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ABSTRACT 
 
This Rainfall Rate Algorithm Theoretical Basis Document (ATBD) contains a high-level 
description (including the physical basis) of an algorithm for estimating pixel-scale 
rainfall rate from images taken by the Advanced Baseline Imager (ABI) flown on the 
Geostationary Operational Environmental Satellite-Series R (GOES-R) series of National 
Oceanic and Atmospheric Administration (NOAA) geostationary meteorological 
satellites.  A brief overview of the GOES-R observing system is followed by a more 
specific description of the Rainfall Rate algorithm, validation efforts, and planned 
improvements.  
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1  INTRODUCTION 

1.1 Purpose of This Document 

The Rainfall Rate Algorithm Theoretical Basis Document (ATBD) provides a high-level 
description of and the physical basis for the estimation of pixel-scale rainfall rate from 
images taken by the Advanced Baseline Imager (ABI) flown on the Geostationary 
Operational environmental Satellite-Series R (GOES-R) series of National Oceanic and 
Atmospheric Administration (NOAA) geostationary meteorological satellites.  The 
rainfall rate is produced as an Environmental Data Record (EDR). 

1.2 Who Should Use This Document 

The intended users of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm in a manner that is 
consistent with its underlying assumptions.  This document also provides information 
useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 

This document is broken down into the following main sections. 

• System Overview: Provides relevant details of the Rainfall Rate Algorithm and 
provides a brief description of the products generated by the algorithm. 

• Algorithm Description: Provides all the detailed description of the algorithm 
including its physical basis, its input and its output. 

• Product Validation: Describes the results from comparing the algorithm outputs 
to ground validation data sets. 

• Practical Considerations: Provides an overview of the issues involving 
numerical computation, programming and procedures, quality assessment and 
diagnostics and exception handling.  

• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

1.4 Related Documents 

This document currently does not relate to any other document outside of the 
specifications of the GOES-R Ground Segment Mission Requirements Document (MRD) 
and Functional and Performance Specification (F&PS) and to the references given 
throughout. 
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1.5 Revision History 

Version (0.1) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS [National Environmental Satellite, Data, and Information 
Service]/STAR [Center for Satellite Applications and Research] and its intent was to 
serve as a draft submission to the GOES-R Program Office (GPO) for initial comments. 

Version (1.0) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the 80% algorithm to the 
GOES-R AWG Algorithm Integration Team (AIT). 

Version (2.0) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the 100% algorithm to 
the GOES-R AWG Algorithm Integration Team (AIT). 

Version (3.0) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the Enterprise version of 
the algorithm with the GOES-17 ABI Loop Heat Pipe (LHP) mitigation to the GOES-R 
AWG Algorithm Scientific Software Integration and System Transition Team 
(ASSISTT). 
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2 OBSERVING SYSTEM OVERVIEW 

This section will describe the products generated by the ABI Rainfall Rate Algorithm and 
the requirements it places on the sensor.  

2.1 Products Generated 

The Rainfall Rate Algorithm produces a field of instantaneous rainfall rates associated 
with the most recently available GOES imagery.  In terms of the F&PS, it is responsible 
directly for the Rainfall Rate / QPE [Quantitative Precipitation Estimate] product within 
the Hydrology product sub-type, and meets the requirements listed in Table 1.  The 
Rainfall Rate Algorithm design calls for a quantitative rainfall rate in millimeters per 
hour on the same grid as the 2-km ABI IR bands.  These products are intended for use by 
operational meteorologists and hydrologists for flood forecasting.  There are no 
diagnostic products for external use aside from the official Rainfall Rate product and 
accompanying quality flags, but the calibration coefficient tables and rainfall class grids 
will be available internally for diagnostic purposes. 

 
Requirement Description Requirement Value 
Name Rainfall Rate / QPE 
User GOES-R 
Geographic Coverage Full Disk 
Temporal Coverage Qualifiers Day and night 
Product Extent Qualifier Quantitative out to at least 70 degrees LZA or 60 degrees 

latitude—whichever is less—and  qualitative beyond 
Cloud Cover Conditions Qualifier N/A 
Product Statistics Qualifier Over rain cases and mesoscale-sized surrounding regions 
Vertical Resolution N/A 
Horizontal Resolution 2.0 km 
Mapping Accuracy 2.0 km 
Measurement Range 0 – 100 mm/hr 
Measurement Accuracy 6 mm/hr at a rate of 10 mm/hr with higher values at 

higher rates 
Product Refresh Rate / Coverage 
Time (Mode 3) 

15 min 

Refreshment Rate / Coverage Time 
(Mode 4) 

15 min 

Scientific Software Integration and 
System Transition Team 

10 min 

Vendor Allocated Ground Latency 266 sec 
Product Measurement Precision 9 mm/hr at a rate of 10 mm/hr with higher values at 

higher rates 

Table 1. F&PS Requirements for the Rainfall Rate / QPE algorithm. 
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Note that for pixels outside the local zenith angle and latitude cutoffs, rainfall rates will 
still be generated by the algorithm, but their use will be discouraged and they will not be 
validated for comparison against spec. 

2.2 Instrument Characteristics 

The rainfall rate is produced for each pixel observed by the ABI.  Table 2 summarizes the 
current channel use by the Rainfall Rate Algorithm.  Note that these particular bands had 
METEOSAT Spinning Enhanced Visible InfraRed Imager (SEVIRI) equivalents and 
therefore were the only ones used the original development of the algorithm prior to 
GOES-16 launch.  ABI bands 9 and 13 have subsequently been tested in the algorithm 
but have not been demonstrated do have a significant positive impact on algorithm 
performance.   

 
Channel Number Wavelength (µm) Resolution (km) Used in Rain Rate 
1 0.47 1.0  
2 0.64 0.5  
3 0.865 1.0  
4 1.378 2.0  
5 1.61 1.0  
6 2.25 2.0  
7 3.9 2.0  
8 6.19 2.0  
9 6.95 2.0  
10 7.34 2.0  
11 8.4 2.0  
12 9.61 2.0  
13 10.35 2.0  
14 11.2 2.0  
15 12.3 2.0  
16 13.3 2.0  

Table 2. Channel numbers, wavelengths, and footprint sizes of the ABI bands. 

In addition to the data from the individual bands, the algorithm also uses brightness 
temperature differences (BTD’s) between pairs of selected bands, and also uses some 
spatial gradient information from the infrared (IR) window band (14); see Section 3.4.1.2 
for details.  Therefore, the performance of the Rainfall Rate Algorithm is sensitive to any 
imagery artifacts or instrument noise.  The channel specifications are given in the 
Mission Requirements Document (MRD) Section 3.4.2.1.4.0. The performance outlined 
therein was assumed during development efforts. 
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3 ALGORITHM DESCRIPTION 

This section contains a complete description of the algorithm at the current level of 
maturity (which will improve with each revision).  

3.1 Algorithm Overview 

The rain rate algorithm identifies raining pixels and derives rain rates on a pixel level in 
ABI imagery.  Its calibration is based on matches of ABI data with microwave (MW)-
derived rainfall rates, which are considered to be the most accurate estimates of 
instantaneous rainfall rate available from passively-sensed satellite data.  The ABI rain 
rate algorithm is based on the Self-Calibrating Multivariate Precipitation Retrieval 
(SCaMPR) algorithm first described in Kuligowski (2002) and Kuligowski et al. (2013, 
2016). 

After adjusting the ABI brightness temperature fields for parallax, the algorithm derives 
rainfall rate fields in two steps: 

1. Identify pixels that are experiencing rainfall.  The predictors and predictor 
coefficients for detecting rainfall are derived using discriminant analysis in a 
calibration against MW-retrieved rainfall areas. 

2. Retrieve rainfall rates for pixels where rainfall has been detected.  The predictors 
and predictor coefficients for retrieving rainfall rate are derived using linear 
regression and calibrated against MW-retrieved rainfall rates. 

The rain rate algorithm provides estimates of instantaneous rainfall rate at the same pixel 
resolution as the ABI IR bands.   

3.2 Processing Outline 

The processing outline of the rain rate algorithm is summarized in Fig. 1.  The rain rate is 
designed to run on individual pixels, with some information required from pixels in the 
11x11 neighboring region.  
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Figure 1. High-level flowchart of the rain rate algorithm, illustrating the main processing 
sections. 
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3.3 Algorithm Input 

This section describes the input needed to process the rainfall rates.  While the rainfall 
rate is derived for each pixel, it does require limited knowledge of the surrounding pixels 
(9x9) for rain type classification and requires band 14 from the surrounding 5x5-pixel 
region for two of the predictors. 

3.3.1 Primary Sensor Data 

The list below contains the primary sensor data used by the Rainfall Rate Algorithm.  
Primary sensor data refers to information that is derived solely from the ABI observations 
and geolocation information. 

• Radiances for channels 8, 10, 11, 14, and 15 

• Pixel latitude, longitude, and local zenith angle (LZA) 

• Any relevant ABI quality control flags 

3.3.2 Ancillary Data 

The following list briefly describes the ancillary data requited to run the Rainfall Rate 
Algorithm.  Ancillary data is defined as data that requires information not included in the 
ABI observations or geolocation data.  All five of these ancillary data sets would be 
considered to be non-ABI dynamic data (i.e., they are not other ABI-derived products); 
no static ancillary data (i.e., time-constant ancillary data such as topography or a land/sea 
mask) are required. 

