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Assimilation of ‘moist physics’ observations

1. Obvious importance of clouds and precipitation
Satellite data represent 95% of the data ingested into the
ECMWEF analysis system, but most of the satellite
radiances (about 75 %) are discarded because they are
diagnosed as cloud- or rain-affected.

2. Assimilation of moist variables into NWP is challenging
due to the wide range of spatial and temporal scales of
(non-linear) moist processes and lack of real model error
assigned to them



Retrieval & ‘assimilation’ are essentially the same problem
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D= [x-%,]" B [x-x,] + [y-f(x)I" S by f(f<)] How? Linear Physics?
Seek x, such that d®ﬁ:’//2 What? Prognosed variables,
X, = background time & space filtered?? What

B! = prediction (model) er'r'or\3 statistics?

. Forecast model error? How is
f(x)= model of observation this defined?
S, (W) = ‘observation’ err‘ﬁk Improving & understanding

observing systems



Steps Toward a strategy for operational
assimilation of cloud and precipitation obs:

Optimizing the choice of observations [y(t)]

Model evaluation using current and new satellite

measurements [B-]
Development of new and improved physics’ (clouds
and especially convection) [B-]

Develop, test and quantify errors of ‘observational
operators associated with moist physics observations’ (i.e.
IR, solar and microwave radiative transfer schemes for
clouds & precip, radar reflectivity models, etc)

[f(xX) & W]

Research on the optimal strategy to assimilation (e.g
tangent linear, ensemble methods etc...) [i.e. d®/dx—0]



A satellite ‘Observing System’

(1) YO [y~uZ, b At)
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Two key components of the  Key parameters & ‘knowledge’:

‘transfer function’ —the  , Measurement, y(t) and error ¢
forward and inverse functions : y
e Model f & its error &;

Measurements y(t) are * Model parameter b
connected to the ‘state’ Z  Constraint parameters c

The state is inferred (retrieved)
given the measurement, a
physical model and other
‘knowledge’ about the system.



Cloud occurrence (e.g. PATMOS, ISCCP, HIRS, MODIS
etc)
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o Physical basis for satellite observations of cloud
properties (ie different types of f(x)’s)

extinction emission

N
Source_-O-_
- s ~ - Sensor

Transmitter
Recetver

(c)
scattering

Passive (radiometry)

These methods provide primarily
path integrated information — i.e. little
or no vertical structure:

Examples considered — scattered
sunlight and cloud ‘optical’
properties, thermal emission and
microwave emission

Active (lidar, radar and mm —cm
wavelengths)

Profile information about occurrence,
optical properties, microphysics and

bulk water mass — example highlighted is
of mm-wave radar



One of the messages conveyed in this overview

Most cloud & precipitation retrievals are
single sensor & ‘physics’ centric — leaving us
to ponder which of the seemingly myriad of
different approaches is optimal, how
accurate Is the retrieved information and
what is to be gained in combining different
types of measurements ?

The future Is perhaps with multi-sensor
‘assimilation ‘ of information as, for example,
exemplified by the upcoming A-Train
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Cloud optics and ‘microphysics’ . solar scattering

MODIS Atmosphere Bands

Reflectance variations at these
wavelengths — optical depth and
r, variations
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An example: MODIS optical property information

Cloud_Dptical_Thickness _Combined G4, Mean_Std May 2004
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Particle Size retrieval examples — low
level water clouds

Effective Rodius Retrie . .
s ~" 7| There are three different archived
[| + MODIS 1.63 microns MODIS re products and these are
MODIS 2.13 microns

[| +MODIS 3.75 microns compared to a fourth developed by us
95 at CSU —the differences between them
£ | are substantial and beyond our
£ estimated error
£




Split window thermal emission

Optical properties

Wavelength (um)
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‘Same’ optical information as
scattering method but limited to
(optically) thin clouds
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Split- Window

There is no real attempt to achieve a level of ‘consistency’
between different retrieval schemes even using
measurements from the same instrument
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Microwave emission —cloud liquid water path
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Column Water Vapor (kg/m»2)
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TMI cloud LWP VIRS cloud LWP
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Active systems: the mm radar (e.g. CloudSat)

Power returned to radar after being
scattered from cloud volume is related
directly to size of particles in the volume

For a hypothetical cloud (particles all
the same size), the power returned

Z = [n(D)D°dD — N,D° - (N,D*

) (]
o o Is proportional to the square of the
o ° o / water and ice content of the (radar) volume
° (]
e ° BUT
For real cloud (particles in the volume range in
size), the power returned (or Z) is approximately
o proportional to the square of the water and ice
. o content of the (radar) volume.
@ o
° @




=y (The CloudSat) Liquid Water content example:
the general idea

Active Z —> NO r6 —)WFS

Passive T—)j N0 re dZ—)j W/lédZ

The w-r, dependency

of lidar/t and radar back- :
scatter are functionally optical
orthogonal. Radar depth

In w In w

Inr, Inr
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Derived quantities Fractional Uncertainties
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Cloud Liquid Water Path
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The next dimension -
adding vertical
resolution

Stereo example from




AVHRR Multi-layer Cloud Detection Approach

* For single layer clouds, radiative transfer simulation show that as
optical depth increase beyond 2, the 11 - 12 micron brightness
temperature decreases and approaches an asymptotic value

- Multi-layer clouds exhibit a relationship that can not be modeled
(or confused) assuming single layer clouds.

