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ABSTRACT 
This Algorithm Theoretical Basis Document (ATBD) describes in detail the procedures to 
develop and use a land surface temperature (LST) algorithm designed for the GOES-R Advanced 
Baseline Imager (ABI).  It includes a description of the requirements and specifications of the 
LST products and some specific information about the ABI that is relevant to the derivation of 
the LST products.  The core of the ATBD is a description of the science of the proposed ABI 
LST algorithm, as well as a review of satellite LST research, a selection of candidate algorithms, 
and a description of a large simulated GOES-R ABI data set used to derive algorithm 
coefficients and test the candidate algorithms.  The simulated brightness temperatures are 
calculated using sensor spectral response functions (SRF) from the actual ABI instrument.  A 
description of the algorithm implementation is provided and ancillary data sets as input for the 
LST calculation are listed. 
 
An enterprise LST retrieval algorithm applicable to both GOES-R and JPSS missions was 
developed and evaluated. Compared to the baseline algorithm, it includes the emissivity 
difference between the two split-window bands and replaced the path correction term with a 
stratification of the algorithm by satellite view zenith angle to allow better flexibility. Algorithm 
regression coefficients were derived from the simulated data set and have been tested with the 
satellite data from both GOES-16 and GOES-17 and the corresponding in-situ LST measurement 
from SURFRAD network. The algorithm was expected to meet the mission requirement and 
outperform the baseline algorithm.  
 
An alternative LST retrieval algorithm was developed in order to mitigate the overheating of the 
GOES-17 ABI sensor. The algorithm adopts a similar formula as the enterprise algorithm but 
uses bands 13 and 14 instead of the combination of bands 14 and 15 as in both the baseline 
algorithm and the enterprise algorithm. Evaluation of the retrieval with in-situ data indicated 
good performance. It is expected to improve both the data quality and availability of the GOES-
17 LST during the “hot” period. The enterprise and mitigation algorithm package is scheduled to 
replace the current baseline algorithm in July 2020. 



 

 11 

1 INTRODUCTION 

The purpose, users, scope, related documents and revision history of this document are briefly 
described in this section. Section 2 gives an overview of the land surface temperature (LST) 
retrieval objectives and operations concept. Section 3 describes the enterprise algorithm and the 
mitigation algorithm, the input data requirements, and the theoretical background. Test data sets 
and algorithm evaluation results are presented in Section 4. Some practical considerations are 
described in Section 5, followed by the assumptions and limitations associated with the 
algorithm in Section 6. Finally, Section 7 lists the references cited.  

1.1 Purpose of This Document 

This Algorithm Theoretical Basis Document (ATBD) explains the physical and mathematical 
background for an algorithm to derive LST product as part of the requirements for the Advanced 
Baseline Imager (ABI). ABI is the primary visible and infrared instrument onboard the platform 
of the Geostationary Environmental Operational Satellite (GOES) R series (GOES-R) of NOAA 
meteorological satellites. This document provides an overview of the required input data, the 
physical and mathematical backgrounds of the described algorithm and its predicted 
performance, practical considerations, and assumptions and limitations.  

1.2 Who Should Use This Document 

The intended users of this document are those interested in understanding the physical bases of 
the LST algorithm and how to use the output of this algorithm for a particular application.  This 
document also provides information useful to anyone maintaining or modifying the original 
algorithm.  

1.3 Inside Each Section 

This document covers the theoretical basis for the derivation of the LST product from ABI data. 
It is broken down into the following main sections: 

• System Overview: provides objectives of the LST algorithm, relevant details of the ABI 
instrument, and a brief description of the product requirements. 

• Algorithm Description: provides all the detailed description of the algorithm including 
its physical basis, its input and its output. 

• Test Datasets and Outputs: provides detailed information of the evaluation of the 
enterprise algorithm and mitigation algorithm using actual GOES-R ABI data. 

• Assumptions and Limitations: provides an overview of the current limitations of the 
algorithm and gives the plan for overcoming these limitations with further algorithm 
development. 

1.4 Related Documents 

This document may contain information from other GOES-R documents listed in the website 
provided by GOES-R algorithm working group (AWG):  
https://www.goes-r.gov/resources/docs.html.  

https://www.goes-r.gov/resources/docs.html
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In particular, readers are directed to read the following documents for good understanding of this 
ATBD: 
 GOES-R Series Ground Segment Functional and Performance Specification 
 GOES-R Series Mission Requirements Document  
 GOES-R Land Surface Team Critical Design Review  
 GOES-R Algorithm Theoretical Base Document for ABI Cloud Mask   
Other related references are listed in the Reference Section. 

1.5 Revision History 

Version 0.1 of this document was created by Dr. Yunyue Yu of NOAA/NESDIS, and its intent 
was to accompany the delivery of the version 0.5 algorithm to the GOES-R AWG Algorithm 
Integration Team (AIT). The document was then revised following the document guideline 
provided by the GOES-R Algorithm Application Group (AWG) before the version 1.0 delivery. 
In 2009 spring and summer, version 1.0 of the document was prepared, which includes some 
new results conducted from the algorithm Critical Design Review (CDR) and the Test Readiness 
Review (TRR), as the algorithm 80% readiness document. For version 1.1 in September 2009, 
modification has been made reflecting the responses to AIT and IV&V reviewer’s comments. It 
also includes testing results from using MODIS data. Version 2.0 was completed in July 2012, 
including responses to all the review comments from the AIT, the ADEB, and the Harris, along 
with some further development on the algorithm evaluation and testing, quality control flags and 
metadata definition. The current version, version 4.0, is prepared to document the most 
significant updates since the launch of GOES-R, including the development and evaluation of the 
enterprise algorithm for both GOES-16 and GOES-17, the mitigation algorithm for GOES-17 
during the “hot” period, and the corresponding changes of the algorithm input and output. 
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2 OBSERVING SYSTEM OVERVIEW 
This section describes objectives of the LST algorithm, details of the ABI instrument, and 
requirements of the product. 

2.1 Products Generated 

LST is one of the key variables in the weather and climate system controlling surface heat and 
water exchange at the land atmosphere interface. Satellite measured LST is mostly based on 
thermal infrared band observations, which theoretically gives the temperature at some nominal 
skin depth of the surface. In the GOES-R mission, LST is measured from its onboard ABI. 
Knowledge of LST gives critical information on temporal and spatial variations of the surface 
equilibrium state and is of fundamental importance to many aspects of geoscience. Remotely 
sensed LST can be assimilated into weather and climate models to optimize weather and climate 
predictions (Meng et al, 2009; Zheng et al, 2012; Trigo et al, 2015), be applied as input data for 
mesoscale atmospheric and land surface models to estimate sensible heat flux and latent heat 
flux, or be utilized to evaluate the model prediction performance. It has been widely used in 
commercial applications including the evaluation of water requirements for crops in summer and 
to estimate where and when damaging frost may occur in winter. LST can also provide warning 
signs for possible forest and grass fires, as well as an indicator of possible drought, just to name a 
few (Karnieli et al., 2010; Zhang et. al., 2014; Quintano et. al., 2015; Fang et. al, 2019). In 2016, 
World Meteorological Organization included LST as one of essential climate variables (ECV) in 
the Global Climate Observing System (GCOS, 2017). 
 
In the GOES-R program, the LST product is generated in three scanning coverages: Contiguous 
United States (CONUS), Full Disk (FD), and Mesoscale (MESO), with a requirement of 2.5 K in 
accuracy and 2.3 K in precision. Detailed specifications of the LST product are defined in the 
GOES-R mission requirement document (MRD) and will be briefly described in the next section. 
 
Accuracy of the satellite LST measurement is limited by the atmospheric correction, the 
complexity of surface emission characteristics, and the sensor performance. The algorithm 
performance varies significantly over area, season, view geometry, and atmospheric water vapor 
conditions (Yu et al, 2009b, 2012; Coll et al, 2005, 2010, 2012; Hook et al, 2007; Hulley and 
Hook, 2011, Guillevic et al, 2012; Wan et al, 2004, Wan, 2008, 2014; Li et al, 2013; Liu et al, 
2015; Göttsche et al, 2016).  A primary objective of the GOES-R LST development team is to 
provide a state-of-the-art LST algorithm that meets the GOES-R mission requirement. Retrievals 
of LST have been conducted for over forty years from a variety of polar-orbiting and 
geostationary satellites. To produce an LST climate data record from those programs, 
consistency among LST products from different satellite missions is of importance. The GOES-
R LST algorithm should have a good historical heritage for consistency with other satellite 
products. These factors as well as the algorithm simplicity and robustness have been considered 
throughout the development phase of the algorithm. 
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2.2 Instrument Characteristics 

The ABI is a mission critical payload on GOES-R, providing a majority of all the mission data 
products currently defined.  Similar to its predecessor, the GOES imager, ABI has been used for 
a wide range of qualitative and quantitative weather, oceanographic, climate, and environmental 
applications. ABI offers more spectral bands, higher spatial resolution, and faster imaging rate 
than the GOES imager. Its spatial resolution is nominally 2 km for the infrared bands and 0.5 km 
for the 0.64 µm visible band. While the instrument allows a flexible scanning scenario, three 
basic modes, Modes 3, 4, and 6, have been tested and implemented since its operation. Mode 3, 
the previous default scan mode, scans the FD every 15 minutes, the CONUS every 5 minutes, 
and a selectable 1000 km ×1000 km area every 30 seconds; Mode 4 provides continuous FD 
scans every five minutes; Mode 6, the current default mode, scans the FD every 10 minutes, its 
scan schedule over CONUS and MESO is similar to that of Mode 3. As a comparison, the GOES 
imager takes approximately 25 minutes for a FD; GOES-R provides a fivefold increase in the 
coverage frequency (Schmit et al., 2016). 
 
ABI has 16 spectral bands; five are similar to the 0.6-, 4-, 11-, and 12-µm windows and the 6.5-
µm water vapor band on the GOES-8/-9/-10/-11 imagers (Menzel and Purdom, 1994; Ellrod et 
al., 1998) and one is similar to the 13.3 µm on the GOES-12/-13/-14/-15 imagers and the GOES-
8/-15 sounders (Hillger and Gary, 2003; Schmit et al., 2002). Additional bands on ABI are 0.47 
µm for aerosol detection and visibility estimation; 0.865 µm for aerosol detection and estimation 
of vegetation index and health; 1.378 µm to detect very thin cirrus clouds; 1.6 µm for 
snow/cloud discrimination; 2.25 µm for aerosol and cloud particle size estimation, vegetation, 
cloud properties/screening, hot-spot detection, moisture determination, and snow detection; 7.0 
and 7.34 μm for midtropospheric water vapor detection and tracking and upper-level sulfur 
dioxide (SO2) detection; 8.5 μm for detection of volcanic dust clouds containing sulfuric acid 
aerosols and estimation of cloud phase; 9.6 μm for monitoring atmospheric total column ozone 
and upper-level dynamics (Steinbrecht et al.1998); and 10.35 μm for deriving low-level moisture 
and cloud particle size. Each of these bands is often used in conjunction with other bands in a 
multiple spectral approach for product generation. Figure 2.1 shows the spectral distribution of 
the ABI channels, compared to the GOES-12 imager channels, while channel specification of the 
ABI is given in Table 2.1. The advanced design of ABI will provide users with twice the spatial 
resolution, five times the scan rate, and more than three times the number of spectral channels 
compared to the GOES imager (Schmit et al., 2016). These improvements allow meteorologists 
and climatologists to significantly improve the accuracy of their products, both in forecasting and 
nowcasting. 
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Figure 2.1.  Spectral distribution of the ABI channels, compared to the current GOES (GOES-12) 

Imager channels. 
 
Table 2.1.  Spectral characters of Advanced Baseline Imager. 

Channel 
Number 

Wavelength 
(µm) 

Bandwidth 
(µm) NEDT/SNR 

Upper Limit 
Of Dynamic 
Range 

Spatial 
Resolution 

1 0.47 0.45 – 0.49 300:1[1] 652 W/m2/sr/µm 1 km 
2 0.64 0.59 – 0.69 300:1[1] 515 W/m2/sr/µm 0.5 km 
3 0.86 0.8455 – 0.8845 300:1[1] 305 W/m2/sr/µm 1 km 
4 1.38 1.3705 – 1.3855 300:1[1] 114 W/m2/sr/µm 2 km 
5 1.61 1.58 – 1.64 300:1[1] 77 W/m2/sr/µm 1 km 
6 2.26 2.225 – 2.275 300:1[1] 24 W/m2/sr/µm 2 km 
7 3.9 3.8 – 4.0 0.1K[2] 400K 2 km 
8 6.15 5.77 – 6.60 0.1K[2] 300K 2 km 
9 7.0 6.75 – 7.15 0.1K[2] 300K 2 km 
10 7.4 7.24 – 7.44 0.1K[2] 320K 2 km 
11 8.5 8.30 – 8.70 0.1K[2] 330K 2 km 
12 9.7 9.42 – 9.80 0.1K[2] 300K 2 km 
13 10.35 10.10 – 10.60 0.1K[2] 330K 2 km 
14 11.2 10.80 – 11.60 0.1K[2] 330K 2 km 
15 12.3 11.80 – 12.80 0.1K[2] 330K 2 km 
16 13.3 13.0 – 13.6 0.3K[2] 305K 2 km 

[1]100% albedo, [2]300K scene.    Shaded channels are used for LST retrieval. 
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The land surface temperature will be produced for each cloud free land pixel observed by the 
ABI sensor. The LST retrieval will primarily rely on channels 14 and 15 of the ABI data using 
split window technique. 

2.3 Mission Requirement 

The LST requirements (Table 2.2) were originally defined in the mission requirement document 
(MRD), and further specified and updated in the Ground Segment Functional and Performance 
Specification (GS-F&PS). In this document we further specify that the LST is the instantaneous 
temperature of the earth “skin” as viewed from the satellite position, given the particular sun-
view geometry.  
 