• Numerical model fields of temperature and geopotential height 

Fields of temperature and geopotential height from the NOAA / National Weather 
Service (NWS) / National Centers for Environmental Prediction (NCEP) Global 
Forecast System (GFS) are used to estimate cloud-top heights from the limb-
adjusted ABI band 14 brightness temperatures to adjust the pixels for parallax.  
These fields are currently at 0.25° lat / lon resolution and are for 26 pressure 
levels from 1000 – 10 hPa.  To account for the time lag between the initialization 
time and the availability of the forecast files, the GFS forecast lead times from 6 
to 11 hours from the most recent forecast run are used. 

• Numerical model fields of relative humidity (RH) 

Mean-layer RH is computed for the lowest third of the GFS model domain on the 
same grid and for the same lead times as for the temperature and geopotential 
height.  These values are used to adjust the retrieved rainfall rates for the effects 
of evaporation below cloud base. 
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• MW-derived rainfall rates 

Rainfall rates, presumably from MW data but also permissible from active radar, 
are required as a calibration target for the algorithm.  These rainfall rates do not 
need to be available in real time, though the accuracy of the rain rate estimates 
tends to degrade as the difference between the time period covered by the training 
data and the time of the retrieval from the ABI becomes longer. The MW rainfall 
rates are currently from the NOAA / NWS / Climate Prediction Center (CPC) 
combined microwave (MWCOMB) field, which is an intermediate product from 
the CPC Morphing (CMORPH) algorithm (Joyce et al. 2004).  Each hourly 
MWCOMB file contains two half-hourly grids of intercalibrated MW rain rates 
remapped to a common ~0.073° lat / lon grid.  Efforts are underway to directly 
match the IR data in real time from microwave rain rates; see Section 6.3.1 for 
additional details. 

• Matched MW rain rates and ABI predictors 

These MW-derived rainfall rates are matched with ABI-derived predictors that 
have been aggregated to the MWCOMB grid (0.073° lat / lon), multiplied by 100, 
and written to a netCDF4 file.  Each data point containing non-missing 
MWCOMB data is stored in an integer*2  array called Matched_DataSet with 
dimensions Param_Num, Rec_Num) where Param_Num is the total number of 
matched data points in the file and Param_Num is 10.  The values corresponding 
to the 10 entries are given in Table 3: 

 
Element Variable Value 
1 MW pixel latitude (degrees * 100, north positive) -6000 to 6000 
2 MW pixel longitude (degrees *100, east positive) -18000 to 18000 
3 MW rainfall rate (mm/h * 100) 0 to 5000 
4 ABI band 8 brightness temperature (K * 100) 17400 to 32500 
5 ABI band 10 brightness temperature (K* 100) 17400 to 32500 
6 ABI band 11 brightness temperature (K* 100) 17400 to 32500 
7 ABI band 14 brightness temperature (K* 100) 17400 to 32500 
8 ABI band 15 brightness temperature (K* 100) 17400 to 32500 
9 S = 0.568*(Tmin,11.2-217 K) * 100 -10743 to 4357 
10 Gt = Tavg,11.2 - Tmin,11.2 * 100 0 to 15100 

Table 3. Contents of each data record of the IR-MW matched data file. 
In Table 3, Tmin,11.2 is defined as the minimum band 14 brightness temperature in a 
5x5-pixel box centered on the pixel of interest and Tavg,11.2 is the average band 14 
brightness temperature for the 2 pixel on either side and the 1 pixel above and 
below the pixel of interest; see Ba and Gruber (2001) for details. 
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• Retrieval coefficient table 

The retrieval coefficient table file contains the ID’s (from the matched file) of the 
selected predictors along with their calibration coefficients for both rain / no rain 
discrimination and rain rate calibration which are stored in a netCDF4 file.  A list 
of the contents of this file is provided in Table 4, followed by the definition of the 
dimension constants. 

 
Name Description Type(dimension) 
HSS Heidke Skill Score of rain / no rain 

discrimination for calibration data 
real*4(Class_Num) 

Corr_Coeff Pearson Correlation Coefficient of 
(untransformed) rain rate for 
calibration data 

real*4(Class_Num) 

ID_Predictor Predictor IDs of rain rate predictors 1 
and 2 and of rain / no rain predictors 
1 and 2 

int*4 (Class_Num, 
AllPredictor_Num) 

AmountParam Rain rate calibration intercept and 
multipliers for rate predictors 1 and 2 

real*8 (Class_Num, 
MaxPredictor_Num+1) 

DiscrimParam Rain / no rain calibration multipliers 
for rain / no rain predictors 1 and 2 

real*8 (Class_Num, 
DisPredictor_Num) 

Thresh_Rain Rain / no rain threshold real*4 (Class_Num) 
ParamA_Transform Nonlinear transformation multiplier 

for rain rate predictors 1 and 2 
real*8 (Class_Num, 
MaxPredictor_Num) 

ParamB_Transform Nonlinear transformation exponent 
for rain rate predictors 1 and 2 

real*8 (Class_Num , 
MaxPredictor_Num) 

Deltax_Transform Nonlinear transformation intercept 
for rain rate predictors 1 and 2 

real*8 (Class_Num, 
MaxPredictor_Num) 

AdjLUT LUT for adjusting rain rain rates to 
match MW distribution 

real*4 (Class_Num, 
LUTBin_Num) 

Table 4. Contents of the retrieval coefficient table file. 
The dimension constants in the retrieval coefficient table file are defined as follows: 

• Class_Num (number of algorithm classes) = 330 for GOES-16; 440 for GOES-17 
(see Section 3.4.2) 

• AllPredictor_Num (total number of selected predictors) = 4 
• MaxPredictor_Num (number of selected rain rate predictors) = 2 
• MaxPredictor_Num+1 (number of selected rain rate predictors + 1) = 3 
• DisPredictor_Num (number of selected rain / no rain predictors) = 2 
• LUTBin_Num (number of LUT bins used for the rate adjustment) = 10000 

3.4 Theoretical Description  

As stated previously, retrieval of rainfall rate requires two steps: determining which 
pixels in satellite imagery will be associated with rainfall, and then deriving rainfall rates 
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for those pixels.  In the case of visible / IR instruments such as the ABI, the basic 
approach is to use the information about cloud-top properties that are inherent in the 
brightness temperature information (e.g., height, thickness, phase, particle size) to make 
inferences about the occurrence and intensity of rainfall.  This algorithm develops 
statistical relationships between the brightness temperature values and the occurrence of 
rainfall and its intensity.  In the algorithm, discriminant analysis is used to determine the 
best predictors and predictor coefficients for occurrence, and linear regression is used for 
intensity.   

3.4.1 Physics of the Problem 

The difficulty in using visible- and IR-wavelength information for retrieving rainfall rates 
is that raining clouds are generally optically thick, meaning that the information at these 
wavelengths comes from the top portion of the cloud, and typically above precipitating 
hydrometeors that are actually of interest.  MW-frequency information is relatively more 
valuable because raining clouds are generally not optically thick in that portion of the 
spectrum, meaning that MW signals are sensitive to the total water or ice path in the 
cloud rather than just the properties of the cloud top.  However, since MW sensors are for 
the near future restricted to low-Earth orbit (LEO), rainfall information from such 
instruments will not be available on a continuous basis without a much more substantial 
LEO satellite constellation than is currently planned.  The compromise has been to use 
the intermittently-available but relatively more accurate MW-based rainfall rates as a 
calibration target for IR data from geostationary platforms, and to use the resulting 
calibration to retrieve rainfall rates at the full spatial and temporal resolution of the 
geostationary data. 

On a more fundamental level, location errors of clouds caused by parallax can degrade 
the relationship between the IR data and the MW rain rates and can also reduce the skill 
of the rainfall rate retrievals that are based on the IR data.  An adjustment for parallax is 
applied during the initial step of IR processing to reduce these errors. 

The following subsections describe how these processes are performed in additional 
detail.  The first subsection describes the parallax adjustment since it is the initial step in 
the process.  The second subsection describes the MW data set that is used as a 
calibration target and how it is matched against the ABI predictors, and the subsequent 
four subsections describe respectively how the training data are assembled, how the 
rainfall detection algorithm is calibrated, how the Rainfall Rate Algorithm is calibrated, 
and then how the resulting calibration is applied to independent data to product the rain 
rate product.  

3.4.1.1 Parallax Adjustment 

The location of a surface or atmospheric feature in a satellite image is dependent upon 
three factors: the actual location of the feature, the location of the satellite observing 
point, and the deviation in height of the feature from the assumed surface that is used for 
geolocation of the satellite pixels.  These can be related to the apparent location of the 
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feature in satellite imagery using relatively simple geometric relationships that will be 
described in detail in Section 3.5.1. 

