To ensure a probability is calculated for all daytime cloudy pixels temporal cloud 
type (contains cloud mask information) and IFR probability data area used. For a given 
pixel, if the cloud type from the last valid time step was an ice cloud the current cloud type 
remains ice. If the previous IFR probability was greater than 30% and the current cloud 
type is ‘clear’, the current cloud type is changed to a water cloud. If the previous IFR 
probability was less than 30% no change is made to the cloud type product. These checks 
are performed to maintain consistency of the FLS products through the terminator region. 
Once the cloud type adjustment is made the current refl(3.9µm), stddev(0.65µm), Tbias and 
low-level RH data are used to determine the probability that FLS is present for a given 
pixel. 
 
The second zone in the terminator region contains all pixels with solar zenith angles 
between 80°-85°. The cloud mask is no longer used for cloud clearing for solar zenith 
angles greater than 80°. In this region, temporal IFR probability information is used to 
determine pixels that current FLS probabilities are calculated for. The enterprise FLS 
algorithm only determines a current FLS probability for pixels where the previous IFR 
probability was greater than 30%. The calculations are performed on those pixels using 
current refl(3.9µm), stddev(0.65µm), Tbias and low-level RH data. For pixels that had 
previous IFR probabilities less than 30% the IFR probability is set to the previous temporal 
IFR probability to maintain consistency. 
 
The third zone in the terminator region is defined by solar zenith angles between 85°-90°. 
The enterprise FLS algorithm determines the FLS probability in this zone differently 
depending on whether the terminator is transitioning from night-to-day or vice versa. When 
the transition transistions from night-to-day the nighttime probability detection 
methodology is applied using current Tbias and low-level RH data and temporal ems(3.9µm) 
data from the last valid time step. When the transition is from day-to-night the daytime 
probability detection methodology is applied using current Tbias and low-level RH data and 
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temporal refl(3.9µm) and stddev(0.65µm) data. The Tbias and low-level RH data are 
independent of solar zenith angle so current data from those parameters are always used. 
 
An example of the FLS probability outputs from the enterprise FLS algorithm for a GOES-
13 terminator scene over the eastern CONUS is shown in Figure 18. 
 

 
Figure 18 - GOES-13 false color image (top left) (13-11 µm BTD, 3.9-11 µm BTD and 
11 µm channels at night and the 0.65 µm, 3.9 µm and 11 µm channels during the day) 
with accompanying MVFR FLS probabilities (top right), IFR FLS probabilities 
(bottom left) and LIFR FLS probabilities (bottom right) over CONUS on January 10, 
2014 at 13:15 UTC. In the false color image, ‘crosses’ are colored-coded to the 
following aviation flight rule categories representing surface observations: VFR 
(green), MVFR (blue), IFR (yellow), LIFR (magenta). For the 3 probability images 
the surface observations colored magenta represent stations that report the category 
being detected, or lower. 
 

3.4.2.3 Determining FLS Depth 
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The enterprise FLS algorithm uses separate approaches for estimating FLS geometrical 
thickness during the day and night. The daytime method uses the liquid water path (LWP) 
calculated from the daytime microphysical properties algorithm while the nighttime 
method is based on the work of Ellrod (1995). Both are explained in the following sections. 
Once the FLS depth is calculated for both day and night it is run through a median filter to 
reduce noise. The median filter simply replaces the value at each pixel with the median 
value of a 3 x 3 pixel array centered on that pixel.  The generic median filter procedure is 
described in the AIADD Document. 
 

3.4.2.3.1 Daytime FLS Depth 
 
The daytime fog/low stratus thickness product utilizes the calculated LWP from the 
daytime cloud microphysical properties algorithm and an assumed value for the liquid 
water content (LWC).  Using the optical properties of aerosols and clouds and the FLS size 
distribution model from Tampieri and Tomasi (1976), Hess et al. (1998) determined that a 
typical LWC of FLS is 0.06 g/m3.  Hess et al. (1998) also found that the LWC of marine 
and continental stratus clouds was around 0.3 g/m3. The majority of the pixels that are 
flagged by the FLS detection algorithm are stratus clouds, so for simplicity, a LWC of 0.3 
g/m3

 is currently used for all daytime pixels.  The cloud geometrical thickness (m) if 
computed by dividing the LWP (g/m2) by the LWC (g/m3). Figure 19 shows an example 
daytime GOES-13 scene with the corresponding fog/low cloud thickness result. 
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Figure 19 - False color image (top) using the 0.65, 3.9 and 11 µm channels for GOES-
13 over CONUS on January 10, 2014 at 17:45 UTC along with the fog/low stratus 
thickness output (bottom) from the enterprise FLS algorithm. 
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The cloud thickness is not calculated for pixels identified as ice or multilayered cloud by 
the cloud type algorithm. FLS can be, and often is, present when ice or multilayered clouds 
are above, however, the satellite only returns information from the top of the highest cloud 
layer. For cases where ice or multilayered clouds are detected the satellite is not directly 
seeing underlying FLS clouds and therefore an accurate estimation of the thickness is not 
possible. Also, the daytime optical properties are only available for pixels with solar zenith 
angles less than 70° so the FLS thickness product is not available in the terminator region. 
This is the reason for the large strip of missing thicknesses in Figure 19 that covers Canada 
and northern Atlantic Ocean. 
 

3.4.2.3.2 Nighttime FLS Depth 
 
Currently the nighttime retrieval of LWP is not adequate to determine the FLS depth. 
Previously, Ellrod (1995) determined that there is a correlation between nighttime 11-3.9 
µm brightness temperature differences (BTD’s) and FLS thickness. Building upon this 
concept, the ems(3.9µm) is used in lieu of the BTD because it takes into account viewing 
geometry and atmospheric water vapor absorption. Comparing FLS thickness measured 
using ground-based instruments from the San Francisco Bay area, a linear relationship was 
found between the ems(3.9µm) and fog/low cloud thickness (Figure 20). The FLS 
thickness calculated using the ground-based instruments came from subtracting the cloud 
base measured from ceilometers from the FLS top height measured by a SOnic Detection 
And Ranging (SODAR) system (Clark et al., 1997).  