Table 2.2. GOES-R mission requirements for land surface temperature. 
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LST (Skin): 
CONUS T C 2 km 1 km 213 – 330 2.5 2.3 60 min 3236 

sec TBD LZA <70 

LST (Skin): 
Hemispheric T FD 10 km 5 km 213 – 330 2.5 2.3 60 min 806 

sec TBD LZA <70 

LST (Skin): 
Mesoscale T M 2 km 1 km 213 – 330 2.5 2.3 60 min 159 

sec TBD LZA <70 
1 T=target, G=goal 
2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale 
3The measurement accuracy 2.5K is conditional with 1) known emissivity, 2) known atmospheric 
correction and 3) 80% channel correction; 5 K otherwise. 
4 VAGL=Vender Allocated Ground Latency. 
5 LZA=local zenith angle.  
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3 ALGORITHM DESCRIPTION 
A complete description of the algorithm at the current level of maturity (which will improve with 
each revision) is given in this section. 

3.1 Algorithm Overview 

The LST is one of the baseline products in the GOES-R ABI processing system and is on the 
priority development list of the GOES-R algorithm working group (AWG). Its retrieval 
algorithm is developed by the GOES-R AWG land team within the land module processing 
subsystem (Figure 3.1). 

 
Figure 3.1. Products and dependencies of the land algorithm module.  
 
The LST retrieval algorithm for GOES-R mission currently in operation is the so-called baseline 
algorithm, which was developed by Yu et. al. (2008, 2009a). The algorithm was selected among 
nine candidate algorithms based on a comprehensive analysis and testing. Due to its 
performance, robustness, and simplicity, the algorithm (Eq 3.1) adapted from Ulivieri & 
Cannizzaro (1985) was selected and became operational baseline algorithm. 
 
𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀 + 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) (3.1) 
 
where 𝑇𝑇11 and 𝑇𝑇12 represent the top-of-atmosphere brightness temperatures at ~11 µm and ~12 
µm, respectively, 𝜀𝜀 = 0.5 ∗ (𝜀𝜀11 + 𝜀𝜀12) is the average of the spectral emissivity of the land 
surface at ~11 µm and ~12 µm, 𝜃𝜃 is the satellite view zenith angle, and 𝐶𝐶,  𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐷𝐷 are the 
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algorithm coefficients, stratified by day/night and dry/wet atmospheric conditions. More details 
about the baseline algorithm can be found in Appendix A and Yu et. al. (2009a). 
 
Since the launch of GOES-16 satellite, the baseline algorithm has been in operation for three 
years. With this algorithm, the GOES-16 LST declared Provisional maturity in March 2018, and 
the GOES-17 LST during “cool” period declared Provisional maturity in June 2019. 
  
There are two LST products from satellite missions operated by NOAA, the GOES-R mission 
and the JPSS mission. The algorithms used in these two products are different. Major differences 
lie in the input data to characterize the surface emission variability. The baseline algorithm for 
GOES-R LST uses the surface emissivity for this purpose, while the JPSS IDPS LST algorithm 
is based on surface types. Though both algorithms have their advantages, major drawbacks exist. 
In the baseline algorithm, the emissivity difference between the split-window channels is 
excluded and the atmospheric path length term is not able to fully represent the effect due to path 
with different atmospheric conditions. For the IDPS algorithm, the surface type cannot fully 
characterize the variability of the surface emission, especially the within-type variability. 
Therefore an enterprise retrieval algorithm applicable to both sensors have been developed and 
tested. This allows better consistency between the two products. In the meantime, efforts for both 
missions can be leveraged with each other. 

3.2 Processing Outline 

The processing outline of the LST is summarized in Figure 3.2. The LST retrieval starts from the 
module initialization and definition of parameters, including the FPM temperature threshold 
value, based on which the branch of either enterprise or mitigation algorithm is activated. For 
each pixel within the same satellite scene, the same algorithm is used. The LST configuration 
parameters and satellite navigation information are then loaded followed by major retrieval 
inputs, including the sensor data, emissivity, retrieval LUT, land/sea mask, cloud mask, snow/ice 
mask, ABI and/or NWP (numerical weather predictions) TPW (total precipitable water), and 
AOD (aerosol optical depth) . The quality flags are determined for all pixels while LST is 
retrieved for each cloud free land pixel. Finally, the calculated LST values and their associated 
quality control flags, which were generated in each of the above steps, are combined and output 
to files for user access. 
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Figure 3.2.  High level flowchart of the LST production for illustrating the main processing steps. 

3.3 Algorithm Input 

This section describes the input needed to process the LST product. To derive the LST for each 
pixel, ancillary datasets are required as well as the upstream ABI data. 

3.3.1 Primary Sensor Data 
The list below contains the primary sensor data used by the LST retrieval. By primary sensor 
data, we mean information that is derived solely from the ABI observations and geolocation 
information, or the level 1b data. Table 3.1 lists those input sensor data and their descriptions. 
All input data will be used at the high resolution level and the aggregation method for generating 
the hemispheric scale LST product at 10 km resolution will only be applied to the output 
product. 
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Table 3.1. Input list of primary sensor data. 
Name Type Description Dimension Unit 

FPM temperature Input Focal plane module 
temperature scalor Degree K 

Ch13 brightness 
temperature input 

Calibrated ABI level 1b 
brightness temperatures at 

channel 13 
grid (xsize, ysize) Degree K 

Ch14 brightness 
temperature input 

Calibrated ABI level 1b 
brightness temperatures at 

channel 14 
grid (xsize, ysize) Degree K 

Ch15 brightness 
temperature input 

Calibrated ABI level 1b 
brightness temperatures at 

channel 15 
grid (xsize, ysize) Degree K 

Latitude input Pixel latitude grid (xsize, ysize) Degree 
Longitude input Pixel longitude grid (xsize, ysize) Degree 

Solar zenith input ABI solar zenith angles grid (xsize, ysize) Degree 
View zenith input ABI view zenith angle grid (xsize, ysize) Degree 

QC flags input ABI quality control flags with 
level 1b data grid (xsize, ysize) Unitless 

 

• FPM temperature 
The temperature of the FPM used to determine which algorithm to be activated for LST retrieval. 
Its unit is degree of Kelvin. 
 

• ABI channel input  
The GOES-R ABI channel brightness temperatures at 10.35 µm, 11.2 µm and 12.3 µm are used 
for LST calculation. The pixel resolution should be 2 km and the brightness temperature should 
be in unit of Kelvin. 

 
• Geolocation data  

Latitude and longitude information for each pixel is needed for mapping the sensor data to 
ancillary data applied. They should be part of the Level 1 ABI data and the unit used for 
calculation should be in degrees. 

 
• Viewing geometry information  

Solar zenith angle is needed to determine day and night condition. The satellite view zenith angle 
is used for atmospheric path correction, which is part of the algorithm application. Details of 
their usage for LST derivation will be described in later sections. 

 
• QC flags in the level 1 ABI data  

Any inherent QC flags in the level 1 ABI data will be read and applied before generating LST 
using the selected algorithm. Any missing/bad pixels will be skipped. 
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3.3.2 Derived Sensor Data 
GOES-R ABI derived sensor data sets (or the ABI related ancillary dataset quoted earlier) used 
by the LST retrieval are listed in Table 3.2 and described in this section.  
 
Table 3.2. Input list of derived sensor data. 

Name Type Description Dimension Unit 

Cloud mask input ABI level 1cloud mask data grid (xsize, ysize) unitless 

Snow/Ice mask input ABI level 2 Snow/Ice mask data grid (xsize, ysize) 0-1.0 fraction of 
snow cover 

Total 
Precipitable 

Water 
input ABI baseline TPW grid (xsize, ysize) mm 

Aerosol Optical 
Depth input ABI level 2 aerosol optical 

depth grid (xsize, ysize) unitless 

Land Surface 
Emissivity input ABI level 2 land surface 

emissivity grid (xsize, ysize) unitless 

 
• Cloud mask  

The ABI cloud mask (ACM) algorithm generates the option 1 product of a binary clear-sky 
mask, as well as a 4-level cloud mask which indicates four cloudiness conditions for each pixel: 
clear, probably clear, probably cloudy, and cloudy. Information about thin cirrus and active fire 
used to determine the LST quality flag is included in this product. 

 
• Total precipitable water  

The GOES-R AWG sounding team has developed the algorithm to generate the TPW as one of 
the baseline products, covering CONUS, full disk and mesoscale, with a horizontal resolution of 
10 km and accuracy at 1 mm and precision at 3 mm. This product offers better quality, higher 
spatial and temporal resolutions than the current NCEP forecast data. The ABI TPW is the 
primary TPW input for the LST algorithm. 

 
• Aerosol optical depth 

The AOD is used as one of the input to determine the LST quality flag. 
 

• Surface emissivity  
Land surface emissivity is an option-2 ABI product retrieved using time continuity.  This product 
would be the preferred input to LST algorithm because of the higher spatial, temporal resolutions 
and better quality in comparison to the monthly mean emissivity retrieval. Alternatively, MODIS 
monthly emissivity dataset is applicable for the purpose. 

 
• Snow/Ice mask  

Currently, snow cover is an ABI level-2 product measured as a fraction of snow cover (FSC) 
with a refresh rate of 60 minutes and ice cover is another ABI level-2 product with a refresh rate 
of every 180 minutes. The snow/ice mask can be derived from these ABI level-2 products.  
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In case the ABI snow/ice mask is not available at the GOES-R operational, the Interactive multi-
sensor snow and ice Mapping System (IMS) will be used for the snow/ice mask.  

3.3.3 Ancillary Data 
The following table lists and briefly describes the ancillary data required to run the LST.  By 
ancillary data, we mean data that requires information not included in the ABI observations or 
geolocation data. 
 
Table 3.3 Input of ancillary data. 

Name Type Description Dimension 
Land/sea mask input A land-ocean mask grid (xsize, ysize) 
Water vapor* input NCEP water vapor 6-hour forecast data 0.25 deg resolution 
Emissivity* input MODIS monthly emissivity 0.05 deg resolution 

IMS snow/ice 
mask* input Interactive multi-sensor snow and ice 

Mapping System 0.05 deg resolution 

* Alternative input data in case the corresponding ABI product is not available at the GOES-R operation.  
 

• Land/Sea mask  
The 1 km resolution land/sea mask will be used for GOES-R ABI products. It is created by 
SSEC/CIMSS based on NASA MODIS collection 5. Several categories are available in the 
land/sea mask, including shallow, moderate and deep oceans, land, shoreline, shallow, 
ephemeral, and deep inland water.  LST will be calculated for all land and inland water pixels. 

 
• Water vapor  

The water vapor information is extracted from the NCEP analysis and model forecast data. The 
Aviation model (AVN) provides global forecast every six hours and files in grib format can be 
downloaded through FTP. Currently we are using the 1° global coverage file, which may be 
replaced by higher resolution coverage at 0.25° in the future. An index file is available to point 
each ABI pixel to the corresponding TPW grid in the grib file. 

 
• Emissivity  

The Global Infrared Land Surface Emissivity is downloaded from the UW-Madison Baseline Fit 
Emissivity Database (http://cimss.ssec.wisc.edu/iremis/). This global database of infrared land 
surface emissivity is derived using input from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) operational land surface emissivity product (MOD11). The baseline 
fit method (Seemann et al., 2007), based on a conceptual model developed from laboratory 
measurements of surface emissivity, is applied to fill in the spectral gaps between the six 
emissivity wavelengths available in MOD11. Emissivity in the baseline fit database is available 
globally at ten wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 microns) with 
0.05 degree spatial resolution. Corresponding emissivity values will be extracted and mapped 
into the ABI full disk area. They can then be applied to the LST algorithm to generate LST 
products.  
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It is worth pointing out that ABI emissivity data, which is the option 2 ABI product, should be 
used instead of the MODIS emissivity once it is ready.  

 
• Snow/Ice mask  

The IMS snow and ice product is available daily for northern hemisphere. It incorporates a wide 
variety of satellite imagery (AVHRR, GOES, SSMI, etc.) as well as derived mapped products 
(USAF Snow/Ice Analysis, AMSU, AMSR-E, NCEP models, etc.) and surface observations. The 
product is presently used as an operational input into several NWS computer weather prediction 
models as well as several other governmental agencies. Currently it is available at about 4 km 
(6144x6144) grid from NSIDC with a slight delay. Near real-time gridded data is available in 
ASCII format by request (http://www.natice.noaa.gov/ims/). 
 
Details on the derivation of ancillary data can be referred to in the relevant AIT document 
“Algorithm Interface and Ancillary Data Description Document (AIADDD)”. It is worth noting 
that LST is generated for snow/ice pixels but indicated with QC flags. Therefore the requirement 
for snow/ice mask is limited for the QC flag control. It is also worth noting that current ABI 
snow/ice product is quantitative out to 55 degree of LZA and qualitative beyond that, while the 
LST is required to be out to70 degree. A product quality information (PQI) flag is defined to 
indicate the LST is derived within 55° LZA, or alternative snow/ice mask will be used. 

3.3.4 Algorithm Coefficients and Control values  
In addition to the sensor data and the ancillary data, algorithm coefficients and some criterion 
values for algorithm selection and for quality control flags will be ingested as the input data.  

3.4 Theoretical Description  

Theoretical details of the research are provided in this section. 