3.4.1.1.1 Height Determination 

To determine the cloud-top height, the GFS temperature and height profiles are 
interpolated from the four nearest GFS grid points to the center of the ABI pixel, and then 
the ABI band 14 (11.2-µm) brightness temperature T11.2 is compared to this profile.  This 
method assumes that the cloud is optically thick, which is satisfied for clouds that are 
thick enough to produce rainfall. 

Using this method also requires that limb darkening be accounted for (i.e., to avoid 
excessively high cloud-top height retrievals). The climatological adjustment for limb 
darkening developed by Joyce et al. (2001) is applied to ABI band 14 before using them 
to derive the cloud-top height.  It should be noted that the limb-adjusted brightness 
temperatures are not used in the calibration or retrieval process, since a climatological 
adjustment is inappropriate for WV absorption bands. It should also be noted that even at 
nadir the IR bands experience a small amount of attenuation from WV absorption, which 
in turn could cause the cloud-top height assignment to be slightly too high.  However, 
since the cloud-top height is being used to compute a parallax adjustment with a 
minimum resolution of 2 km (the distance between footprints at nadir), an error in the 
height assignment of even a few hundred meters can be ignored for this application.

3.4.1.1.2 Location Adjustment 

For each pixel in the ABI image, a pre-computed LUT contains the pixel location to 
which it should be shifted based on the cloud-top height.  This LUT is used to shift the 
pixels in each of the IR bands, and any gaps in the field of shifted IR pixels is filled in 
using simple inverse-distance-weighted interpolation. 

3.4.1.2 Training Data: Matched ABI Predictors and Microwave 
Rain Rates 

The MW rain rates serve as the calibration target for the rain rate algorithm, both in terms 
of identifying raining areas and in retrieving the intensity of rainfall.  In practice, any 
reliable rainfall rate field could be used for calibration, including radar data, and it is not 
necessary that these fields be continuous in space or time—just that they represent 
instantaneous rates of rainfall rather than accumulations over time.  Since rainfall rates 
from multiple microwave instruments are used, the rates should be bias-adjusted since 
differences among the input data sets will effectively act as noise in the training data set.  
This was the motivation behind the initial choice to calibrate against the MWOMB 
product..  

To properly match the ABI predictors with the MW rain rates in space, differences in 
footprint size between the ABI and the MW sensors must be addressed.  The procedure in 
this algorithm is to aggregate the ABI data onto the MWCOMB grid.  Although the 
satellite contributing to a particular MWCOMB grid point is known, the size of the 
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original MW footprint is not known for cross-track scanning instruments like the AMSU-
B / MHS and can only be inferred from the original swath data.  Consequently, it is 
assumed that the MW footprint is 8 km (an approximation of the MWCOMB grid size).  
Furthermore, it is also assumed that the ABI footprint diameter is 2 km even though it is 
known that the ABI footprint size varies with scan angle. For each available MW 
footprint, those ABI footprints that at least partially overlap the MW footprint are 
identified, and the fraction of the coverage of the MW footprint by the ABI footprint is 
computed based on the location of the footprint centers and the above assumptions about 
footprint shape and size.  The weight of each ABI footprint is proportional to the total 
computed overlapping area with the MW footprint such that all of the weights add up to 
unity. 

Time matching of the ABI predictors with the MW rain rates should match the ABI and 
MW fields that are closest in time.  Since the MWCOMB fields contain all of the MW 
overpasses during a 30-min period with no time information, the ABI fields to match are 
arbitrarily taken from those ABI scans that start at the beginning of each MWCOMB 
field. Due to the 15-h latency of MWCOMB, previous ABI images will need to be 
available for matching with microwave data. 

Note that the predictors in this algorithm are not necessarily restricted to ABI data; 
predictors from other GOES-R instruments (e.g., lightning) can also be used, in addition 
to any other ancillary data that might prove to be relevant (e.g., stability profiles from 
numerical weather models).  The current list of predictors is presented in Table 5, where 
the subscript refers to the wavelength of the brightness temperature T; e.g., T7.34 is the 
brightness temperature at 7.34 µm.  Note that the matched MW-ABI data file contains the 
component IR brightness temperature values and also the derived values in Predictors 2 
and 3; the additional predictors in Table 5 (i.e., brightness temperature differences) are 
computed internally by the calibration program to reduce the required size of the matched 
data files.  The constant adjustments are performed in order to optimize the nonlinear 
predictor transformation described in Section 3.5.4.  In the case of brightness temperature 
differences, a constant is added in order to avoid negative values which have an 
undefined logarithm; in the case of the brightness temperature values, a constant is 
subtracted because lower (but positive) values are most sensitive to the nonlinear 
transformation. 

 
Input ID Description 
1 T6.2 - 174 K 
2 S = 0.568*(Tmin,11.2-217 K) + 25 K 
3 Tavg,11.2 - Tmin,11.2 – S + 85 K 
4 T7.34 - T6.19 + 10 K 
5 T8.5 - T7.34 + 10 K 
6 T11.2 - T7.34 + 40 K 
7 T8.5 - T11.2 + 25 K 
8 T11.2 - T12.3 + 15 K 
9 T11.2 - 174 K 
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10-18 Nonlinear transformations of predictors 1-9 

Table 5. Predictors computed from the data in the matched MW-ABI data file. 

Note that if a particular pixel is present but there are missing pixels in the 5x5 
neighboring region, Tmin (and hence S) will still be computed, but the missing pixels will 
be ignored in calculating the predictors that require information from the neighboring 
region.  However, if at least 3 of the 6 neighboring pixels (the closest 4 in the same scan 
line and the 2 corresponding pixels in the adjacent scan lines) used to compute Gt are 
missing Gt is not computed and is assigned a missing value of -999.0. 

Finally, if any of these predictors has a value less than or equal to zero, the nonlinear 
transformation (see Section 3.5.4) cannot be performed and so no retrieval is performed 
for such pixels; their rainfall rate value is set to a missing value of -999.0. 

The performance of the rain rate algorithm has been shown to improve when the data are 
divided into classes that can be determined a priori from available data.  Specifically, the 
ABI full disk is divided into 15x15° lat / lon boxes, as shown in Fig. 2: 

  
Figure 2. Calibration boxes for GOES-West (left) and GOES-East (right).  Green values 
are for water-top clouds; blue values are for ice-top clouds; and red values for deep-
convective clouds. Cross-hatching indicates the region with a satellite zenith angle of < 
70°; i.e., the region of quantitative validation. 

In addition, the data in each box are divided into 3 rainfall types according to selected 
ABI brightness temperature values from the matched MW-ABI data set that are 
computed for the 9x9-pixel window centered on the pixel of interest in order to produce a 
spatially smooth cloud type field: 

− Type 1 (water cloud): T7.34<T11.2 and T8.5-T11.2<-0.3 
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− Type 2 (ice cloud): T7.34<T11.2 and T8.5-T11.2≥-0.3 

− Type 3 (cold-top convective cloud): T7.34≥T11.2 

These types were determined by experimenting with the changes in the relationship 
between T11.2 and rainfall rate (T11.2 is the band typically used for rain rate retrievals 
because of its sensitivity to cloud-top temperature with relatively small water vapor 
effects) for various brightness temperature threshold difference regimes.  The thresholds 
are the points at which this relationship changes significantly from one side of the 
threshold to the other, which implies that they represent significantly different regimes 
for rainfall rate retrieval purposes. This results in a total of 330 rainfall classes in the 
algorithm (440 for GOES-17; see Section 3.4.2) which are illustrated in Fig. 2.  Separate 
files of matched MW rain rates and ABI data are maintained for each class. 

Note also that if any of the three ABI brightness temperature values used to determine 
cloud type (T7.34, T8.5, or T11.2) is missing for a given pixel, the rainfall class will be set to 
zero and no retrieval will be performed for that particular pixel (i.e., its value will be set 
to -999.0). 

Separate matched data sets are maintained for each rainfall class, with the data points in 
reverse time order (i.e., the most recent data in the first record and the oldest data in the 
last record).  These matched data sets are rolling-value data sets; i.e., older data are 
cycled out of the end of the file as newer data are brought in to the beginning of the file 
keep the data set up-to-date.  Initial work with training data sets covering a fixed period 
of time (e.g., 24 hours) proved to be unsuitable because time variations in the intensity 
distribution of rainfall would affect the robustness of the calibration.  For example, if an 
extended period of light rain or no rain were followed by heavy rain, the algorithm might 
be preferentially calibrated for light rain and thus perform poorly when the heavy rain 
began.  To ensure a training data set that contains enough raining pixels for reliable 
results but is still short enough to reflect recent conditions, the number of data points with 
MW rain rates > 2.5 mm/h in the training data files are kept fixed at 10,000.  Specifically, 
as newer data become available and are added to the training data file, the oldest data 
points are removed until the number of MW pixels with rain rates > 2.5 mm/h returns to 
the same value as before the newer data were added.  It should be noted that the number 
of training pixels read is controlled by the training code rather than by the file size; i.e., 
the training code will read through the training file (backward in time) until the required 
number of raining pixels is read.  Therefore, it is not critical for the training file to be 
trimmed strictly to the required number of training pixels as extra pixels will simply be 
ignored. 