 

 
Figure 20 - Scatter plot of FLS thickness measured by ground-based SODAR and 
ceiling heights vs. collocated 3.9 µm pseudo-emissivity from GOES-11. 
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By performing a linear regression to the data in Figure 20 a linear equation was found that 
fits the trend of the data with a correlation coefficient of ~0.72. This equation (see Eq. 9 in 
section 3.5) is used to calculate the FLS thickness for all nighttime pixels not flagged as 
ice cloud or multi-layered cloud by the cloud type algorithm. As explained in the daytime 
FLS depth description, accurate estimation of the FLS depth is not available when ice or 
multilayered clouds are above the lower cloud layer. Figure 21 shows an example nighttime 
scene with the FLS thickness regression equation applied to the 3.9 µm pseudo-emissivity 
channel from GOES-13. 
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Figure 21 - False color image (top) using the 13-11 µm BTD, 3.9-11 µm BTD and 11 
µm channels for GOES-13 over CONUS on January 10, 2014 at 05:45 UTC along 
with the fog/low stratus thickness output (bottom) from the enterprise FLS algorithm. 



 59 

 

3.5 Mathematical Description 
 
The enterprise FLS algorithm data and methodology were described in the previous 
section.  The current logic to derive the final FLS probabilities and cloud thickness is shown 
in Figure 22.
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22 - Schematic illustration of the logic employed to derive the enterprise 
fog/low stratus probabilities and thickness. 
 
The methods used to estimate the FLS thickness were described in section 3.4.2.3. For the 
daytime calculation of fog/low stratus thickness when the solar zenith angle is less than 
70°, the following equation was used: 
 

∆Z = LWP/LWC      Eq. 8 
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Is pixel day?  
(solar zenith angle < 90°) 

yes 
no 

If not ice or multilayered cloud 
and solar zenith angle is < 70° or 

> 90°calculate FLS thickness 
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where ∆Z is the thickness, LWP is the liquid water path and LWC is the liquid water 
content. Currently, calculating fog/low status thickness in the terminator region (70° < solar 
zenith angle < 90°) is not possible. 
 
The nighttime calculation of fog/low stratus thickness is performed using the following 
linear regression-based relationship between the 3.9 µm pseudo-emissivity and FLS depth 
determined by ground-based instruments: 
 

∆Z = A[ems(3.9 µm)] + B      Eq. 9 
 
where ∆Z is the thickness, ems(3.9 µm) is the 3.9 µm pseudo-emissivity and A and B are 
regression constants calculated to be -1159.93 and 1295.70 respectively (see Figure 20). 
This method is analogous to the commonly known relationship used by Ellrod (1995) with 
the substitution of the 3.9 µm pseudo-emissivity for the 3.9 – 11 µm brightness temperature 
difference. 
 

3.5.1 Algorithm Output 
 
The final output of the FLS algorithm and description of their meaning is given in Table 8. 
 
Table 8 - Table describing the output from the enterprise FLS algorithm. 

Fog/Low Stratus 
Output Description 

Probability of MVFR Probability that MVFR conditions are present in % 
Probability of IFR Probability that IFR conditions are present in % 

Probability of LIFR Probability that LIFR conditions are present in % 
FLS Thickness Thickness of fog/low cloud layer in meters 
Quality Flags See Table 9 

Product Quality See Table 10 
Metadata See Table 11 

 

3.5.1.1 Quality Flags (QF) 
 
A complete and self-contained description of the enterprise fog/low cloud quality flag 
output is listed in Table 9. 
 
Table 9 – A complete description of the fog/low cloud quality flag output is shown. 

Bit(s) QF Description Bit Interpretation 
1 Fog/low cloud probability quality flag – 

the product quality will be dependent on the 
0 = 75% - 100% (high) 
1 = 50% - 75% 
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FLS probability assigned to each pixel. Four 
levels of quality, with 0 being the highest 
and 3 being the lowest will be designated. 

2 = 25% - 50% 
3 = 0% - 25% (low) 

2 Multi-layered cloud quality flag – this will 
be set to “low quality” if multi-layered 
clouds are detected by the GOES-NOP cloud 
phase algorithm as FLS may be present but 
may not be detected 

0 = multi-layered clouds not 
detected 
1 = multi-layered clouds are 
detected 

3 Cloud phase quality flag – this will bet set 
to “low quality” if ice clouds are detected by 
the GOES-NOP cloud phase algorithm 
because the fog/low cloud algorithm will not 
be run 

0 = ice clouds not detected 
1 = ice clouds are detected 

4 Freezing FLS flag – this flag will represent 
whether each pixel containing fog/low cloud 
has a temperature below freezing (0 K) 
indicating the possibility of freezing fog 

0 = temperature of fog/low 
cloud pixel is at or below 0 K 
1 = temperature of fog/low 
cloud pixel is above 0 K 

5 FLS Depth quality flag – this flag will 
indicate which pixels have solar zenith 
angles between 70° – 90°, where FLS depth 
is not possible due to the lack of lwp or 
ems(3.9 µm) information 

0 = pixel has solar zenith 
angle either < 70° or > 90° 
(FLS depth available) 
1 = pixel has solar zenith 
angle between 70° - 90° (FLS 
depth NOT available)  

 

3.5.1.2 Product Quality Information (PQI) 
 
A complete and self-contained description of the enterprise fog/low cloud Product Quality 
Information (PQI) output is listed in Table 10. 
 
Table 10 – A complete description of the fog/low cloud Product Quality Information 
(PQI) output is shown. 

Bit(s) PQI Description Bit Interpretation 
1 Pixel is geolocated and has valid spectral 

data 
0 = FALSE 
1 = TRUE 

2 Pixel is considered a daylight pixel (solar 
zenith angle > 90°) 

0 = FALSE 
1 = TRUE 

3 Pixel is located over land 0 = FALSE 
1 = TRUE 

 

3.5.1.3 Product Metadata 
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A complete and self-contained description of the enterprise fog/low cloud metadata output 
is listed in Table 11. 
 
Table 11 – A complete description of the fog/low cloud metadata output is shown. 