3.4.1 Physics of the Problem 
In clear sky condition, the top of atmosphere (TOA) radiance (I(ν)), which will reach to the 
satellite sensor, can be described by 
 
 𝐼𝐼(𝜆𝜆) = 𝐼𝐼𝑠𝑠(𝜆𝜆) + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆)↑ + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆)↓       (3.2) 
 
where Is(𝜆𝜆), Iatm(𝜆𝜆) and Iatm(𝜆𝜆) represent the radiance contributions from surface emission, 
atmospheric upwelling, and reflected downwelling radiance, respectively; 𝜆𝜆 is wave length of the 
sensing channel. The radiance components and their relationship are illustrated in Figure 3.3 
 
  
 
 
 
 
 

http://www.natice.noaa.gov/ims/
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Figure 3.3.  Radiation components reached to satellite sensor.  
 
Satellite LST retrievals are usually performed in infrared (IR) bands where the surface emission 
reaches its maximum, yet atmospheric absorption is significantly small. In IR bands, each of the 
components in Eq (3.2) can be expressed mathematically by, 

 
𝐼𝐼𝑠𝑠(𝜆𝜆) = 𝜀𝜀(𝜆𝜆)𝜏𝜏0(𝜆𝜆)𝐵𝐵(𝜆𝜆,𝑇𝑇𝑠𝑠) 
 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆)↑ = �𝐵𝐵(𝜆𝜆,
0

𝑧𝑧

 𝑇𝑇𝑝𝑝(𝑧𝑧))
𝜕𝜕𝜏𝜏(𝜆𝜆, 𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧                                                                 (3.3) 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆)↓ = (1 − 𝜀𝜀(𝜆𝜆))𝜏𝜏0(𝜆𝜆)�𝐵𝐵(𝜆𝜆,
𝑧𝑧

0

𝑇𝑇𝑝𝑝(𝑧𝑧))
𝜕𝜕𝜏𝜏(𝜆𝜆, 𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧 

 
where 𝜀𝜀 is the surface emissivity, 𝜏𝜏 is the atmospheric transmittance (𝜏𝜏0 is the atmospheric 
transmittance from surface to top of atmosphere), 𝑧𝑧 is the height from surface, 𝑇𝑇𝑠𝑠 is the surface 
temperature, 𝑇𝑇𝑝𝑝(𝑧𝑧) is the atmospheric temperature at height 𝑧𝑧, and 𝐵𝐵(𝜆𝜆,𝑇𝑇𝑠𝑠) is the spectral 
radiance emitted by a blackbody at temperature 𝑇𝑇𝑠𝑠 and wavelength 𝜆𝜆, which can be calculated 
with the Planck function (Eq. 3.4).  

 
𝐵𝐵𝜆𝜆(𝑇𝑇𝑠𝑠) =

𝑐𝑐1
𝜆𝜆5 �exp �𝑐𝑐2𝜆𝜆𝑇𝑇� − 1�

                                                                                  (3.4) 

 
where 𝑐𝑐1 and 𝑐𝑐2 are two constants (𝑐𝑐1 = 1.191 × 108𝑊𝑊 ∙ 𝜇𝜇𝑚𝑚4 ∙ 𝑠𝑠𝑟𝑟−1 ∙ 𝑚𝑚−2, and 𝑐𝑐2 = 1.439 ×
104𝜇𝜇𝑚𝑚 ∙ 𝐾𝐾) 
 
Eq. (3.2) and (3.3) are the so-called radiative transfer equations. All these magnitudes depend on 
the observation angle. From Equation (3.2), the earth surface emitted radiance 𝐼𝐼𝑠𝑠(𝜆𝜆) is a function 
of temperature and emissivity and gets attenuated along the atmospheric path to the sensor. The 
purpose of the LST algorithm is to retrieve the land surface temperature 𝑇𝑇𝑠𝑠 from the radiance 
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𝐼𝐼𝑠𝑠(𝜆𝜆) measured at the satellite sensor. In this problem, the surface temperature is physically 
coupled with two other factors: the surface emissivity and the atmospheric absorptions. 
Developing an LST algorithm means to find a solution to decouple the emissivity and the 
atmospheric absorption effects from the satellite received radiance.  

3.4.2 Mathematical Description of the LST Algorithm 
An analytic solution to equation (3.2) is not practical, because the integration of the terms 
requires good knowledge of the atmospheric profiles which is usually unavailable in real time. In 
addition, the land surface emissivity is coupled with the surface emission and reflection terms in 
the equation, so the number of unknowns is always larger than the number of equations, even 
though information from multiple channels is available. In the past thirty-five years, many 
approaches to the solution have been suggested (e.g., McMillin, 1975, Walton et al., 1998), and 
widely used to produce the LST product (e.g., Prata, 1993 and 1994; Caselles et al., 1997; Wan, 
1999).  

3.4.2.1 The Candidate Algorithms 
Over the past several decades, many algorithms have been proposed to treat the characteristics of 
various sensors onboard different satellites with different assumptions and approximations for 
the radiative transfer equation and the LSEs. These algorithms can be roughly grouped into three 
categories: single-channel methods, multi-channel methods, and multi-angle methods, provided 
that the LSEs are known a priori. If the LSEs are not known, the algorithms can be categorized 
into three types: stepwise retrieval method, simultaneous retrieval of LSEs and LST with known 
atmospheric information, and simultaneous retrieval (Li et al., 2013). The most widely used 
approach is the split window (SW) technique, in which the atmospheric effects are compensated 
using two or more adjacent TIR channels (typically at 10-12.5µm). The SW approach was first 
proposed by McMillin (1975) and has been successfully applied to retrieve sea surface 
temperature (SST). This method is simplistic and computationally efficient and does not require 
accurate atmospheric profiles. Encouraged by the success of the SW method in SST retrieval 
from the satellite measurements, many SW approaches have been proposed for LST retrieval 
(Atitar and Sobrino, 2008; Prata 1994; Price, 1984; Wan & Dozier, 1996, Sun et al., 2004) and 
widely used for producing the operational LST products (e.g., Wan, 1999; Caselles et al., 1997; 
Yu et al., 2009a; Sun et al., 2004; Hulley et al., 2016; Baker, 2013; Trigo et al., 2009; Liu et al., 
2019). However, its application to LST retrieval is challenging due to the following reasons: 
first, compared to water surface, thermal IR (TIR) emissivity of most land surface types varies 
considerably from unity, leading to significant errors in the linearization of the radiative transfer 
equation which forms the basis for the SW technique (McMillin and Crosby, 1984). The remote 
sensing community has been working to obtain high quality global land surface emissivity data 
(e.g., Borbas et al., 2008; Seemann et al., 2008; Hulley & Hook, 2009; Hulley et al., 2015; Wang 
et al., 2019); second, topographical and vegetation structural variability is complicated and 
satellite sensed brightness temperatures over a given target can differ significantly from pixel to 
pixel; moreover, spatial heterogeneity is more significant over land than over ocean, and a 
retrieved LST represents a complex integration of the observed signal within a pixel; finally, the 
spatial and temporal variation of atmosphere over land is almost always greater than that over 
oceans.   
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To determine a GOES-R enterprise LST algorithm, we tried to simplify the above complexities 
by assuming that our prescribed surface emissivity values were sufficiently accurate and the 
angular and spatial variations described above were negligible.  Note the GOES-R mission 
requirement document (MRD) and the GS-F&PS require use of emissivity values determined a 
priori (GOES-R Mission Requirement Document, 2007). Therefore, for the purposes of this 
document, we focused primarily on the atmospheric absorption correction issue. The SW 
technique is therefore a good choice since it is simple and robust for operational use, yet is 
sufficiently accurate to meet the mission’s requirement. 

 
We studied various SW LST algorithms from the literature (Price, 1984; Ulivieri and Cannizaro, 
1985; Becker and Li, 1990; Prata and Platt, 1991; Vidal, 1991; Ulivieri et al., 1994; Sobrino et 
al., 1993, 1994; Wan and Dozier, 1996; Caselles et al., 1997; Coll et al., 1997; Yu et al., 2008; 
Liu el al, 2019). We used eleven candidate algorithms including nine from the literature. (Table 
3.4).   
 
Table 3.4.  Candidate split window LST algorithms. 

No Formula# Reference 

1 
𝑇𝑇𝑠𝑠 = 𝐶𝐶 + �𝐴𝐴1 + 𝐴𝐴2

1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴3
∆𝜀𝜀
𝜀𝜀
� (𝑇𝑇11 + 𝑇𝑇12)

+ �𝐴𝐴4 + 𝐴𝐴5
1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴6
∆𝜀𝜀
𝜀𝜀
� (𝑇𝑇11 − 𝑇𝑇12) 

Wan & Dozier (1996); 
Becker & Li (1990). 

2 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1
𝑇𝑇11
𝜀𝜀

+𝐴𝐴2
𝑇𝑇12
𝜀𝜀

+ 𝐴𝐴3
1 − 𝜀𝜀
𝜀𝜀

 
Prata & Platt (1991); 

modified by Caselles et al. 
(1997). 

3 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(1 − 𝜀𝜀11)
+ 𝐴𝐴4∆𝜀𝜀 Coll & Valor (1997). 

4 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3
1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴4
∆𝜀𝜀
𝜀𝜀2

 Vidal (1991). 

5 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(𝑇𝑇11 − 𝑇𝑇12)𝜀𝜀11
+ 𝐴𝐴4𝑇𝑇12∆𝜀𝜀 Price (1984). 

6 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀 Ulivieri & Cannizzaro 
(1985). 

7 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀 + 𝐴𝐴4
∆𝜀𝜀
𝜀𝜀

 Sobrino et al. (1994). 

8 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(1 − 𝜀𝜀) + 𝐴𝐴4∆𝜀𝜀 Ulivieri et al. (1992). 

9 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(𝑇𝑇11 − 𝑇𝑇12)2
+ 𝐴𝐴4(1 − 𝜀𝜀11) + 𝐴𝐴5∆𝜀𝜀 Sobrino et al. (1993). 

10 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀
+ 𝐴𝐴4𝜀𝜀(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴5∆𝜀𝜀 Additional algorithm #1 
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As with most SW algorithms, our candidate algorithms explicitly use land surface emissivity 
values.  This contrasts with algorithms such as Sun and Pinker (2004) and Sikorsky et al. (2002) 
where emissivity information is indirectly incorporated through the use of different coefficient 
sets determined for different land surface types.  The latter approach must be tolerant to within-
class emissivity variability which can be as significant as between-class variability.  We prefer 
the algorithms of emissivity explicit since such algorithms allow easy incorporation of 
periodically updated land cover maps (e.g., annual maps from EOS/MODIS or seasonal from 
NPOESS/VIIRS), emissivity maps that accommodate within class variability (Yu et al., 2005), 
maps that include directional variability (Yu et al., 2006), or other related map improvements.  

3.4.2.2 Algorithm Selection 
The retrieval uncertainty of each candidate algorithm was analyzed with a comprehensive 
simulation dataset. The best performed algorithm was selected as the enterprise algorithm and its 
accuracy and precision were further tested with the satellite data and the in-situ LST 
measurements from the SURFace RADiation (SURFRAD) network. 
 
The MODTRAN atmospheric radiative transfer model (Berk et al., 2000) has been widely used 
in satellite remote sensing studies for over three decades. We used the MODTRAN 5.2 in this 
study, which uses an improved molecular band model, termed the Spectrally Enhanced 
Resolution MODTRAN (SERTRAN). It has a much finer spectroscopy (0.1 cm-1) than its 
predecessors (1 cm-1), resulting in more accurate modeling of band absorption features in the 
longwave TIR window regions (Berk et al. 2005). The radiative transfer simulation procedure is 
illustrated in Figure 3.4.  
 
The atmospheric profile database consists of 126 profiles generated from cloud-free radiosonde 
data available from the CrIS F98-Weather Products Test Bed Data Package (NOAA88, Rev. 1.0) 
and 354 profiles from Thermodynamic Initial Guess Retrieval (TIGR). TIGR data set, in its latest 
version, is a climatological library of 2311 representative atmospheric situations selected with 
statistical methods from 80,000 radiosonde reports (Chédin et al., 1985; Claud et al., 1991; 
Chevallier et al., 1998). Each situation is described, from the surface to the top of the 
atmosphere, by the values of the temperature, water vapor and ozone concentrations on a given 
pressure grid. TIGR profiles were checked by means of a cloud test in order to exclude impacts 
from cloud (Galve, 2008). The profiles represented a variety of atmospheric conditions, spanning 
a column water vapor range from 0.2 to 7.5 g/cm2 and a surface air temperature range from 240 
to 306 K (Figure 3.5) and spanned from 60º South to 70º North in latitude. 

11 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀
+ 𝐴𝐴4𝜀𝜀(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴5(𝑇𝑇11 − 𝑇𝑇12)∆𝜀𝜀 Additional algorithm #2 

#Note: 
T11 and T12 represent the top-of-atmosphere brightness temperatures of ABI channels 14 and 
15, respectively; 
ε=(ε11+ε12)/2 and ∆ε=(ε11-ε12), where ε11 and ε12 are the spectral emissivity values of the 
land surface at ABI channels 14 and 15, respectively; 
θ is the satellite view zenith angle. 
C,  A1, A2,  A3,  A4,  A5,  and A6 are algorithm coefficients. 
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Figure 3.4. Radiative transfer simulation procedure. 
 

 
Figure 3.5.  Distributions of total column water and surface air temperatures of the atmospheric 
profiles used in the simulation analyses. 
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To simulate a wide range of environmental conditions using a limited profiles set, we followed 
Yu et al. (2005) and varied the prescribed LST for each profile in a range as Ts - 10 < LST < Ts 
+ 10 K, where Ts is the land surface temperature of the profile, with a 1 K increment. For each 
prescribed LST, we iterated the prescribed sensor view zenith angle from 0 to 70º with 10º 
increment and emissivity from 0.90 to 0.999 with a step of 0.00125. 
 
Upon simulating the top-of-atmosphere radiances, we then conducted regression analyses for the 
algorithm development. The regression procedure is illustrated in Figure 3.6. 
 