G E ' " Low Level Water Cloud
-E —— High Level Ice Cloud
— Cirrus over water cloud (T = 10)
< 4F
S = : Courtesy Heidinger &
| colleagues
= = =
)
oF T T L, T
o 5 10 15 20

total column optical depth
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Raining Cloud, mostly,
Re _top<Re base

Re _top>Re base could
happen for raining cloud
because of the non-raining
part within the pixel

For non-raining cloud, most
R_top>R_bot

R_top<R_bot could happen
for raining cloud because th
cloud particle is too small tc
form rain or the rainfall is to
weak for microwave detectit

histegram of Hemp-ﬁemt{um) for raining cloud

15

histogram of Hem -He, . (um) for nen-raining cloud

-10 -5 0 g 10 15

Chang & Li, 2002;2003



MODIS Retrieved Cloud-top and Cloud-bottom
r and TRMM Rainfall Data

Cloud- tOp le Chang & Li, 2002,2003

Cloud-bottom r, . TRMM rainfall rate

TRMM precipilotion (B day r:o-rnpu:lbz]




Model evaluation



Model vs. HIRS 11 um window (K)

Obs

HIRS 11um
window (K)

NOAA-11
01/1990 PM

orbits
(~14:00 LT)

ERA-40




> Model-observation comparison

‘GERB N

WP model = Recent comparison

1 15 November 2004
1200 UT

Model cloud
errors can easily
be distinguished.
Near-real time
comparisons are
valuable for a
wide range of
other studies

(e.g. outbreaks of

ok gt | Saharan dust)
0 s e o o Slingo et al, 2005

or- O

OQOUmwr »



ISCCP histogram-cluster analysis
Jakob and Tseloudis

TWP Manus ECMWF
Frequ.=33 %% Frequ.= 59 %
TCC=32% TCC=53%
..

Frequ.=33% __ s Frequ.= 21 %
TCC=75% (e . TCC=92%
Frequ.= 11 %Em Frequ.= 14 %
TCC=99% . TCC=99 %




Example of the use of orbit data for evaluating
NWP model predicted cloudiness

30F g T T - w =
E ECMWF: 24hr Forecas t [T T - -

25 oG oz o4 06 OB 1.0 —
: Model Cloud Fraction ] |\/|I||el‘ et al., ZOOO,GRL
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25 =53
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-Assessment of forecasts of this nature even just in terms
- of quantifying cloud occurrence model errors, is
presumably an important first step toward eventual
aSS|m|Iat|on of cIoud data

AMSL)

Latitude

ECMWEF/LITE correlative study Statistics for 60+ LITE Orbits, £1

bin horizontal and vertical

Hit Rate = fraction cloudy+clear correctly forecast, =0.896

Threat Score = fraction of cloud points correctly forecast = 0.714

Probability of Detection = ratio of cloud hits to total # of obs
clouds = 0.796

False Alarm rate = rate of forecasting cloud when clear = 0.126




Summary

Many satellite measurements offer redundant information about
clouds and precipitation. This is good for the purpose of cross-
comparing information as a step to validating knowledge but we
cannot be confident about knowing if we are approaching a truth
and we have not articulated a clear path to do so.

There is generally little rigor in uncertainty analysis attached to
cloud products (if it exists at all), mostly because uncertainties are
difficult to validate. This leads to many problems:
 We cannot make meaningful judgments about which of the
different approaches is most accurate,
 We have little basis for arguing for small changes in key
parameters as being real (e.g. cloud trends)
 We cannot determine the value of combining different
measurements such as from multi-sensor observing
systems,
 We cannot meaningfully assimilate the observations into
dynamical systems



As we enter an era of the grand challenge, an era of multi-
sensor integration and data assimilation, it becomes
essential that we develop tools that:

1. Determine more precisely what information resides in
measurements of different types as a step to better use
of them,

2. Optimally mix information from multiple sources of
measurements, and

3. Convert this optimal information to knowledge through
(at a minimum) quantification and validation of errors



This Is a period of great optimism but much is
left to be done.

Better NWP cloud predictions —»
richer assimilation —-more rigorous
test of knowledge

s high

low

S 1980s . .
Adiabatic  Diabatic

—>
.... Well, I think one could always devote more effort.
Effort by itself isn’t enough, | think inspiration is also
Important!

