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The Land Information System (LIS; http://
lis.gsfc.nasa.gov)is a common land data 
assimilation infrastructure for NASA/DoD/NOAA 
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Background: LIS subsystems 
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LIS at AFWA 

Radiation        
Analysis 

CDFS II cloud analysis 
used to derive 

surface radiation analysis 

Precipitation 
Analysis 

Surface obs, GEOPRECIP, 
SNODEP, SSMIS merged to 

derive precip analysis 

GFS first guess combined 
with obs of T, u, v, RH 

to derive shelter analysis 
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Planned LIS-based assimilation at AFWA 

Experimental Setup: 
•  Domain: Global 
•  Resolution: 0.125 deg. 
•  Period: 2014- 
•  Forcing: AMPS CDFSII+GFS 
•  LSM: Noah 3.3 

Data Assimilation: 
•  SMOPS ASCAT soil moisture 
•  SNODEP snow depth SMOPS (ASCAT) Soil Moisture 

SNODEP snow depth TRMM-based AMPS  



SMOPS ASCAT DA Evaluation over CONUS 
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Model domain: Continental United States (CONUS) at ¼th degree spatial resolution	


	


Forcing data: AGRMET retrospective forcing	


	


Land surface model: Noah LSM version 3.3	


	


Data assimilation method: Ensemble Kalman Filter (EnKF). The observation error standard 
deviations were defined in the climatology of the datasets and were scaled (locally) into the Noah 
model climatology by the ratio of the model and observation time series standard deviations. A 
CDF-scaling approach was used to scale the observations into the Noah model climatology. 	


	


Time period: Jan 1, 2007, to Jan 1, 2012	


	


Quality control:  Data screened for dense vegetation, snow/rain, frozen soil, and using the 
estimated soil moisture error flag provided with the ASCAT data. 	


	


Evaluation:  using SCAN/ARS networks. 60 SCAN sites and 3 ARS calval sites were used. 	


	


	


	





Soil moisture DA : Evaluation of soil moisture fields 
ARS CalVal  
(surface soil 
moisture) 

Open loop (no DA) TUWein DA RTSMOPS DA  

Anomaly R 0.53 +/- 0.01 0.56 +/- 0.01 0.55 +/- 0.01 

Anomaly RMSE 
(m3/m3) 

0.037 +/- 0.001 0.036 +/- 0.001 0.035 +/- 0.001 

ubRMSE (m3/m3) 0.046 +/- 0.002 0.044 +/- 0.002 0.044 +/- 0.002 

SCAN (surface  
soil moisture) 

Open loop (no DA) TUWein DA RTSMOPS DA 

Anomaly R 0.53 +/- 0.02 0.56 +/- 0.02 0.56 +/- 0.02 

Anomaly RMSE 
(m3/m3) 

0.048+/- 0.002 0.047 +/- 0.002 0.047 +/- 0.002 

ubRMSE (m3/m3) 0.062 +/- 0.003 0.058 +/- 0.003 0.060 +/- 0.003 

SCAN (root zone 
 soil moisture) 

Open loop (no DA) TUWein DA RTSMOPS DA 

Anomaly R 0.54 +/- 0.02 0.55 +/- 0.02 0.56 +/- 0.02 

Anomaly RMSE 
(m3/m3) 

0.040 +/- 0.002 0.039 +/- 0.002 0.039 +/- 0.002 

ubRMSE (m3/m3) 0.052 +/- 0.003 0.050 +/- 0.003 0.050 +/- 0.003 

Marginal, but 
statistically significant 
improvements in 
surface soil moisture 
and root zone soil 
moisture as a result of 
RTSMOPS/TUW 
 
Anomaly R increases, 
Anomaly RMSE 
reduces and unbiased 
RMSE reduces with 
assimilation.  
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Soil moisture DA : ARS watershed locations 

Little Washita 

Little River 
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AFWA SNODEP DA Evaluation over CONUS 
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Model domain: Continental United States (CONUS) at ¼th degree spatial resolution	


	


Forcing data: AGRMET and NLDAS2 retrospective forcing	


	


Land surface model: Noah LSM version 3.3	


	


Data assimilation method: Ensemble Kalman Filter (EnKF) and Direct Insertion (DI)	


	


Time period: Jan 1, 2007, to Jan 1, 2012	


	