 
Figure 3.6.  Procedure of the algorithm regression analyses. 
 
We first determined the mean channel radiance by integrating over the ABI sensor spectral 
response function (SRF).  The channel radiances were converted to corresponding brightness 
temperatures using the Planck function. This constructs a comprehensive brightness database for 
algorithm regression training. 
 
Because water vapor is the most significant atmospheric absorber in the thermal bands, we 
stratified the simulation data according to the water vapor. The stratification acknowledges the 
capacity of warm atmospheres to hold more water vapor, as is shown in Figure 3.5, and the 
degradation of LST algorithm performance with increasing water vapor. 
 
Due to significant differences in the discontinuity between LST and air temperature, during 
daytime and nighttime, many LST retrieval algorithms (or accompanying coefficient sets) were 
specified uniquely for daytime or nighttime use. We also performed regressions separately for 
the daytime and nighttime datasets. In addition, to better simulate real satellite data, we added 
Gaussian-distributed random noise to both the simulated brightness temperatures and the surface 
emissivity values. The standard deviations of the sensor Noise Equivalent Delta Temperature 
(NE∆T) and the surface emissivity noise are 0.1 K and 0.005 (unitless), respectively. The NE∆T 
value is the design requirement for ABI in channels 14 and 15; the assumed emissivity noise 
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standard deviation is 2.5 times the digitization error of the MODIS emissivity product, which is a 
candidate for the ABI LST derivation. 
 
Before conducting regression analysis with the simulated data and candidate algorithms, we also 
considered the natural Gaussian-like distribution of land surface and surface air temperatures as 
noted in Justin et al. (NGST technical report, personal communication, 2006).  That report used 
NCEP and ECMWF datasets for VIIRS LST algorithm analysis. We therefore applied a 
Gaussian function to filter the simulation data before running the algorithm regression process. 
Figure 3.7 shows the filtering results for the daytime dataset. A similar process was applied on 
the nighttime dataset. 
 

  

  
 
Figure 3.7. Daytime simulation data distribution in terms of the land surface and surface air 
temperature differences. The original simulation data (top panels) are pretty much evenly 
distributed in range of the temperature differences. The filtered data for both the dry (left) and 
moist (right) atmospheres are shown in the bottom panel. 

3.4.2.3 The enterprise algorithm 
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For each of the eleven algorithms, we calculated the bias and standard deviation of the 
regressions. It was found that most algorithms were able to yield similar performance. This 
primarily indicates the accuracy limitation of the current SW technique. 
 
Based on the algorithm performance, and its robustness and simplicity, additional algorithm # 1 
(Eq. 3.5) was selected as the enterprise algorithm (Liu et al., 2019). 
 

𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀 + 𝐴𝐴4𝜀𝜀(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴5∆𝜀𝜀  (3.5) 
 
where definitions of 𝑇𝑇11, 𝑇𝑇12, and 𝜀𝜀 are the same as those in Eq. 3.1, ∆𝜀𝜀 = (𝜀𝜀11 − 𝜀𝜀12) is the 
difference of the spectral emissivity of the land surface at ~11 µm and ~12 µm, 𝐶𝐶,𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4,
𝐴𝐴5 are the algorithm coefficients, stratified by day/night, atmospheric conditions, and satellite 
view zenith angles. 
 
Compared to the baseline algorithm, there exist two major differences: 1) the emissivity 
difference between the two window channels is explicitly included in the retrieval formula; 2) 
the atmospheric path length term is replaced with the stratification by satellite zenith angle. It 
should be noted that all results assume perfect cloud detection. That is, all these results are for 
truly cloud clear pixels. Residual cloud effects in pixels detected as clear will add significant 
noise to the LST retrievals 

3.4.2.4 The mitigation algorithm 
During post-launch testing of the GOES-17 ABI instrument, an issue with the instrument’s 
cooling system was discovered. The loop heat pipe (LHP) subsystem, which transfers heat from 
the ABI electronics to the radiator, is not operating at its designed capacity. The consequence of 
this is that the ABI detectors cannot be maintained at their intended temperatures under certain 
orbital conditions. Inadequate cooling of the infrared channels leads to partial loss of imagery 
during some of the overnight hours before and after the vernal and autumnal equinoxes. 
 
Infrared signals with long wavelengths can be swamped by infrared light emitted by warm parts 
of the imager, degrading the signal. Cooling the detectors reduces this thermal “noise” in 
observations. During some nighttime hours during certain parts of the year (before and after the 
vernal and autumnal equinoxes) (Figure 3.8), the sun heats up seven of the ABI detectors faster 
than they can be cooled. The detectors become warmer than they’re designed to operate, and 
they begin to radiate at temperatures closer to the wavelengths they’re attempting to detect from 
the Earth. Eventually, local emissions and dark current noise overwhelm the signal from the 
Earth, and the channels saturate, meaning a useful signal is not available.  
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Figure 3.8.  The 2019 prediction for peak longwave infrared focal plane module (FPM) 
temperature. The temperature on the Y-axis is the operating temperature of the ABI focal plane. 
During the pre- and post-equinox seasons, the sun is in the right position to heat up the focal 
plane, causing channel saturation that shows up as striping and noise in the imagery. 
 
Much progress has been made to optimize the performance of the GOES-17 data and the 
instrument is currently delivering 97% of the data it was intended to provide. From the 
perspective of the LST product, efforts have been devoted to the development of an alternative 
algorithm applicable to sensor data during the “hot” period. Such an algorithm is expected to 
improve the product quality and availability. 
 
Impacts of the FPM temperature to sensor data from different channels are different (Table 3.5). 
The design of the mitigation algorithm is to swap the band 15 used by the enterprise algorithm 
with a channel which is less impacted by the FPM temperature.  
 
Table 3.5.  Estimated GOES-17 ABI channel availability. 

Band Channel 
Estimated Unsaturated 
Signal Cold Season 
(Solstice) 

Estimated Unsaturated 
Signal Warm Season (Pre-
Eclipse) 

1 0.47 µm 24 hr 24 hr 
2 0.64 µm 24 hr 24 hr 
3 0.86 µm 24 hr 24 hr 
4 1.38 µm 24 hr 24 hr 
5 1.61 µm 24 hr 24 hr 
6 2.25 µm 24 hr 24 hr 
7 3.90 µm 24 hr 24 hr 
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8 6.18 µm 24 hr 18 - 20 hr 
9 6.95 µm 24 hr 18 - 20 hr 
10 7.34 µm 24 hr 18 - 20 hr 
11 8.50 µm 24 hr 21 hr 
12 9.61 µm 24 hr 18 - 20 hr 
13 10.35 µm 24 hr 24 hr 
14 11.20 µm 24 hr 24 hr 
15 12.30 µm 24 hr 21 hr 
16 13.30 µm 24 hr 18 - 20 hr 

 
A comprehensive evaluation and analysis leads to the combination of bands 13 and 14, while the 
retrieval formula remains as the enterprise algorithm (Eq. 3.6).   
 

𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇10 + 𝐴𝐴2(𝑇𝑇10 − 𝑇𝑇11) + 𝐴𝐴3𝜀𝜀 + 𝐴𝐴4𝜀𝜀(𝑇𝑇10 − 𝑇𝑇11) + 𝐴𝐴5∆𝜀𝜀  (3.6) 
 
where 𝑇𝑇10 and 𝑇𝑇11 represent the top-of-atmosphere brightness temperatures at ~10 µm and ~11 
µm, respectively, 𝜀𝜀 = 0.5 ∗ (𝜀𝜀10 + 𝜀𝜀11) and ∆𝜀𝜀 = (𝜀𝜀10 − 𝜀𝜀11) are the average and difference of 
the spectral emissivity of the land surface at ~10 µm and ~11 µm, respectively, 𝜃𝜃 is the satellite 
view zenith angle, and 𝐶𝐶,  𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4, 𝐷𝐷 are the algorithm coefficients, stratified by 
day/night and different atmospheric conditions. 
 
A prescribed FPM temperature threshold value is used to determine whether enterprise or 
mitigation algorithm is used for LST retrieval, i.e., if the FPM temperature is lower than the 
given threshold value, the enterprise algorithm will be used, and the mitigation algorithm will be 
adopted otherwise. Note that the same algorithm will be applied to the retrieval of the whole 
satellite scene at any given time for better spatial consistency. 

3.4.3 Algorithm Output 
Three LST products are generated corresponding to three ABI scan coverages, CONUS, 
Mesoscale, and FD.  Output of the LST products mainly contain three data arrays: the LST 
values, the data quality flags (DQF), and the product quality information (PQI) flags. To 
minimize storage request of the LST product, the LST value is stored in a short integer using the 
following scaling equation: 
 
 𝑇𝑇𝑠𝑠 =  𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎 × 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔_𝑓𝑓𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟   +  𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑜𝑜𝑓𝑓                             (3.7) 
 
where Tint is the integer from the retrieved LST, 𝑇𝑇𝑠𝑠. The scaling_factor and offset values can be 
found in the variable attributes.  
 
The PQI flags are 2-byte bitwise short integer, which contains quality information of LST 
production for each pixel.  In addition, a similar set of quality control (QC) flags is required for 
operational monitoring purpose. The LST values and quality flags data arrays are described in 
Table 3.6. 
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Table 3.6. Algorithm output data. 
Name Type Description Dimension 

LST values Short 
Integer 

Retrieved land surface temperature value for each 
pixel of the scanning mode. Scaling factor is 100, 
offset is 10000, corresponding to Eq (3.7). 

grid (xsize, ysize) 

Product 
Quality 

Information 
(PQI) flags 

Short 
Integer 

Bit-based product quality information for each 
pixel of the scanning mode: 
Land, cloudiness, sensor data quality, day/night,  
dry/moist, very moist, large view zenith, very 
cold surface, etc. 

grid (xsize, ysize) 

Data 
Quality 

flags 
(DQF) 

Short 
Integer 

Bit-based quality control flags for each pixel of 
the scanning mode 
 

grid (xsize, ysize) 

  
The PQI is comprised of a total of 16 bits holding the test results (yes/no) for each of the various 
tests and flags. Such information is designed to help users in their applications. The DQF is 
solely related to the quality of the LST product, with 0 indicating good quality, 1 indicating 
medium, 2 indicating low, and 3 indicating no retrieval.  Details of the LST PQI can be found in 
Table 3.7 and the DQF flags are defined in Table 3.8. Table 3.9 gives the definition of LST 
Quality. 
 
Table 3.7.  Product quality information flags of the full resolution LST product. 
Byte Bit Flag Source Effect 

1 

1-0 LST Quality LST 00=high, 01=medium, 10=low, 
11=no retrieval 

3-2 Cloud Condition Cloud Mask 00=clear, 01=probably clear, 
10=probably cloudy, 11= cloudy 

4 Input Data Quality SDR & Other 
Input 

0=normal, 1=output of space, bad 
data, or missing data 

5 AOD at 550 nm (slant 
path) AOD 0=within range(AOD<=1.0); 1=out 

of range (AOD >1)  or missing 

7-6 Land Surface Cover Land/Sea & 
Snow/Ice Mask 

00=land;01=snow/ice;10=in land 
water;11=coastal 

2 

1-0 Water vapor condition TPW 
00=very dry (wv<1.5g/cm

2
); 01= 

dry [1.5, 3); 10=moist [3, 4.5);  11= 
very moist [4.5+) 

2 Emissivity Availability Emissivity 0=AWG emissivity, 1=Other 

3 View Angle SDR 0=normal, 1=large view angle (>55 
deg) 

4 Day/night SDR 0=night (solar zenith > 85deg), 
1=day (solar zenith <= 85 deg) 

5 Thin cirrus Cloud Mask 0= no cirrus, 1= cirrus  
6 Fire contamination  Cloud mask 0= no , 1= yes 
7 Reserved  Reserved for future use 
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Note: No retrieval of AOD and thin cirrus during nighttime. LST Quality does not depend on 
AOD and thin cirrus when they are not retrieved. 

 *In case 01 (snow/ice) and 10 (in-land water) coexist, surface type will be set to 01 (snow/ice) 
 
Table 3.8.  Data quality flags of the full resolution LST product. 
Byte Bit Flag Source Effect 

1 
1-0 LST Quality LST 00=high, 01=medium, 10=low, 11=no retrieval 

2-7 Empty  Reserved for future use 

2 0-7 Empty  Reserved for future use 
 
Table 3.9.  Definition of LST Quality in PQI and DQF. 
Valid 
LST 

View 
Angle 

Fire AOD in 
range 
(Available) 

Thin 
Cirrus 
(Day) 

Cloud Index 
Clear Probably Clear Probably 

Cloudy 
yes x x x yes Low Low Low 
yes x x no x Low Low Low 
yes x yes yes x Low Low Low 
yes >55 no yes no Medium Medium Low 
yes <=55 no yes no High Medium Low 
no x x x x No Retrieval No Retrieval No Retrieval 
Note: x: indifferent 
          AOD is not retrieved under nighttime, snow/ice surface, cloud, etc. If there is no AOD 
retrieval, the AOD range criteria will be excluded in above matrix. Similarly because thin 
cirrus detection is only available at daytime, it is excluded in above matrix for nighttime pixel 
LST quality determination.  

 
In addition to the pixel level LST values, PQI and quality control flags, metadata are needed in 
the LST product describing the common and LST specific information about the product. The 
GOES-R AWG and the Land Team recommend that the following metadata (Table 3.10) should 
be included in the ABI LST products. 
 