It is important to note that the training of the coefficients and the retrieval of the actual 
rain rates are done in parallel: the coefficients are updated whenever new target data 
become available, and then these updated coefficients are used in retrieving the rain rates 
from the next available set of ABI imagery.
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3.4.1.3 Rainfall Detection 

The objective of the rainfall detection portion of the algorithm is to separate clear and 
cloudy but non-raining pixels from raining pixels.  The training of the separation portion 
of the algorithm is applied to each cloud class separately using discriminant analysis 
(similar to linear regression but with a binary predictand—the value is 1 if the MW rain 
rate exceeds 1.0 mm/h and 0 otherwise.  The 1.0 mm/h threshold is used because of 
significant differences among MW instruments in sensitivity to drizzle and very light 
rain).  For each algorithm class, discriminant analysis is performed using each possible 
predictor pair, and the pair that produces the best Heidke Skill Score (HSS; see Section 
3.5.3 for definition) for rain / no rain discrimination (compared to observations) is 
selected.  The result is an equation for linearly combining two predictors, plus a threshold 
value above which the pixel is considered to be raining.  This threshold value is 
optimized based on the Heidke Skill Score (HSS) but with the constraint that the 
retrieved and actual number of raining pixels cannot differ by more than 5%. 

Once the predictors and coefficients have been selected and the threshold value has been 
determined, the resulting predictor ID’s and coefficients are then written to a file for use 
by the prediction program.  A more detailed description of this process is contained in 
Section 3.5.3. 

3.4.1.4 Rainfall Rate Estimation 

The objective of the rainfall rate portion of the algorithm is to determine rainfall rates for 
those pixels that were classified as raining by the discriminant analysis scheme, with 
separate equations for each algorithm class.  Consequently, only those pixels that have 
non-zero target rainfall rates are used to develop the equations for retrieving rainfall rates. 

Since the relationship between many of the predictors (e.g., IR window brightness 
temperature) and rainfall rates is known to be nonlinear, the first step is to supplement the 
predictor set with additional predictors that represent optimal nonlinear transformations 
of the original set: for each algorithm class, each original predictor is re-scaled to 
eliminate negative values (see Table 5), and then the predictors and target rain rates are 
regressed against each other in log10-log10 space.  The resulting slope and intercept 
become an exponent and multiplier in linear space, and this slope and intercept are used 
to create a nonlinear transformation of each predictor. 

After creating the set of transformed predictors for each algorithm class (which are 
included with the original predictors in the predictor pool), all of the possible predictor 
pairs are evaluated via linear regression against the target rain rates, with separate 
regressions performed for each algorithm class.  The predictor pair that produces the best 
correlation with the target rain rates is selected.  After this is done, a preliminary set of 
rain rates is retrieved and compared to the MW training data to derive a set of coefficients 
for adjusting the retrieved rain fall rate distribution to match the distribution of the 
microwave rainfall rates.  All of the required coefficients are then written to a file for use 
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by the prediction routine.  A more detailed description of this process is contained in 
Section 3.5.4. 

3.4.1.5 Independent rainfall rates 

The equations produced by the calibration of the rainfall detection and rainfall rate 
estimation are used to derive the rainfall rates from current ABI imagery that comprise 
the algorithm output at the full ABI resolution.  For each pixel, the rain / no rain and rain 
rate equations for that pixel’s cloud type for the 3x3 15° lat / lon boxes centered on the 
pixel. Note that the rainfall rates are produced using different equations for each of the 
330 (440) classes. 

3.4.2 GOES-17 ABI LHP Issues and Mitigation 

It was discovered during post-launch testing of the GOES-17 ABI that the loop heat pipe 
(LHP) subsystem, which transfers heat from the ABI electronics to the radiator, is not 
operating at its designed capacity. Because of this, the ABI Focal Plane Module (FPM) 
cannot be maintained at their intended temperatures, which makes the infrared imagery 
noisier than spec and also leads to partial loss of imagery during some of the overnight 
hours before and after the vernal and autumnal equinoxes.  For additional details, please 
refer to https://www.goes-r.gov/users/GOES-17-ABI-Performance.html.  

Some strategies have been employed to mitigate the effects of the LHP issue, including a 
modified calibration method to reduce the biases caused by changes in the FPM 
temperature. In addition, a modified GOES-17 ABI scan schedule is used during the 
warmest periods whereby full disk images are taken every 15 min and no CONUS sectors 
are scanned in order to allow the FPM to be turned away from the sun and cool down 
slightly; this has reduced the heating by a few degrees K. 

However, while the noise is manageable in the individual bands when the FPM is not 
heating up, the noise in the BTDs is much more noticeable since the signal in a BTD is 
much weaker than in an individual band.  Since the Enterprise Rainfall Rate algorithm 
relies so heavily on BTDs (see Table 5), and since it has been demonstrated elsewhere 
that this noise was causing the retrieved rain rates to be quite noisy, it was decided to 
only use band 14 for GOES-17 retrievals regardless of the FPM temperature, which made 
predictors 2, 3, and 9 from Table 5 the only ones in the predictor pool.  These changes are 
discussed in more detail in Section 3.5.6. 

3.5 Mathematical description 

3.5.1 Calculation of the location shift 

As outlined in Vicente et al. (2002), three inputs are required for parallax correction: 

• Cloud (or feature) height Hc, 
• Apparent position on the Earth of the feature (latitude θc, longitude φf) 

https://www.goes-r.gov/users/GOES-17-ABI-Performance.html
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• Satellite position (distance Rs from the center of the earth over a sub-point at 
latitude θs and longitude φs) 

If the surface of the Earth is considered to be an ellipsoid with an equatorial radius of 
Requator = 6378.1 km and a polar radius Rpole of 6356.6 km, then it can be represented by 
the following equation: 
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Assuming a Cartesian coordinate system where the x-axis of this ellipsoid Earth runs 
through the intersection of the Equator and Prime Meridian, that the y-axis runs through 
the poles, and that the z-axis is positive through the Equator at a latitude of 90 degrees 
East, the distance of the surface of this ellipsoid from its center Re as a function of 
latitude and longitude is 

𝑅𝑅𝑒𝑒 = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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� 2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐
 (2) 

With this information, the apparent position of the cloud on the Earth’s surface (i.e., at 
distance Re from the Earth’s center) can be expressed in Cartesian coordinates (Xc, Yc, 
Zc) as follows: 

𝑋𝑋𝑐𝑐 = 𝑅𝑅𝑒𝑒 cosθc 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑐𝑐 (3) 

𝑌𝑌𝑐𝑐 = 𝑅𝑅𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐 (4) 

𝑍𝑍𝑐𝑐 = 𝑅𝑅𝑒𝑒 cosθc 𝑐𝑐𝑐𝑐𝑠𝑠𝜑𝜑𝑐𝑐 (5) 

The location of the satellite (Xs, Ys, Zs) can be likewise stated in Cartesian coordinates, 
substituting the s subscript for c in the above equations.  However, for a satellite in 
geostationary orbit, θs=0 and thus Ys = 0. 

Since the actual position of the cloud in Cartesian coordinates (Xa, Ya, Za) lies on the line 
that connects the apparent position of the cloud on the Earth’s surface (Xc, Yc, Zc) and the 
satellite (Xs, Ys, Zs), the actual position of the cloud can be expressed in terms of the 
other two positions as 

𝑋𝑋𝑎𝑎 = 𝑋𝑋𝑐𝑐 + 𝐴𝐴(𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑐𝑐) (6) 

𝑌𝑌𝑎𝑎 = 𝑌𝑌𝑐𝑐 + 𝐴𝐴(𝑌𝑌𝑠𝑠 − 𝑌𝑌𝑐𝑐) (7) 

𝑍𝑍𝑎𝑎 = 𝑍𝑍𝑐𝑐 + 𝐴𝐴(𝑍𝑍𝑠𝑠 − 𝑍𝑍𝑐𝑐) (8) 

Determining the scaling factor A will enable determination of the actual cloud location.  
Applying the same ellipsoid equation to the height of the feature above the surface Hc 
gives the result 
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and substituting Eq. (6)-(8) and then Eq. (3)-(5) into Eq. (9) followed by reorganizing and 
simplifying results in a second-degree equation on A that has the following solution: 

𝐴𝐴 = −𝐷𝐷+√𝐷𝐷2−4𝐶𝐶𝐶𝐶
2𝐶𝐶

 (10) 

where C, D, and E are defined as 

𝐶𝐶 = (𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑐𝑐)2 + (𝑍𝑍𝑠𝑠 − 𝑍𝑍𝑐𝑐)2 + 𝐵𝐵(𝑌𝑌𝑠𝑠 − 𝑌𝑌𝑐𝑐)2 (11) 

𝐷𝐷 = 2[𝑋𝑋𝑐𝑐(𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑐𝑐) + 𝑍𝑍𝑐𝑐(𝑍𝑍𝑠𝑠 − 𝑍𝑍𝑐𝑐) + 𝐵𝐵𝑌𝑌𝑐𝑐(𝑌𝑌𝑠𝑠 − 𝑌𝑌𝑐𝑐) (12) 
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and B is further defined as 
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Once the actual cloud Cartesian coordinates (Xa, Ya, Za) have thus been obtained, the 
actual latitude θa and longitude φa of the feature can be determined by 

𝜃𝜃𝑎𝑎 = arctan � 𝑌𝑌𝑒𝑒

�𝑋𝑋𝑒𝑒2+𝑍𝑍𝑒𝑒2
�  (15) 

𝜑𝜑𝑎𝑎 = arctan �𝑋𝑋𝑒𝑒
𝑍𝑍𝑒𝑒
� if Za>0 (16) 

𝜑𝜑𝑎𝑎 = arctan �𝑋𝑋𝑒𝑒
𝑍𝑍𝑒𝑒
� − 180° if Za<0 (17) 

𝜑𝜑𝑎𝑎 = 90° if Za=0 and Xa>0 (18) 

𝜑𝜑𝑎𝑎 = −90° if Za=0 and Xa<0 (19) 

 
As stated previously, instead of computing the parallax correction each time, a LUT is 
created once that contains the parallax shifts for selected ranges of cloud-top brightness 
temperature, and this is what is used in the real-time parallax correction process. 