Evaluation:  using CMC, MODIS	


	


	





 AFWA SNODEP DA: 
Snow Depth – RMSE Difference vs. CMC 

OL vs. DI vs. EnKF 
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AFWA SNODEP DA: 
Snow Cover POD vs. MODIS 
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AFWA SNODEP DA: 
Snow Cover FAR vs. MODIS 
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1979-
present 

NLDAS-2 
Forcing and 
Parameters 

 
Soil 

Moisture, 
SWE, TWS 

 

Drought 
Indices/ 

Percentiles 

Land-Surface Models 
Noah-3.3, CLSM-F2.5, SAC-

HTET-3.5.6/ SNOW-17, 
VIC-4.1.2 

LIS at NOAA:  NLDAS 
CFS-LDAS and GFS-LDAS (not discussed) 

Kumar, S.V., C.D. Peters-Lidard, D. Mocko, R. Reichle, Y. Liu, K.A. Arsenault, Y. Xia, M. Ek, G. 
Riggs, B. Livneh, M. Cosh (2014), “Assimilation of remotely sensed soil moisture and snow depth 
retrievals for drought estimation” Journal of Hydrometeorology, in revision 



March 2011 Surface  
SM Percentile from 
LPRM v5 – NASA 
Aqua/AMSR-E EDR     
(2003-2011). 

Data assimilation for the next phase of NLDAS 

n  J10.4  Benchmarking the next phase of the North American Land Data 
Assimilation System (NLDAS) using the Land Verification Toolkit (LVT) 
by Mocko et al. 

n  J12.6  Assimilation of passive microwave-based soil moisture and snow 
depth retrievals for drought estimation by Kumar et al. 

March 2011 SWE Mean 
Percentile from LPRM 
v5 – NASA Aqua/
AMSR-E EDR 
(2003-2011). March 2011 GRACE-

based Groundwater 
Percentile from GRACE 
TWS EDR (2002-
present). 



  
Soil moisture and snow depth DA:  

Evaluation of streamflow 

The improvements are 
expressed using an 
Normalized 
Information 
Contribution (NIC) 
metric that measures 
the  skill improvement 
from DA as a fraction of 
the maximum possible 
skill improvement 
 
 
 
 
 
 
 
 
 

c. Evaluation of streamflow estimates371

To evaluate the streamflow estimates, we use two reference datasets: (1) Daily streamflow372

data from 1979 to 2012 obtained from United States Geological Survey (USGS; http://373

nwis.waterdata.usgs.gov/nwis) over 572 small, unregulated basins (of size less than 10000374

km2 and greater than 625 km2 (the approximate size of the AMSR-E footprint) and had no375

visible signs of reservoir operation). These basins were also part of the model evaluations376

used in the NLDAS-2 project (Xia et al. (2012b)) and are a subset of the Model Parameter377

Estimation Experiment (MOPEX) study basins. (2) Comparison at 19 major basin outlets378

against “naturalized” streamflow data (Mahanama et al. (2012)), which was developed by379

removing water management e↵ects.380

1) Evaluation over small catchments381

Because the magnitude of streamflow estimates vary significantly across di↵erent basins,382

we use a normalized information contribution (NIC) measure to quantify the improvement383

or degradation due to data assimilation, across di↵erent analysis metrics (similar to the384

approach used in Kumar et al. (2009)). The NICs for RMSE, R and nash-sutcli↵e e�ciency385

(NSE) are defined as follows:386
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, where the subscripts o and a denote open loop and assimilation, respectively. Each NIC387

metric is defined as a measure of how much the maximum skill improvement (which in case388

of R is (1�R
o

)) is realized through data assimilation (which in case of R is (R
a

�R
o

)). Note389

16

DA-SM DA-SNOW 

Minor improvements in all skill metrics (RMSE, R and NSE) are observed in streamflow  estimates with soil moisture data 
assimilation. Snow DA indicates a slight overall degradation.  
 
Skill improvements from soil moisture assimilation are mostly over parts of the Mississippi, Missouri and Arkansas-Red 
basins and parts of Southeastern U.S. Notable degradations due to snow DA are observed over Colorado headwater region 
and over Northwest U.S. 
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Soil Strength, 
Vehicle 
Speed, 

Mobility, 
Trafficability  

Land-Surface Models 
Noah-3.3, FASST 

LIS at USACE/CRREL 



Figure 4:  Changes in annual-average terrestrial 
water storage (the sum of groundwater, soil water, 
surface water, snow, and ice, as an equivalent height 
of water in cm) between 2009 and 2010, based on 
GRACE satellite observations.  Future observations 
will be provided by GRACE-II. 