NWP contribution to cloud
& related science

Charney to Platzmann



pso The A-Train
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By mid 2005, we expect to have a wide range of different sensors,
active and passive, optical, infrared and microwave, hyper-spectral
to coarse band, all approximately viewing Earth at the same time.
We are left to pose a strategy that optimally combines these
measurements, converting them to meaningful information with
verified uncertainties.




Backup




of rain information

Model FG Model FG
Tl q T’ q
Cloud water + ice
rain + snow
Rain retrieval l

l Radiative transfer
FG ‘rainy radiance’

1D-Var

Retrievals of TCWV /

4D-Var analysis

4D-Var analysis




1D+4D-Var on TRMM/PR reflectivities

Model FG |
T.q
Cloud water + ice
rain + snow

/

1D-Var
Retrieval of temperature and
Specific humidity

|

Total Column
Water Vapor

(= pseudo-obs)




ar retrievals using PR reflectivities with different error assumptions on PR-Z
1D-Var 25% error at all levels

~Model reflectivity (dBZ) and humidity increments (g/kg) err=constant 25%, all levels

1D-Var 50% error at all levels

Model reflectivity (dBZ) and humidity increments (g/kg) err=constant 50%, all levels




retrievals using PR reflectivities: observations at one level only vs full profile
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ckground and 1D-Var increments of Total Column Water Vapour
eudo-obs for 4D-Var) — ———

TCWV guess (kg/m~2)

kg/m2

TCWYV increments (kg/m”~2)

5°s-

Q
! 25 _
170°E / 170°E e

170°E 180° /

Increments indicate an overall moistening
confined along the satellite track




son of track forecasts (started on 26 December 2002 at 1200 UTC) obtained
e control, two TRMM/PR, and two TMI experiments to the observed track.
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10S 10S
0

12S—A—Ff——— Twts 128
......... X TMI-RAIN
- PR-RAIN
---¥--  PR-REFL

145 —#— CONTROL | |, ¢
—&— OBS
96

16S 16S

08
18S : 18S
168E 170E 172E 174E 176E

suggested by the MSLP changes, the track forecasts are substantially improved when TRMM
ervations are assimilated in rainy areas.

Despite the smaller spatial coverage of TRMM/PR data (200-km swath) compared to that of

I data (780-km swath), the impact of both types of observations is comparable.




1. The assimilation methods pioneered at the
Centre represents an important a bridge linking
the traditional factions of the sciences.

2. While assimilation of data on quantities
characterized as smooth and continuous, we are
now entering a period of assimilation of
hydrological parameters

And then, of course, there remains, even in the short-range
problem, I think, the physical factors, which are still not
adequately understood. The matter of the boundary layer
and precipitation process .... Charney to Platzmann



H The launch of TIROS-1,
April 1960

The first phase: the
period of great

imagination The flrst 24hr view of gIobaI cIouds

TIROS-9, February 13, 1965

1. Global climatologies
of cloud occurrence”,
optical properties, 1983-
present * Cloud mask/

identification /screening

The second phase:
the period of great o
mformayon- ~ %1,,
gathering :

_..._d!;p... RANESEs Scatter Ildar LITE, 1996

First flight of precipitation
radar, TRMM, 1997
|—=———_ .. Decadal cloud amount trends,

PATHOS-x |
ISCCP-D2

wrs | precipitation variability

The third phase: grand e T |
I challenge to create _}_Au/\_,ﬁ_‘\‘ | Assimilation of precipitation and

‘knowledge’ . cloud radiances

(Heidinger poster)




MODIS-AVHRR comparisons: Hurricane Ivan

MONIS TERRA LW /SSFT MR NATRE 18:4

Aqua, CO, slicing

B -
ey -~

NOAA— 16 GAC: b |::__l-r_:|:,_:_‘_ - 23 B2053335, *
AVHRR, split window & =+

Courtesy, Heidinger

.......................... j St .2
180.0 200.0 220.0 240.0 260.0 280.0 300.0 180.0 200.0 220.0 240.0 260.0 280.0 200.0
Cloud Top Temperature Cloud Top Temperature

We use different techniques based on the same physics (e.g. emission
and scattering) for arriving at the same information




Example application: Aircraft Contrail Detection

MODIE O 4 /2002
Pink=ice cloud




CloudSat Examples
1. lllustrating simple ideas of Information content

forrqation IS an augmentation of existing knowledge

Therefore we might think
that the measurement has
added information if the
\ \ ‘volume’ of the distribution

P(X ‘ y) S Is reduced
annon total information

= S[P(x,)]-S[P(X)]

The observing system identifies 2" states over and above our
background knowledge. It is a measure of system resolution.




MODIS ice cloud
optical properties

H.