Metadata Description 
Number of FLS eligible pixels (i.e., number of pixels given a valid FLS probability) 
Fraction of pixels in scene detected as fog/low cloud 
Mean FLS depth from pixels detected as containing fog/low cloud 
Standard deviation of FLS depth from pixels detected as containing fog/low cloud 
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4 TEST DATA SETS AND OUTPUTS 
4.1 Simulated/Proxy Input Data Sets 
 
The data used to test the enterprise fog/low stratus cloud algorithm consists of GOES-12, 
GOES-13 and GOES-16 observations. The fog/low cloud algorithm is validated using 
surface observations for detection and surface observations and SODAR data for thickness. 
All of these data sets are described below. 
 

4.1.1 GOES-NOP Data 
 
The GOES-NOP imager provides five spectral channels with a spatial resolution of 4 km 
and provides spatial coverage of the full disk with a temporal resolution of 3 hours. Smaller 
CONUS and Northern Hemisphere domains are available every 15 minutes. GOES-12/13 
provides a good source of data for testing and developing the fog/low cloud algorithm due 
to the abundance of data that can be used to train the algorithm. Figure 23 is a full-disk 
GOES-13 image from 17:45 UTC on January 10, 2014. GOES-12/13 data are readily 
available from the University of Wisconsin Space Science and Engineering Center (SSEC) 
Data Center.  
 

 
Figure 23 – GOES-13 false color image using the 0.65, 3.9 and 11 µm channels from 
17:45 UTC on January 10, 2014. 
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4.1.2 GOES-16/17 Data 
 
The ABI on the GOES-R series (GOES-16 and GOES-17) geostationary satellites provides 
16 spectral channels with a spatial resolution of 2 km and provides spatial coverage of the 
full disk with a temporal resolution of 10 min. A smaller CONUS domain is also available 
every 5 minutes. These satellites provide good sources of data for testing and developing 
the fog/low cloud algorithm due to the abundance of data that can be used for training. 
Figure 24 shows examples of full-disk GOES-16 and. GOES-17 images. Data from these 
satellites are readily available from the National Centers for Environmental Information 
(NCEI).  
 

 
Figure 24 – Example full disk GOES-17 (left) and GOES-16 (right) false color 
images using the 0.65, 1.6 and 11 µm channels. 
 

4.1.3 Surface Observations 
 
Surface observations are received from both manned and automated ground stations all 
over the world. They provide accurate ground-based measurements of weather parameters 
such as temperature, pressure, weather conditions, etc., with relatively high temporal 
coverage (usually every hour, but varies by station). A useful surface observation 
parameter for validating fog/low cloud is the observed cloud ceiling. The most densely 
concentrated number of surface observations comes from the United States and Europe. 
Due to their positioning, GOES-12/13/16 do not provide information over Europe. For 
validation purposes surface observations over CONUS provide the greatest amount of data.  
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The surface observations over CONUS come from Automated Surface Observing System 
(ASOS) sites across the country. The ASOS program was created and is maintained by a 
joint effort between the National Weather Service (NWS), the Federal Aviation 
Administration (FAA) and Department of Defense (DOD). The cloud ceiling observations 
used to create the FLS probability LUT’s  (see sections 3.4.2.2.2.1 and 3.4.2.2.3.1) and to 
validate the enterprise fog/low cloud product are measured using a laser ceilometer. The 
valid range of the laser ceilometer at the ASOS stations is 100-12,000 ft with an accuracy 
of ±100 ft or 5% (whichever is greater). The product range and accuracy information was 
obtained from the ASOS User’s Guide and ASOS User’s Guide Appendices, which can be 
found at the NWS ASOS website (www.nws.noaa.gov/asos). 
 

4.1.4 SODAR Data 
 
The acoustic SODAR is an upwardly pointing parabolic antenna that emits an audible pulse 
whose return signal is proportional to the vertical gradient of air density. This gives it the 
capability of detecting the base of the atmospheric inversion, which defines the top of the 
stratus deck. Combining this data with the measured cloud ceiling from a ceilometer allows 
for the calculation of the geometric boundaries of low clouds. 
 

 
Figure 25 – An example of SODAR data combined with cloud ceiling. The red dashed 
line represents the base of the atmospheric inversion (i.e., stratus top) and the green 
dashed line represents the measured cloud ceiling. The difference between the two 
lines is the stratus deck thickness.  
 
Unfortunately, SODAR data is only available at a small number of locations and not at 
every surface observation site. For the enterprise fog/low cloud validation the SODAR data 
came from two sites around the San Francisco Bay Area courtesy of the NWS San 
Francisco Bay Area Forecast Office (Clark et al., 1997). 
 

4.2 Output from Simulated/Proxy Inputs Data Sets 
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The enterprise fog/low cloud algorithm was tested using GOES-13, GOES-16 and GOES-
17 satellite data. As an example, results produced using GOES-13 data are shown in Figure 
26 and Figure 27. A more detailed zoomed-in region over CONUS is also shown in Figure 
28 and Figure 29. Manual analysis of the results compared to false color images show that 
areas of fog/low cloud are detected well and are verified by surface observations shown in 
Figure 15 and Figure 17. Example FLS products using GOES-16/GOES-17 data are shown 
over CONUS in Figure 30/Figure 31 and Figure 32/Figure 33, respectively. A more 
quantitative validation is shown in the next section. 
  

 

 
Figure 26 - Example nighttime results (using GOES-13) from the enterprise FLS 
algorithm for January 10, 2014 at 5:45 UTC. The top left panel is MVFR 
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probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 

 

 
Figure 27 – Example daytime results (using GOES-13) from the enterprise FLS 
algorithm for January 10, 2014 at 17:45 UTC. The top left panel is MVFR 
probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 
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Figure 28 - A zoomed-in look at the nighttime fog/low cloud detection and thickness 
results shown in Figure 26 over the eastern CONUS and Atlantic Ocean. The top left 
panel is MVFR probabilities, the top right panel is the IFR probabilities, the bottom 
left panel is the LIFR probabilities and the bottom right panel is the cloud thickness 
results. 
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Figure 29 – A zoomed-in look at the daytime fog/low cloud detection and thickness 
results shown in Figure 27 over CONUS. The top left panel is MVFR probabilities, 
the top right panel is the IFR probabilities, the bottom left panel is the LIFR 
probabilities and the bottom right panel is the cloud thickness results. 
 