Table 3.10.  Metadata defined for the LST product file.  
METEDATA TYPE DEFINITOIN 
flag_mitigation common 0: enterprise; 1: mitigation 
max_LST common Maximum LST within valid range 
min_LST common Minimum LST within valid range 
mean_LST common Mean LST within valid range 
standard_deviation
_LST common Standard deviation of LST within valid range 

count_space common Count of pixels with space view 
count_land common Count of pixels on land, including those with no LST retrievals  

count_retrieved common Count of pixels with LST retrievals, including those beyond 
valid range 
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count_within_range common Count of pixels with LST within valid range 
count_clear common Count of LST retrievals with clear condition 
count_probably_cle
ar common Count of LST retrievals with probably clear condition 

count_high_quality common Count of LST retrievals with high quality 
count_medium_qua
lity common Count of LST retrievals with medium quality 

count_low_quality common Count of LST retrievals with low quality 
count_large_angle common Count of LST retrievals with large view angle 

 
It is noted that LST values is not calculated for pixels indicated as cloudy, bad/out of 
space/missing data, and ocean. Inland water pixel is considered as land pixel and the LST over 
such a pixel will be calculated. 
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4 TEST DATASETS AND OUTPUTS 
The selected algorithm (10) is evaluated by validation with in-situ LST measurement. All 
following references in this section to “the algorithm” will refer to algorithm 10.  

4.1 Enterprise LST Test Outputs 

The enterprise algorithm was applied to data from both GOES-16 and GOES-17. Some of the 
required input are not available yet, e.g., enterprise cloud mask, enterprise TPW. The primary 
sensor data are available from the existing baseline processing system. Major derived sensor 
data, including enterprise cloud mask, TPW, AOD, snow/ice mask are not available and replaced 
by their baseline counterparts. It is assumed that this will not significantly impact the quality of 
the enterprise LST product.  Emissivity data used for this test is the MODIS emissivity monthly 
climatology currently being used in the baseline algorithm. The LUT is stratified by TPW, 
satellite view zenith angle, and day/night conditions. Figure 4.1 shows an example of the 
enterprise LST output from GOES-East.  
 

 
Figure 4.1.  Example GOES-16 Full Disk enterprise LST output. 
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4.2 Validation with SURFRAD In-situ Measurement 

4.2.1 SURFRAD data 
Though challenging, remotely sensed LST must be validated Traditionally, LST validation is 
carried out via its direct comparison to in-situ LST measurements [Yu et. al, 2012]. Multiple 
factors can have significant impacts on the validation. Compared to the 2 km resolution of 
CONUS and MESO LSTs and 10 km resolution of FD LST, the ground station usually observes 
an area within a few tens of meters. The mismatch of the field of view requires that the in-situ 
station site is homogeneous enough to well represent a satellite pixel. This is rarely the case since 
LST usually has very large spatial variability. Moreover, a good estimate of the broadband 
surface emissivity is needed to evaluate the in-situ LST measurement. Due to its rapid temporal 
variation, in-situ LST measurements must be well matched in time to the satellite counterpart. A 
comprehensive LST validation is impossible unless these problems can be solved.    
 
Based on the above factors, the National Oceanic and Atmospheric Administration’s (NOAA) 
Surface Radiation budget (SURFRAD) network (Yu et al, 2012; Augustine & Dutton, 2013) is 
selected for the validation of GOES-R LST. It is the first U.S. national-scale network to 
continuously measure the land surface radiation budget since 1995. It includes seven long-term 
observation stations (Figure 4.2) and covers a variety of different land surface types, including 
evergreen-broadleaf-forest, deciduous-broadleaf-forest, mixed-forest, closed-shrubland, open-
shrubland (desert), woody-savanna, grassland, cropland, crop-mosaic, snow, and barren/desert.  
 

 
Figure 4.2.  Distribution of SURFRAD stations in the CONUS. 
 
SURFRAD provides in-situ measurements of downwelling and upwelling infrared radiation, 
along with other meteorological parameters [Augustine et al., 2005]. Due to its high quality, 
existence of long-term time series, and systematic reliability, the data have been extensively used 
to support satellite system validation, numerical model verification, and modern climate, 
weather, and hydrology research applications.  
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SURFRAD LST is derived from the upwelling and downwelling radiation. The observed 
upwelling (𝐹𝐹↑) and downwelling (𝐹𝐹↓) radiative fluxes are converted to temperature as follows: 
 

𝐹𝐹↑ = 𝜀𝜀𝜀𝜀𝑇𝑇𝑠𝑠4 + (1 − 𝜀𝜀)𝐹𝐹↓                                                                                    (4.1)  
 
where ε is the broadband surface emissivity and σ is the Stefan-Boltzman constant (σ= 
5.67051x10-8 Wm-2k-4). The station LST is then calculated using the following equation: 
 

𝑇𝑇𝑠𝑠 = �
𝐹𝐹↑ − (1 − 𝜀𝜀)𝐹𝐹↓

𝜀𝜀𝜀𝜀
�

1
4

                                                                                            (4.2) 

A daily emissivity product has been developed by the GOES-R LST Algorithm Working Group 
(AWG) to evaluate the in-situ LST.  

4.2.2 Match-up GOES-16 and GOES-17 Data with SURFRAD 
Data from both GOES-16 and GOES-17 were collected since operational products from the two 
are available. The enterprise algorithm was applied to the CONUS data from both satellites. The 
GOES-16 LST from 12/14/2017 to 8/31/2019 and the GOES-17 LST from 8/12/2018 to 
8/31/2019 were used for the validation with the in-situ measurements. 

 
The satellite LST is matched to the in-situ observations in both time and space. The maximum 
differences are one minute in time and 0.02º in space, respectively. Since LST variability in time 
and space can be very large, the satellite pixel size and the temporal output period are used as the 
maximum spatial difference and temporal difference, respectively, in order to obtain the closest 
matchup between the satellite product and its in-situ counterpart. To ensure the best comparison 
quality, an effective cloud filtering is needed. In baseline processing system, the four-level cloud 
mask information, clear, probably clear, probably cloudy, and cloudy, were included in the cloud 
mask intermediate product (IP), which was not available for a significant amount of time. Only 
two-level cloud mask information, clear (including clear and probably clear) and cloudy 
(including probably cloudy and cloudy), can be used in filtering out the cloudy matchups. To 
reduce the potential cloud contamination and to obtain more objective validation results, a 
simplified multi-step additional cloud filtering procedure was used after the application of the 
two-level baseline cloud mask. The matchup is determined as being potentially impacted by 
cloud if any of the following three criteria satisfies: 
 

1) If any neighboring pixel (3x3 box centered at the matchup pixel) is flagged as cloudy; 
2) If the standard deviation of the band 14 brightness temperature in the neighboring 3x3 

pixel box is larger  than a threshold value; 
3) If the standard deviation of the 30-minute (centered at the matchup time) downwelling 

radiation from in-situ observations is higher than a predetermined threshold value. 

4.2.3 Validation Results and Analysis 
Figure 4.3 shows the validation results of the enterprise LST from both GOES-16 and GOES-17 
with SURFRAD in-situ measurements. As a reference the corresponding baseline LST validation 
results are also included.  
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Figure 4.3.  LST validation results of enterprise GOES-16 (upper left), baseline GOES-16 (upper 
right), enterprise GOES-17 (lower left), and baseline GOES-17 (lower right). 
 
The enterprise algorithm is able to outperforms the baseline algorithm in retrieval bias from both 
GOES-16 and GOES-17.  The detailed statistics for each site can be found in Tables 4.1 and 4.2 
for GOES-16 and GOES-17, respectively. 
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Table 4.1.  Validation results of enterprise and baseline GOES-16 LSTs with each SURFRAD 
site. 

Site Number Enterprise LST Baseline LST 
Accuracy (K) Precision (K) Accuracy (K) Precision (K) 

Bondville 3227 1.16 2.05 0.24 2.08 
Boulder 3161 -0.44 1.59 -1.14 1.60 
Desert Rock 3275 -2.63 1.84 -3.54 1.83 
Fort Peck 2937 -0.32 1.88 -1.01 1.95 
Goodwin Creek 3566 1.59 1.78 0.61 1.76 
Penn State 1995 1.80 2.26 1.14 2.17 
Sioux Falls 3460 0.62 1.96 -0.16 1.99 

 
Table 4.2.  Validation results of enterprise and baseline GOES-17 LSTs with each SURFRAD 
site. 

Site Number Enterprise LST Baseline LST 
Accuracy (K) Precision (K) Accuracy (K) Precision (K) 

Bondville 395 1.41 1.94 0.38 1.98 
Boulder 1375 -0.35 1.28 -1.08 1.36 
Desert Rock 1736 -2.41 1.73 -3.48 1.74 
Fort Peck 1314 -0.81 2.20 -1.57 2.28 
Goodwin Creek 383 1.18 2.41 -0.04 2.41 
Penn State 134 1.78 1.61 0.77 1.63 
Sioux Falls 376 0.71 1.40 -0.30 1.54 

 
The validation results are quite consistent between GOES-16 and GOES-17, where the 
performance of the enterprise algorithm at relatively dry site, e.g., Boulder, Desert Rock, Fort 
Peck, is significantly better than the baseline algorithm. This is particularly the case for Desert 
Rock site, at which the significant underestimate by baseline algorithm (around 3.5 K in both 
GOES-16 and GOES-17) was reduced by ~1 K with the enterprise LST results. More analysis is 
needed to improve the performance of the enterprise algorithm at more vegetated areas. 

4.3 Mitigation Algorithm Evaluation 

The mitigation algorithm was applied to the GOES-17 data and compared to the SURFRAD in-
situ measurement (Figure 4.4). It is found that the LST for both daytime and nighttime are able 
to meet the mission requirement. Table 4.3 lists the detailed comparison results with each of the 
SURFRAD sites. It is worth mentioning that the mitigation algorithm works extremely well at 
Desert Rock site, whose underestimate is reduced to around 1 K. 
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Figure 4.4.  GOES-17 mitigation LST validation results with SURFRAD in-situ observations. 
 
Table 4.3.  Validation results of mitigation GOES-16 LSTs with each SURFRAD site. 
Site Number Accuracy (K) Precision (K) 
Bondville 395 2.28 2.03 
Boulder 1375 0.38 1.31 
Desert Rock 1736 -1.01 1.78 
Fort Peck 1314 -0.19 2.31 
Goodwin Creek 383 1.35 2.11 
Penn State 134 2.50 1.65 
Sioux Falls 376 1.13 1.58 

 
In order to analyze the performance of the algorithm with different FPM temperature, the GOES-
17 data on August 22, 2019 was used to compare its GOES-16 counterpart (Figure 4.5). During 
the course of this day, the FPM temperature changes from 81 K to as high as 105 K. In this 
comparison, the GOES-16 LST was projected to the GOES-17 grids. 
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Figure 4.5.  upper: mean difference of reprocessed baseline (red), enterprise (black), and 
mitigation (blue) LSTs with the corresponding GOES-16 LST; lower: the FPM temperature 
evolution of the day. 
 
It is observed that the GOES-17 enterprise LST is closer to the GOES-16 LST throughout the 
day. When FPM temperature is relatively low, the mitigation LST performs slightly worse than 
or similar to the enterprise LST. When FPM temperature is high, e.g., beyond 90 K, both 



 

 44 

enterprise and baseline LSTs significantly differ from the GOES-16 LST, while the mitigation 
LST is stably close to the latter. 
 
The above analyses show the potential advantages by using the mitigation algorithm when FPM 
temperature is high. However, at the time of this analysis, we do not have access to the 
upstreaming input data of the mitigation version. More analysis is needed when all necessary 
input is ready. 

4.4 Error Budget 

In the algorithm evaluation process, as mentioned earlier, there are several issues that should be 
further studied in the match-up dataset comparisons. Difference between the satellite pixel-size 
measurement and the ground spot-size measurement must be characterized for a high quality 
validation procedure.  More accurate broadband emissivity values are needed to better estimate 
the ground LSTs.  
 
Cloud contamination is still a problem even if we have used a stringent cloud filtering procedure 
in generating the match-up dataset. It is found that a little threshold value or procedure change 
will have significant impact to the output match-up data pairs, though the overall validation 
results are not obviously affected.   
 
All the above factors may potentially degrade the algorithm performance when it is applied for 
the real GOES-R satellite data.  
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5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

The LST algorithm selected is mathematically simple, and requires no complicated mathematical 
routines. In operations it will be robust and fast enough in terms of the algorithm latency 
requirement (< 15 minutes, goal) using current computer power. There is no specific numerical 
computation requirement needed. For storage consideration, LST values should be saved in two-
byte integers, with scale factors (intercept and slope) defined for the entire dataset. Quality flags 
for each pixel value should be bit-flag definitions, to minimize data storage.  

5.2 Programming and Procedural Considerations 

The LST algorithm is a pixel-by-pixel algorithm, implemented in sequential mode. Because of 
the algorithm simplicity, it requires small amount of code, with basic mathematical routines. 
However, since the LST algorithm requires ancillary datasets such as emissivity data and the 
total column atmospheric water vapor data, pre-calculated lookup tables may be needed for 
mapping the ancillary datasets to the ABI pixel geolocation. Besides, the algorithm processing 
routines should be programmed in block functions for integration ease.  
 
Due to the algorithm coefficients clarification for difference atmospheric conditions (day/night, 
dry/moist), spatial discontinuity of the derived LST field is a concern, though such discontinuity 
is not obvious in the proxy data tests. Further verification should be performed to ensure it is not 
a real problem.     

5.2.1 Configuration of Retrieval 
The primary adjustable parameters for the LST retrieval are the algorithm coefficients that are 
stratified for different atmospheric conditions and satellite view angles. Number of stratifications 
and criterion values for these conditions should be adjustable in order to optimize the algorithm 
if needed. Source of ancillary datasets should be configurable for the best dataset. And finally, it 
should be kept in mind that metadata used for the product may be modified, reduced and added 
in later phase of the product generation.    