Figure 5:  Current lakes and reservoirs monitored by 
OSTM/Jason-2.  Shown are current height variations 
relative to 10-year average levels. Future 
observations will be provided by SWOT. 

Figure 2:  Annual average precipitation from 1998 to 
2009 based on TRMM satellite observations. Future 
observations will be provided by GPM. 
 

Figure 1:  Snow water equivalent (SWE) 
based on Terra/MODIS and Aqua/AMSR-E.  
Future observations will be provided by JPSS/
VIIRS and DWSS/MIS. 

Figure 3:  Daily soil moisture based on Aqua/
AMSR-E.  Future observations will be 
provided by SMAP. 

JCSDA Land Data Assimilation Objectives 
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RT SMOPS DA – Global assimilation 

Colored areas show 
locations with 
retrievals available 
for input to the data 
assimilation system. 
 
QC flags include 
rain/snow, frozen 
soil, dense 
vegetation, snow 
cover, frozen deep 
soil layers, etc.   

seen whether RFI contamination may also have affected
C-band data from SMMR.) Surface temperature inputs to the
Owe et al. [2001] algorithm are estimated from the SMMR
37 GHz vertical polarization channel. Even though the
SMMR retrievals are stored on a 0.25 degree global grid,
their effective resolution is about 120 km (based on a
footprint of 148 km by 95 km). Day and night overpasses
were used for AMSR-E and SMMR.
[10] Despite global coverage of the satellite, soil moisture

retrievals are not available everywhere. Soil moisture re-
trieval is impossible in areas that contain a significant
fraction of surface water (such as along the coast) or when
the soil is frozen. Moreover, soil moisture retrieval from
C- or X-band passive microwaves is restricted to areas with
sufficiently light vegetation cover. With both the AMSR-E
and the SMMR data sets, a number of quality control
measures were needed. We used only AMSR-E soil mois-
ture data points that had corresponding flags for light
vegetation, no rain, no snow cover, no frozen ground, and
no RFI. Moreover, only AMSR-E soil moisture data with a
heterogeneity index of less than 5 K were used. The
heterogeneity index is the spatial standard deviation of the
36.5 GHz brightness temperature (horizontal polarization)
within the 10.65 GHz footprint at the time of the overpass.
This step eliminates mixed pixels that contain both land and

open water. For SMMR, we excluded soil moisture retriev-
als associated with a vegetation optical depth greater than
0.6 (simultaneously retrieved). In additional online quality
control steps, we excluded soil moisture retrievals whenever
the land surface model indicated that (1) rain was falling,
(2) the soil was frozen, or (3) the ground was fully or partly
covered with snow.
[11] Figure 1 shows the monthly average number of

AMSR-E and SMMR soil moisture retrievals that were
used in the assimilation. The time average is computed
from June 2002 to May 2006 for AMSR-E and from
January 1979 to August 1987 for SMMR. Both AMSR-E
and SMMR are on polar-orbiting platforms that pass over a
given location in the midlatitudes about once every few
days. Because of power constraints on the platform and the
considerably narrower swath width for SMMR, there are
only up to around ten soil moisture retrievals per month for
SMMR. AMSR-E data are available up to around 50 times
per month in some regions. Most satellite soil moisture data
are available in low-latitude regions with little vegetation,
namely, northern and southern Africa and Australia. Data
are also available at midlatitudes where vegetation is sparse
(U.S. Great Plains, central Eurasia), but here freezing of the
soil and snow cover limit the number of data available in
winter, resulting in a lower year-round average. Data are not

Figure 1. Average monthly number of soil moisture retrievals from (top) AMSR-E (June 2002–
May 2006) and (bottom) SMMR (January 1979–August 1987) after quality control and mapping to
catchment space as part of the assimilation processing.

D09108 REICHLE ET AL.: ASSIMILATION OF GLOBAL SOIL MOISTURE

3 of 14

D09108

For AMSR-E, from 
Reichle et al. (2007) 
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