 

 
Figure 30 - Example nighttime results (using GOES-16) from the enterprise FLS 
algorithm from November 22, 2020 at 8:01 UTC. The top left panel is MVFR 
probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 
 



 70 

 
Figure 31 - Example daytime results (using GOES-16) from the enterprise FLS 
algorithm for November 22, 2020 at 20:01 UTC. The top left panel is MVFR 
probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 
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Figure 32 - Example nighttime results (using GOES-17) from the enterprise FLS 
algorithm for November 22, 2020 at 8:01 UTC. The top left panel is MVFR 
probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 
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Figure 33 - Example daytime results (using GOES-17) from the enterprise FLS 
algorithm for November 22, 2020 at 20:01 UTC. The top left panel is MVFR 
probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 
LIFR probabilities and the bottom right panel is the cloud thickness results. 
 

4.2.1 Precisions and Accuracy Estimates 
 
To estimate the precision and accuracy of the enterprise fog/low cloud detection algorithm, 
measurements of cloud ceiling from surface observations were used. As previously 
mentioned, the enterprise fog/low cloud detection product is designed to quantitatively 
identify clouds that produce at least MVFR, IFR and LIFR conditions. Surface 
observations of cloud ceiling depict areas that meet those conditions and can be collocated 
with the satellite pixels in order to validate the fog/low cloud product. Future validation 
efforts will focus on using surface observations. 
 
To estimate the precision and accuracy of the enterprise fog/low cloud thickness algorithm, 
comparisons to measured FLS thicknesses using ground-based SODAR and ceilometer 
data were performed. The acoustic SODAR system allows the bottom of the atmospheric 
inversion to be detected, which corresponds to the top of the stratus layer overhead. The 
ceilometer data is used to find the base of the stratus layer. The thickness of the cloud layer 
is the height difference between the inversion level and the cloud ceiling and is used to 
validate the fog/low cloud thickness algorithm. 
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4.2.2 Error Budget 
 
The enterprise FLS detection algorithm was applied to 12 days (1 day from each month) 
of GOES-13 data from 2013, GOES-16 data from 2017 and GOES-17 data from 2020. 
Each data set was validated using surface observations of cloud ceiling and surface 
visibility as discussed in the previous section. The enterprise FLS thickness algorithm was 
also applied to GOES-11 and validated using a combination of ground-based SODAR data 
and cloud ceiling. SODAR data was not available to validate the GOES-16/17 thickness 
product, however, comparisons were made with the GOES-13/16 thicknesses to infer 
errors. 
 

4.2.2.1 Fog/Low Cloud Detection Error Budget 
 
The enterprise FLS algorithm was validated using a calculation of the accuracy. The F&PS 
requirement for the enterprise FLS algorithm is to achieve an accuracy of 70% or greater. 
There are four possible outcomes from the FLS detection algorithm (hit, miss, false alarm 
or non-event) that are used to assess the accuracy that are shown in Table 12.  
 

Table 12 – Possible outcomes from the enterprise FLS algorithm. 

fog/low stratus  
cloud detected 

fog/low stratus cloud observed 
YES NO 

YES h (hit) f (false alarm) 
NO m (miss) z (non-event) 

 
The accuracy of the FLS detection algorithm is calculated by dividing the total number of 
correctly identified FLS (hits) and non-FLS (non-event) pixels by the total number pixels 
used for the validation. This can be written as the following equation: 
 

      Eq. 10 

 
The accuracy ranges from 0.0-1.0, with 1.0 meaning that all pixels were correctly classified 
as FLS/non-FLS and 0.0 meaning that no pixels were correctly classified as FLS/non FLS. 
 
Surface observations were used to validate the accuracy of the enterprise FLS algorithm. 
Analyses of the accuracy of the enterprise FLS detection algorithm applied to GOES-13, 
GOES-16 and GOES-17 as a function of FLS probability using surface observations are 
shown in Figure 34, Figure 35 and Figure 36, respectively. 
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Figure 34 – FLS accuracy shown as a function of MVFR probability (top left), IFR 
probability (top right) and LIFR probability (bottom), calculated using GOES-13 
data over CONUS. Surface observations of cloud ceiling and surface visibility were 
used to determine MVFR/IFR/LIFR conditions. 12 days of data from 2013 were used 
for this analysis.  
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Figure 35 - FLS accuracy shown as a function of MVFR probability (top left), IFR 
probability (top right) and LIFR probability (bottom), calculated using GOES-16 
data over CONUS. Surface observations of cloud ceiling and surface visibility were 
used to determine MVFR/IFR/LIFR conditions. 12 days of data from 2017 were used 
for this analysis. 
 

 
Figure 36 - FLS accuracy shown as a function of MVFR probability (top left), IFR 
probability (top right) and LIFR probability (bottom), calculated using GOES-17 
data over CONUS. Surface observations of cloud ceiling and surface visibility were 
used to determine MVFR/IFR/LIFR conditions. The dashed line represents the 
accuracy requirement. 12 days of data from 2020 were used for this analysis. 
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The maximum accuracy obtained for the combined day/night pixels exceeded 80% for all 
flight rule categories for all three satellites. In general, the maximum accuracy was found 
to be slightly higher for daytime pixels than for nighttime pixels, however, the accuracy 
for nighttime pixels still exceeds the enterprise FLS accuracy requirement. These results 
show that the enterprise FLS algorithm meets the F&PS detection accuracy requirement of 
0.70 when using surface observations to validate the algorithm. 
 
While the enterprise FLS algorithm was validated using a calculation of the overall 
accuracy, the critical success index (CSI), also known as the threat score, was also used to 
help evaluate the performance of the enterprise FLS algorithm. This method can also be 
described as the algorithm accuracy when correct non-detected events are removed. Values 
for the CSI range from 0 to 1, where 0 represents no skill and 1 represents perfect detection. 
This method is frequently used because it takes into account both false alarms and missed 
events, making it a more balanced score. However, the CSI can be sensitive to the 
climatology of the event and tends to produce lower scores for rare events. The four 
possible outcomes from the enterprise FLS algorithm shown in Table 12 are again used to 
calculate the CSI.  
 