5.3 Quality Assessment and Diagnostics 

The LST retrieval will be assessed and monitored. First, a set of quality control flags will be 
generated with the LST product for retrieval diagnostics, as is presented in Section 3.4.3. The 
quality control flags will indicate the retrieval conditions, including the land/non-land surfaces 
(i.e., ocean, snow, ice, water etc.), atmospheric water vapor status (i.e., dry, moist and very moist 
conditions), day and night, large view angle, very cold surface, etc.  Details are shown in Table 
3.7. LST maps and statistical information will be generated and reviewed for quality assessment. 
  



 

 46 

5.4 Exception Handling 

The algorithm will handle exceptions through the quality control flags. In calculating the LST for 
each pixel, quality control flags from input datasets will be examined for bad sensor data (e.g., 
missing or no sensor data). Pixels with space view will be skipped. Availability of other ancillary 
datasets such as emissivity and water vapor will also be checked. When the necessary input data 
is not available, the retrieval will be skipped, however, the corresponding quality flags will still 
be processed to indicate the type of the exception. 
 
In case the ABI derived sensor data are used as input to the LST algorithm, if the ABI snow 
mask, land surface emissivity, and TPW are not available, alternative ancillary data should be 
checked first for LST algorithm input before the LST calculation is skipped.   

5.5 Algorithm Validations 

Near-real-time validation and monitoring of the baseline LSTs from GOES-16 and GOES-17 is 
being conducted, including the visualization component, the data verification component, and a 
weekly routine validation module. These are being automatically run since the beginning of the 
LST products from both satellites. The system is designed not only to monitor the product and 
ensure its long-term stability, but also to accumulate long time series of data with in-situ 
measurement for algorithm improvement. This dataset plays a crucial role in the enterprise 
algorithm development, selection, and improvement. It will be adapted to the enterprise LST 
once it is in operation.  
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6 ASSUMPTIONS AND LIMITATIONS 
The following sections describe the limitations and assumptions used in the current version of the 
LST. 

6.1 Assumed Algorithm Performance 

The following assumptions have been made in developing and estimating the performance of the 
LST retrieval algorithm and products, including proposed mitigation strategies in parentheses. 
 

• The ABI cloud mask is available at the time of LST retrieval (Use alternative built-in 
algorithm to identify cloudy pixels), 

• High quality dynamic ABI land surface emissivity dataset is available (Use the monthly 
mean emissivity from the CIMSS baseline fit emissivity database as an alternative), 

• ABI baseline TPW dataset is available (Use the NCEP analysis and forecast water vapor 
dataset).  

• ABI brightness temperature data in channels 14 and 15 are available, calibrated and 
navigated, and are not distorted (set quality flag to bad pixels and no LST retrieval is 
performed). 

• Even with the mitigation algorithm, degradation of the product is expected when the FPM 
temperature is high. 

 
The LST retrieval algorithm is applicable only on cloudless pixels. LST effects due to roughness 
and/or structure of land surface, the emissivity directional feature and its variation in a pixel are 
not handled in the algorithm. The retrieved LST value is an effective land surface skin 
temperature over isothermal mixed pixel. The retrieval accuracy may be reduced significantly in 
regions with heavy atmospheric water vapor loading (e.g. > 5.0 g/cm2). Also, the retrieval may 
be questionable in regions with very low LST and where the surface air temperature is higher 
than LST.  

6.2 Assumed Sensor Performance 

It is assumed that the GOES-R ABI sensor will meet its specifications as documented in the ABI 
Performance Operational Requirements Document (PORD) (417-R-ABIPORD-0017). In case 
the sensor performance is not met, the performance of LST algorithm may be affected, with an 
uncertainty in meeting the product requirement. With the LHP overheating issue, degradation of 
the product and reduction of the data availability are expected when the FPM temperature is high 
even with the mitigation algorithm.    

6.3 Potential Improvements 

The large diurnal variability of LST is something conceptually understood, but poorly described 
quantitatively and not explicitly accounted for in the algorithm.  The amplitude of the diurnal 
cycle is determined by surface cover, specifically the green vegetation fraction and soil moisture.  
The Bowen ratio over bare dry soil is high and over transpiring vegetation is low, and therefore 
green vegetation fraction in each pixel is important to LST and its diurnal range, with diurnal 
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variation much larger in low vegetation pixels.  A second contributor to LST variation is the 
fraction of surface shadowing seen from the observing satellite.  This effect arises because 
shaded surfaces are significantly cooler than sunlit surfaces, so the apparent shadow fraction in a 
pixel is important.  It, of course, varies according to the relative geometry of the sun and satellite 
and is changing throughout daylight hours. All of these factors should be factored into the LST 
algorithm and work on that problem is planned. 
 
In addition, we are working on an inversion method that can derive the LST and the surface 
emissivity simultaneously using multi-channel and multi-observation measurements. Originally, 
such method was applied to the EOS/MODIS mission through its day and night observations 
over a pixel (Wan, 2008). The method can be applied to GOES-R ABI data better since it 
provides multiple observations over a pixel in a short time interval, which ensures constant 
emissivity during the time which is the baseline of the inversion method. We simplified the 
method significantly and have had the output stable and faster (Yu et al., 2009d). 
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APPENDIX A The Baseline Algorithm 
As of now, the baseline algorithm is the one being implemented in the ground system. Its details 
are provided as follows. 

A.1 Processing Outline 

The processing outline of the baseline LST is summarized in Figure A.1. The LST retrieval for 
each pixel is started by extracting ABI sensor datasets including brightness temperatures, solar-
target-sensor geometry, pixel geolocation and the sensor data quality control flags. Following 
that, the process extracts ancillary datasets which can be categorized as ABI and non-ABI related 
datasets. The ABI related ancillary datasets include the ABI cloud mask and snow/ice mask, 
which are level 2 ABI products and are listed as dependency in Figure 3.1. While a snow/ice 
mask is required, it may be supplied either as ABI derived ancillary data, if available, or as non-
ABI derived ancillary data with more details in the following section. Currently the ABI 
snow/ice product is the fractional snow coverage; from which the snow/ice mask can be derived, 
though a threshold is to be determined for such a derivation. The ABI land team is working with 
other algorithm teams on it since the snow/ice mask is widely required. The non-ABI related 
datasets include the land/sea mask, the emissivity, and the NCEP water vapor (WV). Note that 
ABI Emissivity product has been developing since 2009; the LST required emissivity input 
maybe switched as ABI related ancillary data.  Note also that ABI may provide WV product with 
higher spatial resolution than the NCEP WV does. Once quality of the ABI WV product is 
validated, it should replace the NCEP WV as the input. In addition, algorithm coefficients and 
some processing control values are read in this step. Detail information on input datasets will be 
provided shortly in Algorithm Input sub-section. Next, the ancillary datasets (land/sea mask, 
snow/ice, emissivity and NCEP WV) are mapped to the ABI pixel location, and land checking 
process is performed to label each pixel with land/sea, inland water, snow/ice properties. Such 
ancillary data check information will be recorded in quality control flags of the LST data. Then, 
the ABI sensor data is filtered using the cloud mask for ensuring that only the cloud clear and 
probably clear pixels are processed for the LST retrieval. Before calculating LST for each 
cloudless and land masked pixel, day/night time flag is determined from the solar zenith angle of 
the sensor geometric data; and dry/moist atmospheric condition flag is determined using the 
NCEP water vapor information. LST of the pixel is calculated accordingly with the 
daytime/nighttime and dry/moist flags since the algorithm coefficients are stratified for the 
conditions.  LST will be calculated for snow/ice pixels but indicated in the quality control flags. 
Meanwhile, flags of large view angle and very cold surface will be indicated for such pixels. 
Finally, the calculated LST values and their associated quality control flags, which were 
generated in each of the above steps, are combined with the LST product package and are written 
to files for user access. 
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*The ABI WV data may replace the NCEP WV if its quality is verified.   
Figure A.1. High Level Flowchart of the LST production for illustrating the main processing steps. 

A.2 Algorithm Input 

The primary sensor data, the derived sensor data, and the ancillary data for baseline LST 
retrieval are listed in Tables A.1, A.2, and A.3. 
 
Table A.1. Input list of primary sensor data. 

Name Type Description Dimension Unit 

Ch14 brightness 
temperature input 

Calibrated ABI level 1b 
brightness temperatures at 

channel 14 
grid (xsize, ysize) Degree K 

Ch15 brightness 
temperature input 

Calibrated ABI level 1b 
brightness temperatures at 

channel 15 
grid (xsize, ysize) Degree K 

Latitude input Pixel latitude grid (xsize, ysize) Degree 
Longitude input Pixel longitude grid (xsize, ysize) Degree 

Solar zenith input ABI solar zenith angles grid (xsize, ysize) Degree 
View zenith input ABI view zenith angle grid (xsize, ysize) Degree 

QC flags input ABI quality control flags with 
level 1b data grid (xsize, ysize) Unitless 
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Table A.2. Input list of derived sensor data. 
Name Type Description Dimension Unit 

Cloud mask input ABI level 1cloud mask data grid (xsize, ysize) unitless 

Snow/Ice mask input ABI level 2 Snow/Ice mask data grid (xsize, ysize) 0-1.0 fraction of 
snow cover 

Total 
Precipitable 

Water 
input ABI baseline TPW grid (xsize, ysize) mm 

Land Surface 
Emissivity input ABI level 2 land surface 

emissivity grid (xsize, ysize) unitless 

 
Table A.3 Input of ancillary data. 

Name Type Description Dimension 
Land/sea mask input A land-ocean mask grid (xsize, ysize) 
Water vapor* input NCEP water vapor 6-hour forecast data 0.25 deg resolution 
Emissivity* input MODIS monthly emissivity 0.05 deg resolution 

IMS snow/ice 
mask* input Interactive multi-sensor snow and ice 

Mapping System 0.05 deg resolution 

* Alternative input data in case the corresponding ABI product is not available at the GOES-R operation.  

A.3 Algorithm Selection 

Nine different algorithms (Table A.4) were selected as candidate algorithms for the ABI. Each 
algorithm consists of a “base” SW algorithm plus a path length correction. The base algorithms 
were adapted from the literature and represent a variety of formulations in terms of using the 
thermal infrared brightness temperatures and surface emissivity values.  The path length 
correction, which is the last term in each algorithm, was added for additional atmospheric 
correction (Sikorski et al., 2002; Walton et al., 1998). Geometric analysis shows that the 
atmospheric path length at 60o of the satellite zenith angle is about 2 times larger than that at the 
nadir.  Yu et al. (2008) showed that, if an algorithm’s coefficients are determined for typical 
column water vapor amounts, algorithm accuracy can degrade significantly at large view angles 
unless a corrective term is applied. Therefore, we used the term, (𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1), for path 
length correction. A detailed description of this term is in Yu et al. (2008). 
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Table A.4. Candidate split window LST algorithms.  Each algorithm is composed of two parts: 
the base split window algorithm and path length correction (the last term in each algorithm). 
The base split window algorithms are adapted from those published split window algorithms as 
referred in the references, while the path length term is particularly added for additional 
atmospheric correction. 

 
For each of the 9 algorithms, we calculated the bias and standard deviation of the regressions. 
Figure A.2 shows scatter plots of the regression results for the daytime dry atmosphere cases. It 
indicates that all algorithms perform well for an LST range from about 255 K to 305 K. The 
standard deviation (STD) of the differences between the prescribed LSTs and the retrieved LSTs 

No Formula# Reference 

1 
𝑇𝑇𝑠𝑠 = 𝐶𝐶 + �𝐴𝐴1 + 𝐴𝐴2

1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴3
∆𝜀𝜀
𝜀𝜀
� (𝑇𝑇11 + 𝑇𝑇12)

+ �𝐴𝐴4 + 𝐴𝐴5
1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴6
∆𝜀𝜀
𝜀𝜀
� (𝑇𝑇11 − 𝑇𝑇12)

+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 

Wan & Dozier (1996); 
Becker & Li (1990). 

2 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1
𝑇𝑇11
𝜀𝜀

+𝐴𝐴2
𝑇𝑇12
𝜀𝜀

+ 𝐴𝐴3
1 − 𝜀𝜀
𝜀𝜀

+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 

Prata & Platt (1991); 
modified by Caselles et al. 
(1997). 

3 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(1 − 𝜀𝜀11)
+ 𝐴𝐴4∆𝜀𝜀 + 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) Coll & Valor (1997). 

4 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3
1 − 𝜀𝜀
𝜀𝜀

+ 𝐴𝐴4
∆𝜀𝜀
𝜀𝜀2

+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 
Vidal (1991). 

5 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(𝑇𝑇11 − 𝑇𝑇12)𝜀𝜀11
+ 𝐴𝐴4𝑇𝑇12∆𝜀𝜀 + 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) Price (1984). 

6 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀
+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 

Ulivieri & Cannizzaro 
(1985). 

7 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3𝜀𝜀 + 𝐴𝐴4
∆𝜀𝜀
𝜀𝜀

+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 
Sobrino et al. (1994). 

8 𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(1 − 𝜀𝜀) + 𝐴𝐴4∆𝜀𝜀
+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) Ulivieri et al. (1992). 

9 
𝑇𝑇𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴1𝑇𝑇11 + 𝐴𝐴2(𝑇𝑇11 − 𝑇𝑇12) + 𝐴𝐴3(𝑇𝑇11 − 𝑇𝑇12)2

+ 𝐴𝐴4(1 − 𝜀𝜀11) + 𝐴𝐴5∆𝜀𝜀
+ 𝐷𝐷(𝑇𝑇11 − 𝑇𝑇12)(sec𝜃𝜃 − 1) 

Sobrino et al. (1993). 