3.5.2 ABI-MWCOMB matching 
The starting point for matching the ABI and MWCOMB footprints is to determine the 
distance between the centers of the two.  The assumption of a spherical Earth (since the 
distances involved are less than 20 km) leads to the equation 
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𝐷𝐷𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑡𝑡 = {[(𝑙𝑙𝑐𝑐𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑙𝑙𝑐𝑐𝑠𝑠𝑀𝑀𝑀𝑀) ∗ cos(𝑙𝑙𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀)]2 + [(𝑙𝑙𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑙𝑙𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀)]2} ∗ 111 𝑘𝑘𝑘𝑘(20) 
 
where latABI and latMW are the latitudes of the centers of the ABI and MW footprints, and 
lonABI and lonMW are the corresponding longitudes.  Presuming the distance is less than 
the sum of the two radii (rABI=1 km, rMW=4 km; both footprints assumed to be perfect 
circles), so that the two circles have a common area.  Two possible scenarios exist in that 
case: if the distance is less than the radius of the smaller (ABI) radius, then the ABI 
footprint is contained entirely within the MW footprint and so the common area is simply 
the ABI footprint area (πr2ABI).  If the distance is greater than the ABI radius but smaller 
than the sum, then the common area of the two circles is expressed as 
 
𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝐴𝐴𝑀𝑀𝑀𝑀2 ∗ (𝛼𝛼 − cos(𝛼𝛼) sin(𝛼𝛼)) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 ∗ (𝛽𝛽 − cos(𝛽𝛽) sin(𝛽𝛽)) (21) 
 
where 
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and 
 
𝛽𝛽 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒𝑀𝑀𝑀𝑀∗sin (𝛼𝛼)

𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴
� (23) 

 
and 
 
𝛽𝛽 = 𝜋𝜋 − 𝛽𝛽 if distance < rMWcos(α) (24) 
 
The weight of each ABI pixel in computing the MW value is simply the common area of 
the ABI and MW pixel divided by the total area of ABI pixels within the MW pixel; thus, 
the weights for each MW pixel always add up to unity.  In other words, for each ABI 
pixel i among a total of n ABI pixels (or partial pixels) within the MW pixel of interest, 
the weight wi is computed as 
 
𝑤𝑤𝑠𝑠 = 𝐴𝐴𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖

∑ 𝐴𝐴𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1

 (25) 

3.5.3 Calibration: Rain / no rain discrimination 

Mathematically, a special case of multiple linear regression called discriminant analysis 
(in which the target values are 0 for rain rates < 1 mm/h and 1 otherwise instead of 
continuous values) is used to separately calibrate the rain /no rain discrimination for each 
algorithm class.  A two-predictor additive multiple regression model is used for each 
algorithm class c: 

ccccccc xbxbby ε+++= 2,2,1,1,0,  (26) 
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where y is the target MW rain rate or rain / no rain value; the x’s are the two selected 
ABI-derived predictors; the b’s are the calibration coefficients; and ε is the residual error, 
which is to be minimized by solving the following system of normal equations for the 
coefficients b0, b1, and b2: 
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 (27) 

where the first part of the subscript is the algorithm class, the second is the predictor 
number, and the third part is the data point number (all sums are over the total number of 
data points in the class nc.) 

The calibration procedure begins by solving these equations for each possible pairing of 
the first 9 (untransformed) predictors in the matched data set (see Table 5).  Since the 
outputs of these equations will be continuous (i.e., non-binary), a threshold value must be 
determined for converting the output to binary values:  outputs above the threshold are 
assigned a value of 1 (rain) and outputs below are assigned a value of 0 (no rain).  This 
threshold is selected to produce the maximum skill (as measured using the Heidke Skill 
Score; see Eq. (28)) with the constraint that the bias ratio must be between 0.95 and 1.05; 
i.e., there can be no more than a 5% difference between the number of pixels in the 
training data set that are classified as raining and the actual number of raining microwave 
pixels in the training data set.  In order to do this, the equation outputs are computed for 
each training pixel and the highest and lowest values are preserved.  This range of values 
is divided into 5,000 equally spaced intervals, and for each of these 5,000 threshold 
values the number of pixels classified as raining is computed.  Since this number 
decreases monotonically as the threshold value increases (the threshold value must be 
exceeded), a simple binary search can then be used to identify the threshold value that 
produces the best match to the microwave data in terms of the number of raining pixels. 

The HSS is computed as follows: 
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( )( ) ( )( )31434221

32412
cccccccc

cccc
HSS

+++++
−

=  (28) 

where c1 is the number of correct no-rain estimates, c2 is the number of false alarms (i.e., 
the estimate has rain but the observation has no rain); c3 is the number of failed detections 
(i.e., the estimate has no rain but the observation has rain); and c4 is the number of correct 
rain estimates for the class of interest.  Higher HSS values indicate greater skill, with 1 as 
a perfect value (i.e., c2=c3=0). 
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It should be noted that the selection of only 2 predictors was the result of 
experimentation: additional predictors were shown not to have a positive impact on the 
performance of the algorithm.  This may be due to the high degree of correlation among 
the IR bands when depicting optically thick clouds. 

3.5.4 Calibration: Rainfall rate 

For each class, a separate pair of predictors is selected for the rain rate retrieval, using 
Eqs. (26)-(27) as the basis for selection but with continuous output.  Prior to selection, the 
set of 9 predictors is supplemented by a set of non-linear transformations (see Table 5).  
These nonlinear transformations for each predictor p and class c xp,cT  use the power 
function; i.e., 

cp
cpcp

T
cp xx ,

,,,
βα=  (29) 

where the coefficients αp,c and βp,c are found by solving the equation 
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T

cpcp xy βα +=  (30) 

Solving this equation separately for each predictor and class yields the following least-
squares solutions: 
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For each predictor p in each class c, the coefficients αp,c and βp,c are solved for by 
applying Eq. (31) and (32) using the predictor values xp,c,i and the corresponding target 
microwave rainfall rates yc,i.  However, since the equation form in Eq. (29) has no 
intercept, it would be constrained to pass through the origin (0,0), so a modified version 
was developed. 

( ) 1110 ,,
,,, −++= cpcp
cpcp

T
cp xx βα γ  (33) 

The third unknown (γp,c) cannot be solved for with only two equations, so the equation is 
optimized using a “brute force” approach.  First, the value of γp,c is initially set to 0 and 
the equation is solved using Eq. (31) and (32).  The value of γp,c is then incremented by 
25 and Eq. (31) and (32) are solved again; i.e., the value of γp,c is added to the each 
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predictor value xp,c when solving the equation.  The Pearson correlation coefficient is then 
computed for the transformed data: 

yx

yxnCorrelatio
σσ

),cov(
=  (34) 

where cov(x,y) is the covariance of the predictor and target data, and σx and σy represent 
the standard deviations of the predictor and target data, respectively.  The predictor data 
in this case consists of the values of the transformed predictors (i.e., xTp,c) and the target 
data consist of the MW rainfall rates against which they have been matched (i.e., yc). 

If the equation fit (as measured by correlation coefficient) is improved, the value of γp,c is 
incremented by 25 and the process is repeated (but is stopped if it reaches 2500 to avoid 
non-convergence).  If the equation fit is degraded (i.e., lower correlation coefficient), 
then the process stops and the previous value of γ is used.  This process of determining 
the coefficients αp,c, βp,c, and γp,c is repeated for each predictor and each class and applied 
to create the supplemental set of 8 transformed predictors for each class. 

Fourteen of the 18 predictors is then used for calibrating the rainfall rate retrieval, with 
predictors 2 and 3 and their transforms not considered because they are not physically 
relevant for rain rate retrieval.  For each class, each possible pairing of the 14 predictors 
is regressed against the target rain rates using Eq. (27), and the predictor pair with the 
highest Pearson correlation coefficient against the target microwave rainfall rates is 
selected. 

As with the rain / no rain discrimination, experiments showed no positive impact from 
using more than two predictors, again perhaps because of the high degree of correlation 
among the IR bands for optically thick clouds. 