The CSI is defined as the number of FLS pixels properly detected divided by the total 
number of pixels falsely detected as FLS and observed as FLS by surface observations, or 
from Table 12 above: 
 

      Eq. 11
 

 
The CSI allows further evaluation of the performance of the algorithm and can be used to 
show improvements to the performance of the enterprise FLS algorithm. One example of 
how the CSI was used to show improvement to the algorithm was an analysis of the 
nighttime CSI for the heritage BTD method, as a function of BTD threshold, and the 
enterprise Bayesian method using the 3.9 µm pseudo-emissivity, radiometric surface 
temperature bias and the modeled RH information, as a function of MVFR/IFR/LIFR FLS 
probability threshold. Only nighttime data was analyzed since the heritage BTD method is 
generally not used during the day. The results of this analysis are shown in Figure 37. 
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Figure 37 – Nighttime CSI analysis for the heritage BTD FLS method (black) and the 
enterprise FLS Bayesian algorithm (Blue) using pixels containing all types of clouds 
(solid lines) and pixels not containing ice or multilayered clouds (dashed lines). 
GOES-13 data were used for this analysis. 
  
Figure 37 illustrates that the enterprise FLS algorithm produces higher maximum skill 
scores than the heritage BTD method for each flight rule category. When ice and 
multilayered clouds are included in the analysis the maximum CSI from the enterprise FLS 
probabilities is nearly double that of the heritage BTD methodology. Even when excluding 
ice and multilayered clouds (where the 3.9-11 micron BTD is known to do poorly) the 
enterprise Bayesian FLS probabilities are still more skillful. This analysis confirms the 
Bayesian method using the 3.9 µm pseudo-emissivity, radiometric surface temperature bias 
and modeled RH information out-performs than the heritage BTD methodology and 
justifies why it was chosen for the enterprise FLS algorithm. 
 
The CSI scores were calculated for the final enterprise FLS algorithm validation datasets 
using surface observations of cloud ceiling and surface visibility to identify pixels that meet 
MVFR/IFR/LIFR criteria. The results using GOES-13, GOES-16 and GOES-17 data are 
shown in Figure 38, Figure 39 and Figure 40, respectively. 
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Figure 38 – Critical success index (CSI) analysis for the enterprise FLS algorithm 
applied to GOES-13 as a function of MVFR probability (top left), IFR probability 
(top right) and LIFR probability (bottom) using surface observations of cloud ceiling 
and surface visibility to identify pixels that meet MVFR/IFR/LIFR criteria. 12 days 
of data from 2013 were used for this analysis. 
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Figure 39 - Critical success index (CSI) analysis for the enterprise FLS algorithm 
applied to GOES-16 as a function of MVFR probability (top left), IFR probability 
(top right) and LIFR probability (bottom) using surface observations of cloud ceiling 
and surface visibility to identify pixels that meet MVFR/IFR/LIFR criteria. 12 days 
of data from 2017 were used for this analysis. 
 

 
Figure 40 - Critical success index (CSI) analysis for the enterprise FLS algorithm 
applied to GOES-17 as a function of MVFR probability (top left), IFR probability 
(top right) and LIFR probability (bottom) using surface observations of cloud 
ceiling and surface visibility to identify pixels that meet MVFR/IFR/LIFR criteria. 
12 days of data from 2020 were used for this analysis. 
 
The CSI analysis is used to determine the probability threshold for each flight rule category 
that yields the highest skill. If a yes/no determination of FLS were required, these 
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probabilities would represent the thresholds that maximize algorithm performance. The 
maximum skill for MVFR/IFR/LIFR was found using probability thresholds of 
36%/20%/14% for GOES-13, 38%/26%/21% for GOES-16, and 51%/33%/20% for 
GOES-17. Although these thresholds do not reflect the FLS probabilities that yielded the 
maximum accuracy (Figure 34, Figure 35 and Figure 36), the accuracies associated with 
them are still comfortably above the requirement of 0.70 and are shown in Table 13. 
 
Table 13 – The enterprise FLS probability accuracy score using GOES-13, GOES-16 
and GOES-17 data calculated at the probability threshold (in parentheses) that 
yielded the highest CSI. 

Flight Rule 
Category 

GOES-13 Accuracy  
(prob threshold 
from max CSI) 

GOES-16 Accuracy  
(prob threshold 
from max CSI) 

GOES-17 Accuracy  
(prob threshold 
from max CSI) 

MVFR 0.84 (36%) 0.87 (38%) 0.87 (51%) 
IFR 0.86 (20%) 0.90 (26%) 0.90 (33%) 

LIFR 0.91 (14%) 0.92 (21%) 0.91 (20%) 
 
The results in Table 13 indicate the accuracy of the enterprise FLS probability products 
still surpass the F&PS requirement of 0.70 when the probability threshold that produced 
the highest CSI values was used. It also should be noted that the accuracies produced using 
GOES-16/17 data are higher than those calculated using GOES-13 meaning the GOES-
16/17 FLS products are slightly more accurate. 
 
Although the previous accuracy and CSI analyses show the enterprise FLS products meet 
the specified performance requirements we also produced attribute diagrams for each 
probability product. The attributes diagram, also called a reliability diagram, is a useful 
verification tool that shows how accurate a probabilistic forecast correlates to the actual 
probability of an observed event. The dashed line running at a 45° angle from the lower 
left corner to the upper right corner represents perfect reliability. The shaded region is 
determined by the climatology of the event. Points that lie within the shaded region indicate 
increased model skill and points that lie outside the shaded region indicate decreased model 
skill with respect to climatological probability (Wilks 2006). Diagrams were produced for 
all three flight rule categories using GOES-13 and are shown in Figure 41 (daytime pixels) 
and Figure 42 (nighttime pixels).  
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Figure 41 - The attributes diagrams for the GOES-13 MVFR (left), IFR (middle) and 
LIFR (right) FLS probability products for all daytime pixels. Points that lie within 
the shaded region indicate increased model skill. 

 

 
Figure 42 - The attributes diagrams for the GOES-13 MVFR (left), IFR (middle) and 
LIFR (right) FLS probability products for all nighttime pixels. Points that lie within 
the shaded region indicate increased model skill. 
 
The attributes diagrams show that overall the enterprise FLS probability products are 
reliable detection models as the majority of the points lay within the shaded area relatively 
close to the perfect reliability line. The same diagrams were produced using GOES-16 data 
and are shown in Figure 43 (daytime) and Figure 44 (nighttime). 
 