#Note:    
T11 and T12 represent the top-of-atmosphere brightness temperatures of ABI channels 14 and 
15, respectively; 
ε=(ε11+ε12)/2 and ∆ε=(ε11-ε12), where ε11 and ε12 are the spectral emissivity values of the 
land surface at ABI channels 14 and 15, respectively; 
θ is the satellite view zenith angle. 
C,  A1, A2,  A3,  A4,  A5,  and A6 are algorithm coefficients. 
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ranged from 0.35 K (algorithms 1, 3, 4, 7, 8, 9) to 0.47 K (algorithms 2 and 5).  Similar accuracy 
is observed for the moist atmosphere cases, where the STD ranged from 0.65 K (algorithm 9) to 
0.75 K (algorithms 2, 6). For the nighttime cases, similar regression accuracies are observed. 
STDs of the algorithms under different atmospheric conditions are listed in Table A.5. 
Table A.5.  Standard deviation errors (K) of the Regression analysis. 

No Daytime Nighttime 
Dry Moist Dry Moist 

1 0.35 0.70 0.32 0.92 
2 0.47 0.75 0.47 0.96 
3 0.35 0.70 0.33 0.92 
4 0.35 0.70 0.32 0.92 
5 0.47 0.72 0.47 0.94 
6 0.46 0.75 0.45 0.95 
7 0.35 0.70 0.33 0.92 
8 0.35 0.70 0.33 0.92 
9 0.35 0.65 0.31 0.89 

 

 
Figure A.2. Scattergram plots of the regression results for the dry atmosphere. Standard 
deviation (STD) errors of the regression are given in each plot (Daytime). 
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To have a closer look at error distributions, we produced histogram plots of the regression fits in 
Figures A.3-A.4 and Figures A.5-A.6 for daytime and nighttime results, respectively. Figures 
3.10-3.13 reveal that there is no significant bias in any of the algorithms, and the error 
distributions are fairly symmetric (Gaussian-distribution-like) around zero.  That means, all 
algorithms performed well and the retrieval noise level (less than 1.0 K) is smaller than the GS-
F&PS requirement. Note that since the regression bias is zero for all the algorithms, the STD 
equals the accuracy of the regression statistics. We therefore used the STD as the accuracy 
metric in the simulation analyses. 
 

 
Figure A.3. Histogram plots of the regression results for the dry atmosphere (Daytime). 
Standard deviation (STD) and mean errors of the regression are given in each plot.   
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Figure A.4. Histogram plots of the regression results for the moist atmosphere (Daytime). 
Standard deviation (STD) and mean errors of the regression are given in each plot.   

 
Figure A.5. Histogram plots of the regression results for the dry atmosphere (Nighttime). 
Standard deviation (STD) and mean errors of the regression are given in each plot.   
 



 

 62 

 
Figure A.6. Histogram plots of the regression results for the moist atmosphere (Nighttime). 
Standard deviation (STD) and mean errors of the regression are given in each plot.   
 
Compared to the daytime algorithm performance, the standard deviation of the nighttime for the 
moist atmosphere cases is slightly worse for each algorithm. This is because the nighttime 
atmospheric profiles used in the simulation process are moister than the daytime atmospheric 
profiles. For the dry atmosphere cases, the regression standard deviation of each algorithm is 
similar between the daytime and the nighttime. 

A.4 Variation and Uncertainty Estimation 

Two important error sources in LST retrieval are the surface emissivity uncertainty and the 
atmospheric water vapor absorption.  We therefore analyzed the sensitivities of the candidate 
LST algorithms (Table A.4) in terms of those two factors. The simulation dataset described 
above is used in the following estimations. The ABI LST retrieval algorithm will be determined 
from the results of the variation and uncertainty estimation. 

A.4.1 Emissivity Uncertainty 
Analytically, the maximum LST uncertainty 𝛿𝛿𝑇𝑇𝑠𝑠 due to the emissivity uncertainty can be 
described as,   
 
 𝛿𝛿𝑇𝑇𝑠𝑠 = �𝛿𝛿𝑇𝑇12 + 𝛿𝛿𝑇𝑇22       (A.1) 

where 𝛿𝛿𝑇𝑇1  and  𝛿𝛿𝑇𝑇2 represent the 11 and 12 micron band uncertainties resulting from the 
uncertainties of the mean emissivity (ε) and emissivity difference (∆ε), respectively. Using 
algorithm 7 (Table A.4) as an example, these two components are  
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 𝛿𝛿𝑇𝑇1 = (𝐴𝐴3 −

𝐴𝐴4
𝜀𝜀2

)𝛿𝛿𝜀𝜀   and       𝛿𝛿𝑇𝑇2 = 𝐴𝐴4
𝜀𝜀
𝛿𝛿(∆𝜀𝜀)   (A.2) 

 
Therefore, the maximum LST uncertainty for algorithm 7 is  
 

 𝛿𝛿𝑇𝑇𝑠𝑠 = �(�𝐴𝐴3 −
𝐴𝐴4
𝜀𝜀2
� 𝛿𝛿𝜀𝜀)2 + (𝐴𝐴4

𝜀𝜀
𝛿𝛿(∆𝜀𝜀))2    (A.3) 

 
Considering 𝜀𝜀 = (𝜀𝜀11 + 𝜀𝜀12)/2 and ∆𝜀𝜀 = (𝜀𝜀11 − 𝜀𝜀12), and assuming the emissivity uncertainties 
in each band are the same, i.e., 𝛿𝛿𝜀𝜀 = 𝛿𝛿𝜀𝜀11 = 𝛿𝛿𝜀𝜀12, the maximum uncertainty of the emissivity 
difference is 𝛿𝛿(∆𝜀𝜀) = |𝛿𝛿𝜀𝜀11| + |𝛿𝛿𝜀𝜀12| = 2𝛿𝛿𝜀𝜀. Thus, the LST uncertainty, 𝛿𝛿𝑇𝑇𝑠𝑠, due to the 
emissivity uncertainty can be calculated using the above equation. 
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Figure A.7. Uncertainty of the retrieved LSTs along with the surface emissivity uncertainty for 
daytime algorithm. In the plots, it is assumed that mean emissivity ε=0.97, the emissivity 
difference ∆ε= 0.005 and the surface temperature is at about 298 K.   
 
Emissivity sensitivities of the algorithms were estimated using equation (A.1), and are presented 
in Figure A.7, for the daytime case. For illustration purpose, we assumed that 1) the mean 
emissivity (ε)  and emissivity difference (∆ε) are 0.97 and 0.005, respectively, and 2) the 
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brightness temperatures are 295 K and 294 K for channels 14 and 15 of the ABI sensor, 
respectively. Results show that the LST uncertainty (𝛿𝛿𝑇𝑇) increases approximately linearly, and 
that uncertainty can be significant (up to 3 K) for fairly small uncertainty in emissivity. Thus, the 
algorithms are very sensitive to the emissivity error.  Similar sensitivity results were observed for 
the nighttime cases, and therefore are not shown here. Note, however, that the predicted LST 
uncertainty calculated using equation (A.1) represents an extreme situation where all of the 
emissivity errors worsen the LST retrieval (i.e., the errors always compound rather than cancel 
each other). In practice, the final LST error may be significantly smaller, since emissivity errors 
at each channel may cancel each other and the temperature errors 𝛿𝛿𝑇𝑇1 and 𝛿𝛿𝑇𝑇2 may cancel each 
other. 
 
In a relative sense, the sensitivity is lowest for algorithm 6, followed by algorithm 2. This is 
because, in algorithms 2 and 6, the emissivity difference (∆ε) is not used, and uncertainty of 
∆ε can be double that of the mean emissivity. This implies that, to reduce the LST algorithm 
sensitivity to the emissivity error, the emissivity difference should not be included in the 
algorithm formulation. Note that emissivity sensitivity for the dry atmosphere is higher than that 
for the moist atmosphere since the LST algorithms for dry atmospheres are less affected by the 
atmospheric absorption and therefore are more accurate (Table A.5). 

A.4.2 Water Vapor Uncertainty 
Stratifying our regressions by water vapor regime, we assume that water vapor content can be 
well estimated a priori.  In practice, water vapor information is usually available from satellite 
soundings, ground radiosondes and/or operational numerical weather prediction model forecasts. 
Nevertheless, two errors may occur. First, the water vapor value may be mis-measured due to a 
variety of error sources. Second, due to spatial resolution differences between the ABI data and 
water vapor data, both “dry” and “moist” atmospheric conditions may occur within the unit 
spatial area over which the water vapor was estimated (which may contain from several to more 
than ten GOES-R pixels). Therefore, the coefficient set of the LST algorithm for dry 
atmospheres may be incorrectly applied in a moist atmospheric condition, and vice-verse. To test 
the sensitivity of the algorithms to this error, we applied the algorithm coefficient sets derived for 
moist atmospheres to dry atmospheric conditions; and vice-versa. 
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Figure A.8. Standard deviation errors when algorithm coefficients are wrongly applied (daytime 
cases). The dash lines (marked as Dry Atmosphere) represent the errors when the coefficients 
derived for moist atmosphere are applied for the dry atmospheric LST retrieval, while the dot 
lines (marked as Moist Atmosphere) represent the errors when the coefficients derived for dry 
atmosphere are applied for the moist atmospheric LST retrieval.   
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Figure A.9.  Same as Figure A.8, except for the nighttime cases. 
 
The water vapor sensitivity of the algorithms is illustrated for daytime and nighttime cases in 
Figures A.8 and A.9, respectively.  In these cases, the STD is calculated separately in each 10-
degree range of view zenith angles from 0 to 70 degrees. Note that, for all algorithms, the 
algorithm coefficients derived for dry atmospheric conditions are more sensitive if they are 
wrongly applied for the moist atmospheric conditions. This is particularly true for the nighttime 
cases since they are moister than the daytime cases. Further, for the moist atmospheric condition 
cases (the dot lines), such water vapor sensitivity increases when the satellite zenith angle 
increases. This is because the atmosphere is getting moister when the total column water vapor 
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along the view path increases with the increase of satellite zenith angle. For the dry atmospheric 
condition cases (the dash lines), the STD is significantly increased (comparing to the values in 
Table A.5), but it does not increase with the view zenith angle. In fact, the STD of the LST errors 
decreased (and is approaching the values of the moist atmospheric cases in Table A.5) when the 
zenith angle increases. This implies that even for the dry atmospheric conditions, the coefficient 
set for the moist atmospheric condition may be applicable when the satellite zenith angle is large. 

A.4.3 Large Satellite View Angle 
In addition, the GOES-R sensor view geometry may have significant impact on the variation of 
atmospheric absorption due to the radiative transfer path length increase from nadir to the edge 
of the scan. Considering that altitude of GOES-R satellite is about 36,000 km and the Earth 
radius is about 6700 km, the relationship between the satellite zenith angle (θ) and the satellite 
viewing angle (θv) is (Sun and Pinker, 2004) 
 
 sin𝜃𝜃 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑎𝑎𝑆𝑆 𝐴𝐴𝑆𝑆𝑎𝑎𝑖𝑖𝑎𝑎𝐴𝐴𝐴𝐴𝑆𝑆+𝐸𝐸𝑎𝑎𝐸𝐸𝑎𝑎ℎ 𝑅𝑅𝑎𝑎𝐴𝐴𝑖𝑖𝐴𝐴𝑠𝑠

𝐸𝐸𝑎𝑎𝐸𝐸𝑎𝑎ℎ 𝑅𝑅𝑎𝑎𝐴𝐴𝑖𝑖𝐴𝐴𝑠𝑠
sin𝜃𝜃𝑣𝑣 ≈ 6.37 sin𝜃𝜃𝑣𝑣  (A.4)   

 
Therefore, the maximum satellite viewing angle (about 8.7 degrees) corresponds to 74.48 
degrees of view zenith angle. Such a large view zenith angle may have great impact on LST 
retrieval since, for instance, when the zenith angle is increased from 0 to 60 degrees, the 
atmospheric path length is doubled. We therefore assessed candidate algorithm sensitivity to the 
varying zenith angles using the simulation datasets. 
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Figure A.10. Daytime algorithm standard deviation errors in different satellite view zenith 
angles. 
 
The algorithm STD error distributions with satellite zenith angle are shown for the daytime cases 
in Figure A.10.  It indicates that, for the moist atmospheric conditions, the STD error gets 
significantly worse when the zenith angle is larger than 45 degrees.  For dry atmospheric 
conditions, the increase in STD is insignificant. Similar trends were observed for the nighttime 
cases (not shown).  
 
Overall, similar water vapor sensitivity was found in all the algorithms, while algorithms 2 and 6 
had significant smaller emissivity sensitivity than the other algorithms. Because simplicity is an 
advantage in operational procedures, algorithm 6 was chosen as the best candidate for further 
evaluation. 
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A.4.4 Summary of Algorithm Selection 
We note that all algorithms listed in Table A.4 give similar retrieval accuracy. This primarily 
indicates the accuracy limitation of the current SW technique. The accuracy difference between 
the moist and dry atmospheric conditions implies that water vapor contamination is a major 
concern for the GOES-R LST retrieval. The largest errors are expected with SW algorithms 
when the atmosphere is moist and the satellite zenith angle is larger than 45 degrees. Accuracy of 
the retrieval under dry atmospheric conditions is significantly better than that under moist 
atmospheric conditions. Similar results were observed in Yu et al. (2008). 
 
Emissivity sensitivity is a more serious problem. This is because the emissivity effect is coupled 
with the atmospheric absorption effect in the radiative transfer process; while the atmospheric 
absorption effect is linearized in the SW technique, the emissivity effect cannot be similarly 
linearized. A trade-off in current SW applications occurs since emissivity information improves 
retrieval accuracy, but inaccurate emissivity information may induce significant error. It is worth 
pointing out that the same conflict also occurs in all the SW LST algorithms, e.g., the LST 
algorithm developed for the NPP VIIRS sensors (Sikorski et al., 2002), that stratify the algorithm 
coefficients for different land surface types instead of using the emissivity information explicitly 
in the algorithm.  For such algorithms, the emissivity uncertainty of a certain surface type may 
also induce significant LST retrieval error. 
 