Previous work has shown that the rainfall rates retrieved using this approach generally 
exhibit a strong systematic dry bias—too wet for low rainfall rates and much too dry for 
higher rainfall rates.  This is believed to be the result of significant scatter in the training 
data caused by spatial displacements between the coldest cloud tops and the heaviest 
rainfall rates.  To address this problem, an adjustment for the retrieved rainfall rate is 
derived that adjusts its distribution to match the training microwave rainfall rates. 

Specifically, for each rainfall class, the rainfall rates are retrieved using the coefficients 
derived above, and then are sorted from lowest to highest and matched against the 
training rainfall rates which have also been independently sorted lowest to highest.  The 
result of this match is a lookup table (LUT) whereby the value of the retrieved rainfall 
rate is converted to the value of the corresponding microwave rainfall rate so that the 
distribution of the retrieved rainfall rate will match that of the microwave rainfall rates. 

To create a useful LUT, linear interpolation is used to create a table with evenly spaced 
increments of 0.01 mm/h for the training rainfall rates.  In addition, since the MW rainfall 
rates have a lower dynamic range (in part due to their coarser spatial resolution), but 
since extrapolation of the data could produce non-physical results, for all values between 
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50 mm/h (generally the highest rain rate retrieved from MW radiances) and 100 mm/h the 
input and output values are set equal to one another (i.e., a retrieved rainfall rate of 75 
mm/h will be mapped to a final rainfall rate of 75 mm/h).  Linear interpolation is then 
performed between the data point with the highest rainfall rates and the (50 mm/h, 50 
mm/h) data point.  This LUT is then written to the end of the retrieval coefficient table in 
Table 4, Section 3.3.2. 

3.5.5 Application to independent data 

The predictors and coefficients obtained during the calibration outlined in the previous 
two subsections are then applied to the current ABI imagery using Eq. (26) with the 
appropriate coefficients and predictor values.  To avoid the potential data quality issues 
with any pixel that is missing one but not all bands, if any of the input bands has a value 
less than 174 K, the value of the 11.2-micron (band 14) brightness temperature is set to 
the missing value of -999.0.  The rain /no rain discriminator is then computed. For values 
below the threshold, a rain rate of zero is assigned; for values above the threshold, the 
rainfall rate is computed using Eq. (26) with the rain rate coefficients (and predictor 
transformations from Eq. (33) as needed), followed by the distribution adjustment. 

In order to prevent artifacts at the edges of each 15x15⁰ lat / lon box, for each ABI pixel 
nine separate rain rate retrievals are computed based on the calibration coefficients for 
the same cloud types in the 3x3 grid of 15x15⁰ lat / lon boxes centered on the pixel.  For 
example, for a pixel in class 213, rain rates would be retrieved using the coefficients for 
classes 177, 180, 183, 210, 213, 216, 243, 246, ad 249 (see Fig. 2 for locations).  The 
final rain rate total is the inverse distance weighted average using the cube of the distance 
between the pixel and the centers of the 15x15⁰ lat / lon box for each contributing class.  

Finally, because some or sometimes all of the rainfall at cloud base may evaporate before 
reading the surface, the mean-layer (lowest third of the model domain) relative humidity 
(RH) from the NWS / NCEP GFS is used to adjust the rain rates.  The adjustment was 
developed by regressing the difference between the MWCOMB rain rates and the 
corresponding Stage IV 1-h rainfall accumulations (aggregated onto the MWCOMB grid) 
against the RH values to derive the following additive adjustment: 

RRadd = RR + 0.115825 * (max(RH, 61)) – 10.7354 (35) 

where RR is the additive-adjusted rain rate and RH is the mean-layer RH in percent.  The 
resulting ratios of the MWCOMB rain rates to the additive-adjusted rain rates to the 
corresponding MW were then regressed against the RH values to derive the following 
multiplicative adjustment: 

RRmult = RRadd * (0.000112891[max(RH, 22.32)]2 – 0.00504012 * [max(RH, 22.32)] + 
0.476117) (36) 

where RRmult is the rain rate after applying the multiplicative adjustment. 
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3.6 GOES-17 LHP Mitigation 
The GOES-17 LHP mitigation imposes the following changes on GOES-17 only: 

• Only predictors 2, 3, and 9 are used for rain / no rain discrimination; only 
predictors 9 and 18 is used for rain rate retrieval.  This contingency is needed only 
in the calibration step since the retrieval step will use only those predictors in the 
calibration file. 

• Since cloud type classification cannot be performed using band 14 only, 110 
additional composite classes (numbered 331-440) are created from the matched 
IR-MWCOMB data by combining data from the three classes in the same 15x15° 
lat / lon box; e.g., class 331 contains all of the data from classes 1-3 and class 440 
contains all of the data from classes 328-330.  To avoid redundant storage, the 
matched data for classes 331-440 is assembled “on the fly” from the component 
classes during calibration. 

• The retrieval step uses only classes 331-440. 

3.7 Algorithm Output 

The final output of this algorithm is the Rainfall Rate product—a field of instantaneous 
rainfall rates in mm/h (rounded to the nearest integer) at the same resolution as the ABI 
IR data—2 km at nadir.  Note that for output purposes these values are converted to short 
integers and multiplied by 10, so the effective values in the output files are tenths of mm 
per hour.  This product will also be accompanied by a grid of corresponding quality flags, 
with values of 0 for good data and non-zero for data that are of questionable quality due 
to deficiencies in the input data, as described in Table 6: 

 
Byte Bit Flag Source Value 
0 0 Rainfall Rate output RR 1=bad data; 0=OK 
 1 Local zenith angle block-out 

zone 
SDR 1=local zenith angle>70° or 

lat>60°; 0=OK 
 2 Bad input data for 1st rain / no 

rain predictor 
SDR 
and RR 

1=bad data; 0=OK 

 3 Bad input data for 2nd rain / no 
rain predictor 

SDR 
and RR 

1=bad data; 0=OK 

 4 Bad input data for 1st rain rate 
predictor 

SDR 
and RR 

1=bad data; 0=OK 

 5 Bad input data for 2nd rain rate 
predictor 

SDR 
and RR 

1=bad data; 0=OK 

 6 Retrieval coefficients missing RR 1=no retrieval coefficients; 
0=OK 

 7 FPM temperature > 81.2 K SDR 1=yes, 0=no 

Table 6. Quality flags for the Rainfall Rate product. 

Note that if any of bits 2-6 are set to 1 that all of them should be set to 1. 
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In addition, two quality information fields will be output: a gridded file containing flags 
indicating if the rainfall rate values were truncated at 0 mm/h or at 100 mm/h (Table 7) 
and a gridded file containing the rainfall class (1-330/440) of a particular pixel (Table 8): 

 
Byte Bit Flag Source Value 
0 0 Rain rate > 

100 mm/h 
RR 1=rain rate >100 mm/h but truncated at 100 

mm/h; 
0=rain rate <100 mm/h 

 1 Rain rate < 0 
mm/h 

RR 1=rain rate <0 mm/h but truncated at 0 mm/h; 
0=rain rate >0 mm/h 

Table 7. Diagnostic information for the Rainfall Rate product. 
 
Grid Field Source Value 
1 Precipitation class identifier RR Value of rain class, ranging from 

1 to 330 (440 for GOES-17) 

Table 8. Gridded quality information for the Rainfall Rate product. 

Additional diagnostic information will be provided by the corresponding retrieval 
coefficient table (Table 4, Section 3.3.2). 
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4 PRODUCT VALIDATION 

4.1 Validation Period and Ground Validation Data Sets 

Two ground validation data sets were chosen and will be described in more detail below: 
the Multiple Radar Multiple Sensor (MRMS) gauge-adjusted rain rate field, which covers 
only the CONUS but at very high temporal resolution, and the GPM Dual-frequency 
Precipitation Radar (DPR) which covers the full-disk equatorward of 63 degrees but only 
covers a particular area anywhere from twice in a day to every few days depending on 
latitude. 

4.1.1 Gauge-adjusted MRMS Rain Rates 

MRMS is a composite of US and Canadian radars that are regridded onto a 0.01⁰ lat / lon 
grid that is refreshed every 2 minutes (Zhang et al. 2016).    In addition to the radar-only 
instantaneous rates, MRMS also produces gridded hourly and multi-hour accumulations 
that have been adjusted using rain gauge data; however, gauge-adjusted instantaneous 
rain rates are not currently available.  Consequently, the instantaneous rates are 
multiplied by the ratio of the corresponding gauge-adjusted 1-hour accumulations to the 
unadjusted 1-hour accumulations. 

4.1.2 GPM DPR Rain Rates 

The GPM instrument package includes the DPR (Iguchi et al. 2010), which scans at both 
13.6 GHz (Ku band) and 35.5 GHz (Ka band).  The Ku band was selected because of its 
wider swath (245 km vs. 120 km for the Ka band); even with the wider swath, some 
locations average less than one overpass per day.  Versions 6 and 7 (whichever was most 
current at the time—no reprocessed data are used) are used for validating the Enterprise 
rainfall rates. 