 
Figure 43 - The attributes diagrams for the GOES-16 MVFR (left), IFR (middle) and 
LIFR (right) FLS probability products for all daytime pixels. Points that lie within 
the shaded region indicate increased model skill. 
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Figure 44 - The attributes diagrams for the GOES-16 MVFR (left), IFR (middle) and 
LIFR (right) FLS probability products for all nighttime pixels. Points that lie within 
the shaded region indicate increased model skill. 
 
The attributes diagrams again show that overall the enterprise FLS probability products are 
reliable. The GOES-16 products also appear to be better calibrated. 
 
The attributes diagrams produced using GOES-17 data are shown in Figure 45 (daytime) 
and Figure 46 (nighttime). 
 

 
Figure 45 - The attributes diagrams for the GOES-17 MVFR (left), IFR (middle) and 
LIFR (right) FLS probability products for all daytime pixels. Points that lie within 
the shaded region indicate increased model skill. 
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Figure 46 - The attributes diagrams for the GOES-17 MVFR (left), IFR (middle) 
and LIFR (right) FLS probability products for all nighttime pixels. Points that lie 
within the shaded region indicate increased model skill. 
 
Once again these diagrams show the GOES-17 FLS probability products are reliable and 
generally well-calibrated. However, the nighttime GOES-17 MVFR probability product 
appears to slightly overestimate for mid-range probabilities. This may be the result of a 
sampling issue with data used for the analysis or the fact that the LUTs used to generate 
the GOES-17 FLS probabilities were trained using GOES-16 data. The same ABI is 
utilized by both GOES-16 and GOES-17 which rationalizes using the same LUTs. 
However, any differences in instrument calibration or cloud climatology in the geographic 
viewing area would support the need for updated LUTs optimized for GOES-17. This 
would involve a future maintenance update if required. It should also be noted that of the 
3 flight rule categories, IFR and LIFR are by far a greater concern to the aviation 
community than MVFR. 
 
It should also be noted that the 12 day validation data set for GOES-17 includes varying 
levels of impact due to the loop heat pipe (LHP) anomaly that impacts instrument cooling. 
During optimal periods of operation the GOES-17 focal plane temperature (FPT) stays 
below 82 K. During high impact periods the FPT can increase to well over 100 K resulting 
in increased noise and possible saturation of the IR channels, severely impacting the quality 
of the data. The 12-day GOES-17 validation data set is composed of four days when the 
FPT for each day remained below 85 K (minimal impact), four days when the FPT peaked 
~90 K (moderate impact) and four days when the FPT peaked over 100 K (high impact). 
The validation results discussed above show that the enterprise FLS products applied to 
GOES-17, including data negatively impacted by the LHP anomaly, comfortably meet the 
required 70% accuracy requirement. When the FPT warms above 82 K, striping and noise 
may increase in the probability products, however, the main features of interest remain 
discernable so at no point will the products become unusable. Due to the fused nature of 
the enterprise FLS algorithm, impacts due to the LHP anomaly are significantly reduced 
compared to those associated with algorithms that rely solely on satellite data, especially 
those that use only IR channels.  
 

4.2.2.2 Fog/Low Cloud Thickness Error Budget 
 
Cloud thickness is a difficult parameter to accurately validate as there are extremely limited 
truth data sets available. SODAR data was originally used to develop the algorithm and 
validate the GOES-NOP version, however, limited geographic coverage and declining 
instrument health has made SODAR data an unreliable validation source for GOES-16/17. 
The following sections describe the processes used to validate the cloud thickness product 
for each sensor. 

4.2.2.2.1 GOES-NOP Fog/Low Cloud Thickness Error Budget 
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Data from two stations in the San Francisco Bay Area were used to validate the enterprise 
fog/low cloud algorithm applied to GOES-11. FLS thicknesses were calculated manually 
from several single-layer low cloud events like the one shown in Figure 25. Due to the lack 
of SODAR stations and the difficulty in manually finding single-layered FLS events over 
such a small area, a large validation data set was not available. With the limited number of 
validation points that were obtained, an estimation of the accuracy of the fog/low cloud 
thickness algorithm was calculated. The F&PS requires the fog/low cloud thickness be 
detected within 500 m. Results gathered using SODAR data from several scenes are shown 
in Figure 47. 
 

 
Figure 47 – Scatter plot comparing measured FLS thicknesses using SODAR and 
ceiling data with thicknesses output from the enterprise fog/low cloud thickness 
algorithm applied to GOES-11 for both day (left panel) and night (right panel).  
 
The SODAR data analysis above indicates that the accuracy of the enterprise FLS thickness 
product applied to GOES-11 is well within F&PS requirements with a daytime bias of 
about 31 m and a nighttime bias of around 25 m. Additionally, the strong correlations 
indicate that the spatial and temporal patterns are also useful.  
 

4.2.2.2.2 GOES-16 Fog/Low Cloud Thickness Error Budget 
 
Unfortunately, SODAR data was not available for validating the FLS thickness product for 
GOES-16. However, comparisons can be made to the GOES-NOP thicknesses and be used 
to infer if the GOES-16 thickness product meets the 500 m bias requirement. Images of the 
enterprise FLS thickness product applied to both GOES-13 and GOES-16 are shown in 
Figure 48 (nighttime) and Figure 49 (daytime).  
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Figure 48 – The enterprise FLS thickness product produced using GOES-13 (top) and 
GOES-16 (bottom) over CONUS. This is a nighttime scene from July 21, 2017 at 5:45 
UTC. 
 

 



 87 

 
Figure 49 - The enterprise FLS thickness product produced using GOES-13 (top) and 
GOES-16 (bottom) over CONUS. This is a daytime scene from July 21, 2017 at 17:45 
UTC. 
 
The enterprise FLS thickness product applied to GOES-13 can be co-located in space and 
time with thicknesses produced using GOES-16. For this comparison, only co-located 
pixels containing valid thicknesses (no missing data) for both GOES-13 and GOES-16 FLS 
were used. Scatterplots of these co-located pixels from Figure 48 and Figure 49 are shown 
in Figure 50. 
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Figure 50 – Scatterplots of valid co-located GOES-13 and GOES-16 FLS thicknesses 
from July 21, 2017 over CONUS. The left plot contains nighttime pixels from 5:45 
UTC (Figure 48). The right plot contains daytime pixels from 17:45 UTC (Figure 49). 
  