The point about this is
there is no one optimal
combination of channels
— the combination of
channels varies
according to conditions

| Ioper et al., 2004

Information Spectra

3.0
- o
0 -
RE vy
- :
2 15F
rDF. -
5 Lat
E L
0.5
0.0t
0
Wavelength (pm)
Relative t priori - 064 & 11.9 & 2.13
0.64
ce-- D64 & 118
Information Spectra
5.0 S ' =gp=rt==
g =
L 1
. | IWP~100
5 sl - Re=16
5 10 .\ | Ht=14km
5 1.0} ._
0.5 - V. il e 1
i **w.wﬂ#:.:ﬂ'&#mﬁﬁiﬁf-'-':-'-':'"_"'-"h“"-""""'""-"*-.
0Ot . . 1 - ; i : 1
0 o 10 15
Wavelength (pm)
Relative to; priari et B.00 & 13,6 & 213
E.55 - 8.55 & 13.6 & 2,13 & 0.64
_____ B.55 & 13,6



Ice cloud Example - combining the physics of
thermal emission and visible/nir scatterin

Example using MAS data from Crystal FACE

CRYSTAL-FACE July 23 case: lce Water Poath retriaval
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A 5 channel algorithm is being developed for CloudSat — this 5
channel method is superior to two channel methods currently

belng used to retrieve cirrus properties Cooper et al., 2004




L
Addlng measurements to some prior knowledge of the state:

Bayes’ Theorem

’ Fv=) 6 Forward model
) @ A priori knowledge
Desired (most
Bayes Theorem likely) solution
o (xly) = PYIOPC)
P(y)



3. Error Validation

The CloudSat validation goal is to confirm the
retrieval error estimates provided by all algorithms

A)ground truth when possible (ISO GUM*, method

- component analyses (ISO GUM, method B)
- consistency analyses (ISO GUM, method B)

* International Organization for
; Standards (ISO) Guide to the
0.040- RMS~30% | expression of uncertainty in
00300 i Measurements

LWC Ret-PVM Difference

0.050¢

0.020:

Probability Density

0.010:

Total errors derived from actual
0.000: comparison of retrieved with in situ,
-100 -50 0 50 100
Fractional Difference (%) method A



Hormalized rewreival crror (8x) for WP (2 channel rotrioval)
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As we add channels, we can see how information is increased and how
retrieval errors are reduced.
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L
Addlng measurements to some prior knowledge of the state:

Bayes’ Theorem

’ Fv=) 6 Forward model
) @ A priori knowledge
Desired (most
Bayes Theorem likely) solution
o (xly) = PYIOPC)
P(y)



ample: Return to our ‘simple’ example and apply

A priori assumption % = Gi)

Assume diagonal covariance matrices with 0.001 for the error
In the measurements and 0.5 for the error in the a priori guess.

X =(K'S,'K + S;l)'1 (K'S'y+S.'x, )= (é'gzj

We also obtain a covariance matrix for the result:

0.25 —O.ZSJ

S, =(KTs;K+s) " = (—0 25 0.25

So what have we gained???




The CloudSat Liquid Water content example

Ny —In?(r/r,) Assume N; and o,
N(r)= ex 5 , ,
V270 g 207, are constant in height
[

\

Zapz(zi) = 1010g[64Nrr exp(lSGmg)]

. “forward model” f(x,b)

p
T= ;] 25Ny ry;exp(207,,) Az

asurements vector ~ SWat€ VECIOr A priori vector

_ _ [7,(z1)] [7ga(21) |
Z&sz(zl) : (i )
— X = Fg(ZP) Xa = [(Tga\Zp
Y de(Zp) Ny Nrta
o B | Olog | | Olog,

m = p+1 elements n = p+2 elements p+2 elements




Application to ARM data
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Information content: elementary ideas ==

formation is an augmentation of existing knowledge thus it is a relative concept

a

/I‘herefore we might think

that the measurement has
added information if the
‘volume’ of the distribution
i5 reduced




Shannon’s measure of information

thus a measure of information about that system. If the system is
defined by the pdf P(x), then

s(P) = —k j P(x) In P(x)dx

for
P(X) = exp[-(x-(x))" S, (x-(x))]
s(P) :%In S,

IR our context, information is the change (reduction) in entropy of the
stem’ after a measurement is made

H = s(P(x,)) - S(P(x))

Hzlln
2

S.S, |




Summary of information properties

dfs=Tr(l1 -S,S.")

IZ _ 8—1/2K81/2

T ox j

nterpretation

Provides a measure of where
information comes to produce the
retrieved state x

The observing system identifies
2H states over and above our
background knowledge. It is a
measure of system resolution.

# of measurements above noise

Singular values of this scaled
Jacobean matrix above unity tell
us about how many pieces of
information are contained in the
measurements. The singular
vectors tell us what combination of
state parameters are retrievable
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