4.2 Reprocessed and Real-Time Output from ABI Data  

Ground validation of the Enterprise Rainfall Rate products has been performed using a 
combination of real-time and retrospective rain rates retrieved at STAR going back to 1 
March 2017 (the day the radiances were declared Provisionally validated) for GOES-16 
and for 14 September 2018 (the day an error in the co-registration between the midwave 
IR and longwave IR ABI FPMs was corrected) for GOES-17. To allow the most direct 
comparison possible and minimize seasonal effects, this version of the ATBD will use 
validation statistics for the 12-month period ending 31 May 2020. 

4.2.1 Precision and Accuracy Estimates 

The F&PS specifications for the Rainfall Rate algorithm (see Table 1) refer to 
instantaneous rainfall rates, which is why validation is performed solely against (gauge-
adjusted, in the case of MRMS) radar. The paucity of reliable ground-based radar data 
outside the CONUS and southern Canada makes DPR essential for validation despite its 
relatively infrequent revisit rate. 
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Because rainfall rates are highly skewed toward low rates that are of much less 
hydrometeorological interest than higher rain rates, the F&PS precision spec focuses on 
the performance of the algorithm for rain rates of 10 mm/h (see Table 1).  Specifically, 
when the rain rate at a given pixel is 10 mm/h, the corresponding observed value should 
be within 9 mm/h (i.e., within the range of 1 – 19 mm/h) 68% of the time.  This appears 
to be a very loose requirement compared to most products; however, instantaneous 
rainfall rate is far more variable in both space and time than most other geophysical 
parameters, and slight displacement errors can make the validation statistics look much 
worse than what a side-by-side comparison of the imagery to ground validation data 
might suggest.  Because of this, a “fuzzy” approach for fine-scale rainfall validation has 
been selected whereby the Rainfall Rate pixel is compared with the pixel within a 10-km 
radius that has the most similar value rather than with the directly corresponding pixel.  
This is a variant of the “single observation –neighborhood forecast” strategy described in 
Ebert (2008).  However, it is applied only to the accuracy and precision calculations; all 
other statistical validation (including the scatterplots in the next two sections) directly 
compare the satellite pixels with the corresponding ground validation data. 

4.2.1.1 CONUS Validation against MRMS Q3 

Figure 3 shows a scatterplot of the rainfall rates from GOES-17 and GOES-16 during the 
12-month validation period with the density of points indicated by color (red=more 
dense; purple=less dense) to eliminate the visually misleading effect of multiple 
overlapping points.   
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Figure 3. Scatterplot of Rainfall Rate algorithm vs. collocated gauge-adjusted MRMS 
rain rates for 1 June 2019-31 May 2020; colors are related to pixel density with red 
highest and purpose lowest.  Solid line is the 1:1 line and the dashed line is the best-fit 
line. 

Although there is a high degree of scatter (corresponding to a Pearson correlation 
coefficient of 0.28 for GOES-17 and 0.32 for GOES-16), some of it can be attributed to 
small horizontal displacements between the satellite cloud tops and the ground-level 
rainfall because vertical shear will cause the hydrometeors to fall at an angle from the 
vertical, and at a 2-km spatial resolution this effect can be quite noticeable.  Regardless, 
there is a significant systematic dry bias; i.e., the higher rain rates are underestimated by 
the satellite. 

The performance of the algorithm against the F&PS precision spec is illustrated in Fig. 4 
by the cumulative distribution function (CDF) of absolute error in the Rainfall Rate 
product (the values along the abscissa) with respect to the gauge-adjusted MRMS for 
only those pixels with algorithm values between 9.5 and 10.5 mm/h (there are too few 
pixels with rain rates of exactly 10.0 mm/h to enable a statistically significant analysis).  
These errors were computed using the “fuzzy” verification strategy described in Section 
4.2.1.  The dashed line indicates that 68% of the GOES-16 errors are below 7.8 mm/h, 
which is within the spec value of 9.0 mm/h; however, for GOES-17 the 68th percentile of 
absolute error is at 9.4 mm/h, which does not meet spec.  This is a result of the LHP 
issues and the necessary mitigation that have been described previously. 
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Figure 4. CDF of errors of Rainfall Rate product with rates of 9.5-10.5 mm/h vs. gauge-
adjusted MRMS. 
 
Examining the spatial variability of accuracy and precision vs. gauge-adjusted MRMS 
over the CONUS in Figure 5 sheds additional light on why the GOES-17 performs 
significantly worse than the GOES-16 rain rates. 
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Figure 5. Accuracy (top row) and precision (bottom row) vs. gauge-adjusted MRMS for the GOES-R 
Rainfall Rate product for GOES-17 (left column) and GOES-16 (right column) for 1 June 2019 - 31 May 
2020. Green shading indicates where spec is met, red where it is not. 

The rainfall rates tend to be most skillful over the southeastern United States, which will 
degrade the statistics for GOES-17 since that region represented as well in the validation 
data as for GOES-16.  However, in regions where they overlap, the GOES-16 rain rates 
still tend to be more accurate—even along 106th meridian which represents the 
approximate center point between the two (and hence where the view angle is roughly the 
same for both instruments.  This demonstrates the compromise of performance that was 
made to produce non-noisy estimates of rainfall from the excessively warm GOES-17 
ABI. 

4.2.1.2 Validation against GPM DPR 

As with MRMS, validation against GPM DPR for the 12 months ending 31 May 2020 are 
shown in this section, albeit with global coverage rather than CONUS coverage. 
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Figure 6. Scatterplot of Rainfall Rate algorithm vs. collocated GPM DPR rain rates for 1 
June 2019-31 May 2020; colors are related to pixel density with red highest and purpose 
lowest.  Solid line is the 1:1 line and the dashed line is the best-fit line. 

As the scatterplot in Figure 6 shows, the degree of scatter between the GOES rain rates 
and the GPM DPR rain rates is even greater than with MRMS, with a Pearson correlation 
coefficient of 0.170 for GOES-17 and 0.127 for GOES-16.  However, the algorithm with 
an accuracy of accuracy of 5.91 mm/h and 5.21 mm/h for GOES-17 and -16, respectively 
(spec is 6.00 mm/h), and a precision of 8.96 mm/h and 8.69 mm/h for GOES-17 and -16, 
respectively (spec is 9.00 mm/h). 
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Figure 7. Accuracy (top row) and precision (bottom row) vs. GPM DPR for the GOES-R 
Rainfall Rate product for GOES-17 (left column) and GOES-16 (right column) for 1 June 
2019 - 31 May 2020. Green shading indicates where spec is met, red where it is not. 
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As Figure 7 shows, the algorithm does best in the tropics and worse in the higher 
latitudes, as one would expect given the preponderance of convective rainfall in the 
former and stratiform rainfall in the latter.  It is also clear that GOES-16 rain rates have 
less error and bias than GOES-17 in the regions where they overlap, which is also 
expected since the GOES-17 rain rates are retrieved using only ABI band 14 to mitigate 
the FPM cooling issue. 

4.2.2 Error Budget 

The validation of retrieved rain rates from GOES-16 and -17 against gauge-adjusted 
MRMS and DPR for 1 June 2019 through 31 May 2020 is summarized in Table 9 using 
the “fuzzy” verification described in Section 4.2.1.  As discussed in Sections 4.2.1.1 and 
4.2.1.2, the precision and accuracy specs are met in all cases except for GOES-17 vs. 
MRMS over the CONUS, and part of that is because the validation statistics there are 
weighted heavily toward the western CONUS where orographic effects degrade the skill 
of the estimates. 

 
Ground 
Validation 
(coverage) 

Accuracy (mm/h) at 
10 mm/h 

Precision (mm/h) at 
10 mm/h 

Number of data points 

GOES-17 GOES-16 GOES-17 GOES-16 GOES-17 GOES-16 
MRMS (CONUS) 5.50 4.36 9.39 7.81 6,867,843 11,201,180 
DPR (FD) 5.91 5.21 8.96 8.69 347,934 161,680 
F&PS 6.0 9.0 ----- 

Table 9. Comparison of Rainfall Rate algorithm validation with F&PS. 
 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

The calibration portion of the algorithm creates / updates a series of external files 
containing matched MW rainfall rates and ABI predictors, and whenever a file is 
updated, ingests the data into an array and uses L-U (Lower-Upper) matrix 
decomposition to solve the resulting matrix for calibration coefficients (Eq. 27) and 
predictor ID’s that are stored in a separate external file.  The retrieval portion of the 
algorithm ingests the calibration coefficient files and the ABI predictor fields that are 
indicated within these files and applies the coefficient files to the predictor fields, 
resulting in a rainfall rate field on the same grid as the ABI predictors. 

The MW-IR matching, calibration and retrieval portions of the Rainfall Rate Algorithm 
do not need to be run sequentially; in fact, parallel processing is preferred as long as care 
is taken to make sure that coefficient files are available whenever needed for the retrieval 
portion of the algorithm.  The only stipulation is that for optimal accuracy the calibration 
should be updated as frequently as new ABI-MW rain rate matchups are available.  Since 
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the MWCOMB data may have a latency of 15 hours, previous ABI data will need to be 
available for calibration purposes. 