The scatterplots from Figure 50 show that the nighttime GOES-13/16 FLS thickness 
products are well correlated with a correlation coefficient of 0.87. The daytime FLS 
thicknesses appear slightly less correlated with a correlation coefficient of 0.80. While both 
GOES-13 and GOES-16 were in a position to view CONUS for this comparison, the 
difference in spatial resolution and viewing geometry (GOES-13 was positioned at -75W 
longitude while GOES-16 was positioned at -89.5W longitude) between the 2 imagers will 
likely account for a large portion of the differences observed between the two FLS 
thickness products. Another significant source of differences between the daytime pixels 
is the use of an updated daytime optical properties algorithm for GOES-16. As mentioned 
above, the enterprise FLS thickness algorithm is based off a calculated daytime optical 
properties LWP product for daytime pixels. The updated algorithm for GOES-16 has been 
further developed from the previous GOES-NOP version so larger differences between the 
GOES-13 and GOES-16 FLS thicknesses are expected. 
 
For further comparison, differences were calculated between the co-located GOES-13 and 
GOES-16 FLS thicknesses and used to create the histograms shown in Figure 51.  
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Figure 51 – Histograms of the differences between co-located GOES-13 and GOES-
16 FLS thicknesses from July 21, 2017 over CONUS. The left plot contains nighttime 
pixels from 5:45 UTC (Figure 48). The right plot contains daytime pixels from 17:45 
UTC (Figure 49). 
 
The histograms in Figure 51 show the distribution of the differences observed between the 
co-located GOES-13 and GOES-16 FLS thickness products. The distribution for night 
pixels produced a bias of 5 m with a standard deviation of 43 m. The distribution for 
daytime pixels showed a bias of -134 m with a standard deviation of 99 m. The differences 
were calculated by subtracting the co-located GOES-16 FLS thicknesses from the GOES-
13 FLS thicknesses so positive bias values correspond to the GOES-16 FLS thicknesses 
being low-biased compared to the GOES-13 thicknesses and negative values correspond 
to the GOES-16 thicknesses being biased higher. Considering the validation of the GOES-
NOP FLS thickness product using SODAR data produced biases of 25 m (night) and 31 m 
(day) and the biases seen between the GOES-13 and GOES-16 FLS thickness products, the 
GOES-16 FLS thickness product still comfortably meets the F&PS bias requirement of 500 
m. 
 

4.2.2.2.3 GOES-17 Fog/Low Cloud Thickness Error Budget 
 
Like GOES-16, SODAR data was not available for validating the GOES-17 FLS thickness 
product. However, comparisons were made to co-located GOES-16 thicknesses to 
determine if the 500 m bias requirement is achievable. Due to an overlap in the geographic 
viewing area of GOES-16 and GOES-17, the cloud thickness produced by each sensor can 
be co-located in both space and time for comparison. The overlap region consists of the far 
western GOES-16 and far eastern GOES-17 full disk domains. The region was also 
constricted to viewing angles of < 70º to reduce the impact of edge pixels. Images of the 
enterprise FLS thickness product applied to both GOES-16 and GOES-17 in this overlap 
region are shown in Figure 52 (nighttime) and Figure 53 (daytime). 
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Figure 52 – Enterprise FLS cloud thickness product comparison between GOES-17 
(left) and GOES-16 (right) in a region where both full disk domains overlap on 
January 25, 2020 at 10:00 UTC. 
 

 
Figure 53 - Enterprise FLS cloud thickness product comparison between GOES-17 
(left) and GOES-16 (right) in a region where both full disk domains overlap on 
January 25, 2020 at 18:00 UTC. 
 



 91 

Co-located pixels were compared where both the GOES-16 and GOES-17 products 
produced valid cloud thicknesses (neither contain missing values). The resulting 
nighttime/daytime density, scatter and histogram plots are shown in Figure 54 and Figure 
55 respectively. 
 

 
Figure 54 – Density plot (upper left), scatter plot (upper right) and difference 
histogram (bottom) showing the comparison of the nighttime GOES-16/17 FLS 
depth products from January 25, 2020 at 10:00 UTC. 
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Figure 55 - Density plot (upper left), scatter plot (upper right) and difference 
histogram (bottom) showing the comparison of the nighttime GOES-16/17 FLS 
depth products from January 25, 2020 at 18:00 UTC. 
 
Although the co-located GOES-16/17 cloud thicknesses do not appear highly correlated 
(correlation coefficients were 0.81 (night) and 0.83 (day)) it is important to note that 
parallax was not taken into account. GOES-16 is located at -75.2 W longitude while GOES-
17 is located at -137.2 W. This difference in viewing angle between the 2 sensors will likely 
account for a large portion of the differences observed between the two FLS thickness 
products, especially for elevated clouds. The density plots show that the highest 
concentrations of pixel matchups do appear to be better-correlated. 
 
The histograms show the distribution of the differences observed between the co-located 
GOES-16 and GOES-17 FLS thickness products. The distribution for night pixels 
produced a bias of 14 m with a standard deviation of 47 m. The distribution for daytime 
pixels showed a bias of -15 m with a standard deviation of 90 m. The differences were 
calculated by subtracting the co-located GOES-17 FLS thicknesses from the GOES-16 FLS 
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thicknesses so positive bias values correspond to the GOES-17 FLS thicknesses being low-
biased compared to the GOES-16 thicknesses and negative values correspond to the 
GOES-17 thicknesses being biased higher. Considering the results of the GOES-NOP and 
GOES-16 FLS cloud thickness validation in sections 4.2.2.2.1 and 4.2.2.2.2, the GOES-17 
FLS thickness product still comfortably meets the F&PS bias requirement of 500 m. 
 
While the usefulness of the cloud thickness product will depend on individual needs, the 
more user-centric value in the cloud thickness product is how it can be used to infer 
dissipation time for specific fog events. Although dissipation time is not a direct output 
from the Enterprise FLS product suite, additional information (examples and training) on 
using the cloud thickness to estimate the clearing time of radiation fog can be found here:  
https://fusedfog.ssec.wisc.edu/training/ 
 

4.2.3 Validation Summary 
 
The following points summarize the results of the enterprise FLS detection and depth 
algorithm validation analysis. 
 