Our results demonstrate that, although using both the mean emissivity and the emissivity 
difference of the two thermal channels provide the best retrieval accuracy, such algorithms are 
too sensitive to the emissivity uncertainty and should not be used in operational practice. As a 
compromise, we recommend algorithm 6, which only requires the mean emissivity information, 
as the selected algorithm for generating the GOES-R LST product. 
 
Finally, we emphasize that all the results discussed to this point assume perfect cloud detection. 
That is, all these results are for truly cloud clear pixels. Residual cloud effects in pixels detected 
as clear will add significant noise to the LST retrievals. 

A.5 Algorithm Output 

There are three LST products generated corresponding three ABI scan modes. As for the 
CONUS and Mesoscale modes, full resolution (i.e. 2 km) LSTs are produced.  Output of the full 
resolution LST products mainly contains two data arrays: the LST values and associated product 
quality information (PQI) flags.  
To minimize storage request of the LST product, the LST value is stored in a short integer using 
the following scaling equation: 
 
 𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎 =  𝑇𝑇𝑠𝑠 × 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔_𝑓𝑓𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟   −  𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑜𝑜𝑓𝑓                            (A.5) 
 
where Tint is the unsigned integer from the retrieved LST, Ts.  User is directed to the product 
metadata for the scaling information.  
 
The PQI flags are 2-byte bitwise short integer, which contains quality information of LST 
production for each pixel.  In addition, a similar set of quality control (QC) flags is required for 
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operational monitoring purpose. The LST values and quality flags data arrays are described in 
Table A.6. 
Table A.6. Algorithm output data. 

Name Type Description Dimension 

LST values Short 
Integer 

Retrieved land surface temperature value for each 
pixel of the scanning mode.  grid (xsize, ysize) 

Product 
Quality 

Information 
(PQI) flags 

Short 
Integer 

Bit-based product quality information for each 
pixel of the scanning mode: 
Land, cloudiness, sensor data quality, day/night,  
dry/moist, very moist, large view zenith, very 
cold surface, etc. 

grid (xsize, ysize) 

QC flags Short 
Integer 

Bit-based quality control flags for each pixel of 
the scanning mode 
 

grid (xsize, ysize) 

  
 
The product quality information flags may be comprised of a total of 16 bits holding the test 
results (yes/no) for each of the various tests and flags. Such PQI information is designed to help 
users in their applications. The quality control (QC) flags are solely related to the quality of the 
LST product, with 0 indicating good quality and 1 indicating problems associated with particular 
issues in the production and algorithm performance monitoring.  Details of the LST PQI can be 
found in Table A.7 and the QC flags are defined in Table A.8. 
 
Table A.7. Product quality information flags of the full resolution LST product. 

Byte Bit Flag Source Effect 

1 

0-1 Empty   Reserved for future use 
2 Availability SDR 00=normal, 01=out of space, 10=bad data, 

11=missing data 3 
4 Surface Type Land/sea 

Mask 00=land, 01=snow/ice, 10=in-land water, 11=sea 5 

6-7 Cloud Index Cloud 
Mask 

00=clear, 01=probably clear, 10=probably 
cloudy, 11=cloudy 

2 

0 Atmospheric 
Condition LST 

00=dry atmosphere (wv<=2.0g/cm2); 01=moist 
atmosphere(wv>2.0g/cm2); 10= very 

moist(wv>5.0/cm2) 1 

2 Day/Night SDR 0=day (solar zenith <= 85 deg), 1=night 
3 View Angle LST 0=normal, 1=large view angle (LZA>55 deg) 
4 LST Quality LST 00=normal, 01=cold surface (<250 K & 

>=213K), 10= out of range (not in 213-330K) 5 

6 Emissivity 
Quality LST 0=normal, 1=historical emissivity 

7 Empty  Reserved for future use 
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Table A.8. Quality control flags of the full resolution LST product. 
Byte Bit Flag Source Effect 

1 

0 Empty   Reserved for future use 
1 Availability SDR 0=normal, 1=out of space, bad data, missing data 
2 
 Cloud Index Cloud 

Mask 
0=clear or probably clear, 1=probably cloudy, or 

cloudy 
3 View Angle LST 0=normal, 1=large view angle (LZA>70°) 

4 Surface type Land/sea 
mask 0 = land, including inland water, 1= water 

5 LST Quality LST 0=normal, 1= out of range (not in 213-330K) 
6-7 Empty  Reserved for future use 

2 0-7 Empty  Reserved for future use 
The GOES-R AWG Algorithm integration Team (AIT) recommended that an overall quality flag (QF) is defined for 
simply indicating the data can be used (good) or not (bad).  
 
In producing the Full Disk LST product, LST value, PQI and the QC flags described above are 
produced first for each original pixel (which is in 2 km resolution); an aggregation process is 
then applied over 5 by 5 pixels for generating the 10 km resolution Full Disk LST product if all 
of the 5 by 5 pixels are cloud free. The aggregated LST is the mean of the 25 pixels.  Product 
quality information and quality control flags for the Full Disk LST product are similar to those 
for the CONUS and Mesoscale LST products, with a few redefinitions as shown in Table A.9 
and Table A.10. 
 
 Table A.9. Product quality information flags of the Aggregated LST product. 

Byte Bit Flag Source Effect 

1 

0-1 Empty   Reserved for future use 
2 Availability SDR 00=normal, 01=out of space, 10=bad data, 

11=missing data 3 
4 Surface Type* Land/sea 

Mask 00=land, 01=snow/ice, 10=in-land water, 11=sea 5 

6-7 Cloud Index Cloud 
Mask 

00=clear, 01=probably clear, 10=probably 
cloudy, 11=cloudy 

2 

0 Atmospheric 
Condition* LST 

00=dry atmosphere (wv<=2.0g/cm2); 01=moist 
atmosphere(wv>2.0g/cm2); 10= very 
moist(wv>5.0/cm2) 1 

2 Day/Night SDR 0=day (solar zenith <= 85 deg), 1=night 
3 View Angle LST 0=normal, 1=large view angle (LZA>55 deg) 
4 LST Quality* LST 00=normal, 01=cold surface (<250 K & 

>=213K), 10= out of range (not in 213-330K) 5 

6 Emissivity 
Quality LST 0=normal, 1=historical emissivity 

7 Empty  Reserved for future use 
*Redefined for the Full Disk LST product only. 
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Table A.10. Quality control flags of the Aggregated LST product. 
Byte Bit Flag Source Effect 

1 

0 Empty  Reserved for future use 
1 Availability SDR 0=normal, 1=out of space, bad data, missing data 

2 Cloud Index Cloud 
Mask 

0=clear or probably clear, 1=probably cloudy, or 
cloudy 

3 View Angle* LST 0=normal, 1=large view angle (LZA>70°) 

4 Surface type Land/sea 
mask 0 = land, including inland water, 1= water 

5 LST Quality* LST 0=normal, 1= out of range (not in 213-330K) 
6-7 Empty  Reserved for future use 

2 0-7 Empty  Reserved for future use 
*Redefined for the aggregated Full Disk LST product only. 
 
In Table A.9, the largest flag value of the 5 by 5 pixels is assigned as the flag of the aggregated 
pixel for these flags:  Availability, Cloud index, View angle, and Emissivity quality. The mixed 
pixel with Day and Night is flagged as Day. 
 
As for the redefined flags, the mixed surface type (11) is for the pixel aggregated from land (00), 
snow/ice (01), and/or in-land water (10); the original sea flag is replaced. The mixed atmospheric 
condition (11) is defined as the mix of dry (00) and moist (01); one or more very moist pixels in 
the aggregation remain the very moist. For the LST quality, the aggregated pixel contains the 
normal and cold surface (or out of range) is flagged as cold (or out of range); or it is flagged as 
mixed if the cold surface and out of range occur in the containing pixels.  
 
In addition to the pixel level LST values, PQI and quality control flags, metadata are needed in 
the LST product describing the common and LST specific information about the product. The 
GOES-R AWG and the Land Team recommend following metadata that (Table A.11) should be 
included in generating the ABI LST products. 
 
Table A.11. Metadata defined for the LST product file.  
METEDATA TYPE DEFINITOIN 
DateTime common Date and time of swath beginning and swath end  

Bounding Box common 
Product resolution (nominal at nadir), number of rows and 
number of columns, byte per pixel, data type, byte order 
information, location of box relative to nadir (pixel space) 

Product Name common The ABI LST 

Ancillary Data  common Ancillary data name used to produce the product: version 
number, origin (where it was produced), name  

Satellite common GOES-R 
Instrument common Advanced Baseline Imager 
Altitude common Altitude  of the satellite  
Nadir common Pixel in the fixed grid 
Position common Latitude and longitude of the satellite position 
Projection common Grid Projection 
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Mode common Type of Scan mode 
Version common Product version number 
Compression  common Data compression type (method) used 
Location  common Location where the product is produced 
Contact  common Contact information of the producer/scientific supporter 
document Common Citations to documents (i.e., ATBD) 
Number of PQI 
flag values LST 8 

For each PQI flag value, the following information is required:  
• Percent of retrievals with the PQI flag value 
• Definition of PQI flag 

Availability LST Valid ABI input excluding any pixel that is out of space, bad 
data, or missing data 

Surface Type Land/sea 
Mask 2-bit assigned, 00=land, 01=snow/ice, 10=in-land water, 11=sea 

Cloud Index Cloud 
Mask 

2-bit assigned, 00=clear, 01=probably clear, 10=probably 
cloudy, 11=cloudy 

Atmospheric 
Condition LST 

2-bit assigned, 00=dry atmosphere (wv<=2.0g/cm2); 01=moist 
atmosphere(wv>2.0g/cm2); 
10= very moist(wv>5.0/cm2) 

Day/Night SDR 0=day (solar zenith <= 85 deg), 1=night 
View Angle LST 0=normal, 1=large view angle (LZA>55 deg) 

LST Quality LST 2-bit assigned, 00=normal, 01=cold surface (<250 K & 
>=213K), 10= out of range (not in 213-330K) 

Emissivity 
Quality LST 0=normal, 1=historical emissivity 

   
Number of QC 
flag values LST 5 

For each QC flag value, the following information is required:  
• Percent of retrievals with the QC flag value 
• Definition of QC flag 

Availability LST Valid ABI input excluding any pixel that is out of space, bad 
data, or missing data 

Cloud Index LST Good if ACM indicates clear or probably clear, bad if ACM 
indicates probably cloudy, or cloudy 

View Angle LST Good if LZA is less than 70°, bad if view angle is beyond 
product extent qualifier (LZA>70°) 

Surface Type LST Good if land/sea mask indicates land or inland water, bad if it is 
water/ocean 

LST Quality LST Valid range for LST product (213-330K) 
   
Product Unit LST Degree Kelvin 
Scaling Factor LST 100 
Offset LST 10000 
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Statistics LST Mean, minimum, maximum, and standard deviation of  all the 
available LSTs 

Good pixels LST Percentage of good LST retrieval (in range 230-330K) 
Total Pixels LST Total pixels LSTs are retrieved (cloudless land surface pixels) 

Note: the definitions in italic words are determined at running. 
 
It is noted that LST values will not be calculated for the pixels indicated as cloudy or probably 
cloudy, bad/out of space/missing data, ocean. Inland water pixel is considered as land pixel and 
the LST will be calculated over it. 
 
 


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	ABSTRACT
	1 INTRODUCTION
	1.1 Purpose of This Document
	1.2 Who Should Use This Document
	1.3 Inside Each Section
	1.4 Related Documents
	1.5 Revision History

	2 OBSERVING SYSTEM OVERVIEW
	2.1 Products Generated
	2.2 Instrument Characteristics
	2.3 Mission Requirement

	3 ALGORITHM DESCRIPTION
	3.1 Algorithm Overview
	3.2 Processing Outline
	3.3 Algorithm Input
	3.3.1 Primary Sensor Data
	3.3.2 Derived Sensor Data
	3.3.3 Ancillary Data
	3.3.4 Algorithm Coefficients and Control values

	3.4 Theoretical Description
	3.4.1 Physics of the Problem
	3.4.2 Mathematical Description of the LST Algorithm
	3.4.2.1 The Candidate Algorithms
	3.4.2.2 Algorithm Selection
	3.4.2.3 The enterprise algorithm
	3.4.2.4 The mitigation algorithm

	3.4.3 Algorithm Output


	4 TEST DATASETS AND OUTPUTS
	4.1 Enterprise LST Test Outputs
	4.2 Validation with SURFRAD In-situ Measurement
	4.2.1 SURFRAD data
	4.2.2 Match-up GOES-16 and GOES-17 Data with SURFRAD
	4.2.3 Validation Results and Analysis

	4.3 Mitigation Algorithm Evaluation
	4.4 Error Budget

	5 PRACTICAL CONSIDERATIONS
	5.1 Numerical Computation Considerations
	5.2 Programming and Procedural Considerations
	5.2.1 Configuration of Retrieval

	5.3 Quality Assessment and Diagnostics
	5.4 Exception Handling
	5.5 Algorithm Validations

	6 ASSUMPTIONS AND LIMITATIONS
	6.1 Assumed Algorithm Performance
	6.2 Assumed Sensor Performance
	6.3 Potential Improvements

	7 REFERENCES
	APPENDIX A The Baseline Algorithm
	A.1 Processing Outline
	A.2 Algorithm Input
	A.3 Algorithm Selection
	A.4 Variation and Uncertainty Estimation
	A.4.1 Emissivity Uncertainty
	A.4.2 Water Vapor Uncertainty
	A.4.3 Large Satellite View Angle
	A.4.4 Summary of Algorithm Selection

	A.5 Algorithm Output