5.2 Programming and Procedural Considerations 

The Rainfall Rate Algorithm requires knowledge of spatial uniformity metrics that are 
computed for each pixel using pixels that surround it, and also requires an 11x11-pixel 
window to compute cloud type.  Beyond this reliance, the Rainfall Rate Algorithm is 
purely a pixel by pixel algorithm; no information from previous time periods is required 
for the retrieval step (though it is needed for the calibration step—see below).  No 
temporal averaging is performed to generate the 10-min products; the most recently 
available ABI image is used to generate the current Rainfall Rate product. 

A collection of MWCOMB rainfall rates during the previous 2-3 days should be available 
for use as calibration targets.  However, if necessary the rainfall rate algorithm can run 
using pre-computed calibration coefficients which will be adjusted whenever target 
MWCOMB rainfall rates become available and a sufficient supply of matched data pairs 
has thus been built up.  Furthermore, if the availability of MWCOMB rainfall rates is 
interrupted, the algorithm will continue to produce estimates using the most recently 
computed calibration coefficients. 

5.3 Quality Assessment and Diagnostics 

Quality flags will be produced and provided along with the rainfall rate fields, with non-
zero values for pixels whose inputs have values outside the acceptable range.  These flags 
are described in detail in Section 3.7.  Table 10 lists acceptable range values for the 
inputs.  Note that the minimum values in the table are for computational purposes: values 
lower than that would produce negative predictor values, which will in turn result in 
errors when the nonlinear predictor transformation described in Section 3.5.2 is 
performed. 
 

Input ID Predictor Description Minimum Value 
1 T6.2 174 K 
2 S=0.568*(Tmin,11.2-217 K) -25 K 
3 Tavg,11.2-Tmin,11.2-S -85 K 
4 T7.34-T6.19 -10 K 
5 T8.5-T7.34 -10 K 
6 T11.2-T7.34 -40 K 
7 T8.5-T11.2 -25 K 
8 T11.2-T12.3 -15 K 
9 T11.2 174 K 

Table 10. Minimum acceptable values for each algorithm predictor. 
The following procedures are recommended for diagnosing the performance of the 
rainfall retrieval algorithm. 
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• Periodically image the individual test results to manually identify artifacts or non-
physical behaviors. 

• Automatically compute performance statistics for the algorithm (preferably daily) 
against DPR and gauge-adjusted MRMS and note any significant deviations from 
typical values. 

5.4 Exception Handling 

The Rainfall Rate Algorithm includes checking the validity of each input ABI band 
before retrieving a rainfall rate, and a ‘missing’ (-999.0) value is assigned to a pixel if any 
of the input values are outside the acceptable range.  A missing value is also assigned to 
that pixel if the calibration coefficients are not available for any of the 9 15x15° lat / lon 
calibration boxes that contribute to that pixel; this is done by checking the first rain 
detection predictor ID, the Heidke Skill Score, and the correlation coefficient from the 
training file for missing values.  The bits 1-4 (depending on the predictor; see Table 6 in 
Section 3.7) of the quality flag for that pixel will also be set to 1.  Note that it is possible 
for bits 1-4 to be set to 1 even when there is a non-missing rain rate at a particular pixel; 
this simply means that the calibration coefficients were not available for the 15x15° lat / 
lon box containing the pixel and that the rain rate therein was retrieved using some of the 
neighboring 15x15° boxes only. The Rainfall Rate Algorithm also expects the Level 1b 
processing to flag any pixels with missing geolocation or viewing geometry information. 

If the MWCOMB data are unavailable, the algorithm will continue to produce estimates 
of rain rate using the most recently available calibration coefficient tables; performance 
will degrade slightly as a result but the degradation will be limited.  If one or more 
individual ABI bands used by the algorithm become unavailable, the algorithm will first 
output missing values (and corresponding quality flags) for any pixels that use the 
missing ABI band, and then subsequent updates to the calibration coefficients will ignore 
the missing bands and retrieval will continue as normal.  The degree of degradation in 
performance will depend on the band(s) that are lost. 

5.5 Algorithm Validation 

In addition to the validation described in Section 4, validation statistics compared to the 
previous 24 hours of gauge-adjusted and MRMS data are automatically generated daily at 
STAR.  Spatial plots of the rain rates and also of the errors in rain rates compared to 
gauge-adjusted MRMS are also created daily and examined at STAR. 
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6 ASSUMPTIONS AND LIMITATIONS 

This section describes the assumptions and limitations of the current version of the 
Rainfall Rate Algorithm. 

6.1 Performance 

Several assumptions have been made in developing and estimating the performance of 
the Rainfall Rate Algorithm.  They are listed below, accompanied by proposed mitigation 
strategies in parentheses. 

1. The calibration target (MWCOMB) rainfall rates are accurate.  (No mitigation 
possible.) 

2. The calibration target rainfall rates are available with a reasonably short lag 
time.  Note that in the absence of calibration data, the algorithm will continue 
to produce retrievals based on the last available set of calibration coefficients, 
though with some degradation of performance.  (No mitigation possible, but 
see Section 6.3.1.) 

3. The parallax adjustment of the ABI pixels is accurate.  (Refinement of the 
parallax scheme is possible but not a high enough priority to pursue at this 
time.) 

4. Limb cooling is sufficiently uniform in each 15x15⁰ calibration box to not 
require adjustment.  (Limb cooling adjustments require knowledge of the 
atmospheric water vapor content along the path length.  For window bands the 
effects of water vapor are small enough that a climatological adjustment is 
sufficient, and this is used when estimating the cloud-top temperature from 
band 14.  However, limb cooling adjustments for WV absorption bands are 
much more challenging and are not being pursued at this time.) 

5. The available validation data (DPR and gauge-adjusted MRMS) are 
sufficiently accurate and provide a sufficiently representative sample to 
evaluating whether the algorithm meets spec.  (No mitigation possible.) 

6. The processing system allows for processing of multiple pixels at once for 
application of the spatial uniformity tests and calculation of the pixel type.  
(No mitigation possible) 

7. Striping (i.e., when two or more detectors have slightly different calibrations, 
producing scan lines that are biased with respect to one another) and spectral 
shifts are minimal. (No mitigation possible) 

8. No data aggregation is performed in time; i.e., if the frequency of ABI 
imagery exceeds the product refresh rate, only one ABI image will be 
processed per product.  (No mitigation possible) 
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In addition, a number of limitations in the ability to retrieve rainfall rates from satellite 
data have been identified and are listed here. 

1. Satellite-based rainfall algorithms generally exhibit much better skill for 
convective (warm-season) rainfall than for stratiform (cold-season) rainfall, 
because the relationship between cloud-top temperature and rainfall rate is much 
stronger for the former than the latter.  The inclusion of additional ABI bands 
provides some mitigation by implicitly including information about cloud-top 
properties (particle size and phase). 

2. The current version of the algorithm does not account for modulation of rainfall 
by topography.  The effects of orography on precipitation are highly complex and 
the published efforts that are centered on calculation of upslope / downslope flow 
near topography produce results that look realistic but do not significantly 
enhance skill when validated against ground data. 

6.2 Assumed Sensor Performance 

It is assumed that the sensor will meet its current specifications.   However, the Rainfall 
Rate Algorithm will be dependent on the following instrumental characteristics.  

• The spatial variation predictors in the Rainfall Rate Algorithm will be critically 
dependent on the amount of striping in the data.  Note that this will affect the 
retrieval only when any texture-related predictors are among the selected 
predictors selected by the algorithm. 

• Unknown spectral shifts in some channels will affect the BTD calculations and 
thus compromise some of the predictors.  Note that this will affect the retrieval 
only when any BTD’s are among the predictors selected by the algorithm. 

• Any noise in the data (e.g., from an insufficiently cooled FPM) is exacerbated in 
the BTDs and can make the BTDs too noisy to use even when the noise for 
individual bands is relatively tolerable. 

6.3 Pre-Planned Product Improvements 
A number of potential improvements are being in progress or being considered for 
evaluation: 

6.3.1 Direct Matching of IR with MW Rain Rates 

Since the MWCOMB product re-grids the MW footprints onto a lat / lon grid and does 
not contain time information (i.e., when the overpass occurred during each half hour), a 
process is being developed to directly match the IR predictors with operational MW rain 
rates retrieved using the Microwave Integrated Retrieval System (Iturbude-Sanchez et al. 
2011) instead of using MWCOMB.  Rain rates will be used from the Global Precipitation 
Mission (GPM) Microwave Imager (GMI), the Advanced Microwave Sounding Unit-B / 
Microwave Humidity Sensor (AMSU-B/MHS), the Special Sensor Microwave Imager 
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Sounder (SSMIS), and the Advanced Microwave Scanning Radiometer-2 (AMSR2).  
Other MW instruments will be added as MIRS rain rates become available. 

6.3.2 Incorporation of Geostationary Lightning Mapper (GLM) Data 

Experiments with incorporating GLM fields of Flash Extent Density and Average Flash 
Area that have been remapped to the ABI grid have shown a positive impact on 
performance, particularly for GOES-17.  Additional work with longer time periods of 
data is ongoing to confirm the impacts; once confirmed, appropriate changes will be 
made to the operational algorithm. 
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