• According to the F&PS, the FLS detection must have an accuracy of 0.70 or greater 
and the FLS thickness must have an accuracy (bias) of 500 m or less. 
 

• Surface observations of cloud ceiling and surface visibility were used to validate 
the FLS detection algorithm. Surface observations of cloud ceiling combined with 
SODAR data were used to validate the FLS depth product. 

 
• Using surface observations as the validation source yielded GOES-13 FLS 

detection accuracies for MVFR/IFR/LIFR of 0.84/0.86/0.91 for the probability 
threshold that yielded the highest CSI scores (36%/20%/14%) respectively. 

 
• Using surface observations as the validation source yielded GOES-16 FLS 

detection accuracies for MVFR/IFR/LIFR of 0.87/0.90/0.92 for the probability 
threshold that yielded the highest CSI scores (38%/26%/21%) respectively. 
 

• Using surface observations as the validation source yielded GOES-17 FLS 
detection accuracies for MVFR/IFR/LIFR of 0.87/0.90/0.91 for the probability 
threshold that yielded the highest CSI scores (51%/33%/20%) respectively. 

 
• Using the SODAR data as the validation source yielded GOES-NOP FLS thickness 

biases of 31 m (day) and 25 m (night). 
 

• Comparisons between co-located GOES-13 and GOES-16 pixels yielded GOES-
16 FLS thickness biases of 134 m (day) and -5 m (night). 
 

• Comparisons between co-located GOES-16 and GOES-17 pixels yielded GOES-
17 FLS thickness biases of -15 m (day) and 14 m (night).  

https://fusedfog.ssec.wisc.edu/training/
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• Thus, the enterprise FLS detection and thickness products meet the F&PS accuracy 

specifications. 
 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
 
The FLS algorithm is implemented sequentially.  Because it relies on the results of other 
cloud algorithms, the cloud mask, cloud phase and daytime optical properties must be run 
before the FLS algorithm. In addition, the necessary RTM and NWP calculations also need 
to be processed and fed into the FLS algorithm. The FLS algorithm currently uses 12-hr 
forecasts from the GFS and 2-and 3-hr forecasts from the RAP. However, if these are not 
available, up to 24-hr forecasts can be utilized. All tests are applied before the final fog/low 
stratus mask and thickness are determined. 

5.2 Programming and Procedural Considerations 
 
The FLS algorithm is, for the most part, a pixel-by-pixel algorithm.  However, a spatial 
uniformity filter is currently used to reduce noise by taking into account the surrounding 
pixels. 
 

5.3 Quality Assessment and Diagnostics 
 
The following procedures are recommended for diagnosing the performance of the FLS 
algorithm. 

• Periodically image the FLS probabilities and compare them to true color images 
and surface observations of cloud ceiling and surface visibility to ensure proper 
areas are being correctly detected with minimal false detection (exceptionally large 
probabilities). 

• Continue to validate the FLS algorithm using surface observations. 
 

5.4 Exception Handling 
 
The FLS algorithm currently checks the validity of all channels before running. If any 
channels are unavailable, the algorithm will still run disregarding tests reliant on those 
channels. The FLS algorithm also expects the main processing framework to flag any 
pixels with missing geolocation or viewing geometry information. 
 

5.5 Algorithm Validation 
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Surface observations are used to validate the fog/low cloud detection algorithm. These will 
continue to serve as the main source of validation data in the future. For FLS thickness, 
ground-based measurements of cloud thickness using ceiling height and SODAR data are 
used as the main source of validation. 
 

6 ASSUMPTIONS AND LIMITATIONS 
 
The following sections describe the current limitations and assumptions in the current 
version of the enterprise fog/low cloud algorithm. 
 

6.1 Performance 
 
The following assumptions have been made in developing and estimating the performance 
of the fog/low cloud algorithm.  The following list contains the current assumptions 
(numbered) and proposed mitigation strategies (lettered). 
 

1. NWP data of comparable or superior quality to the current 12 hour GFS and 
2- and 3- hour RAP forecasts are available. 

a. Use longer-range GFS and RAP forecasts or switch to another NWP 
source 

 
2. All of the static ancillary data are available at the pixel level.  

a. Reduce the spatial resolution of the available ancillary data 
 
3. The processing system allows for processing of multiple scan lines at once for 

application of important spatial analysis techniques.  
a. No mitigation is possible 

 
4. A more robust assumption of the LWC is necessary for daytime FLS thickness 

calculation. 
a. Create a variable assumption for LWC depending on whether the 

algorithm detects FLS or low stratus. 
 

In addition, the clear sky radiance calculations are prone to large errors, especially near 
coastlines, in mountainous regions, snow/ice field edges, and atmospheric frontal zones, 
where the NWP surface temperature and atmospheric profiles are less accurate. 
Improvements in NWP fields should lead to additional improvements in the enterprise 
fog/low cloud products. 
 

6.2 Assumed Sensor Performance 
 
We assume the sensor will meet its current specifications.   However, the FLS algorithm 
will be dependent on the following instrumental characteristics. 
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• The FLS algorithm is dependent on several other cloud algorithms (see section 3.2); 

therefore any issues that degrade those algorithms may also affect the fog/low cloud 
algorithm. An example is how the amount of striping in the data may affect spatial 
uniformity tests in the other cloud algorithms leading to issues absorbed by the FLS 
algorithm.   

• Unknown spectral shifts in some channels will cause biases in the clear-sky RTM 
calculations that may impact the ability to accurately calculate the surface 
temperature bias relied upon in the enterprise FLS algorithm 

 

6.3 Pre-Planned Product Improvements 
 
While development of the enterprise fog/low cloud algorithm continues, we expect in the 
coming years to focus on the following issues. 
 

6.3.1 Additional Capability to Run On SEVIRI 
 
Due to wider 3.9 µm channel window on SEVIRI, the current nighttime LUT’s used for 
GOES-NOP and the ABI are not applicable. In order to accurately use the enterprise FLS 
algorithm on SEVIRI new LUT’s need to be created.  
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