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Influence of satellite observations on forecast  
skill for NH and SH
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Assimilation of ‘moist physics’ observations

1. Obvious importance of clouds and precipitation
Satellite data represent 95% of the data ingested into the 
ECMWF analysis system, but most of the satellite 
radiances (about 75 %) are discarded because they are 
diagnosed as cloud- or rain-affected.

2. Assimilation of moist variables into NWP is challenging
due to the wide range of spatial and temporal scales of 
(non-linear) moist processes and lack of real model error 
assigned to them
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Retrieval & ‘assimilation’ are  essentially the same problem 



Φ= [x-xa]T B-1 [x-xa] + [y-f(x)]T Sy
-1 [y-f(x)]

Seek x, such that dΦ/dx→0

Xa = background

B-1 = prediction (model) error

f(x)= model of observation

Sy
-1(W-1) = ‘observation’ error

1. How? Linear Physics?

2. What? Prognosed variables,
time & space filtered?? What
statistics?

3. Forecast model error? How is 
this defined?

4. Improving &  understanding 
observing systems

SGP 500mb
temp

Cloud 
occurrence

Precipitation



Steps Toward a strategy for operational 
assimilation of cloud and precipitation obs:

• Optimizing  the choice of observations  [y(t)]

• Model evaluation using current and new satellite 
measurements                                     [B-1]

• Development of new and improved ‘moist physics’ (clouds 
and especially convection)                  [B-1]

• Develop, test and quantify errors of ‘observational 
operators associated with moist physics observations’ (i.e. 
IR, solar  and microwave radiative transfer schemes for 
clouds & precip, radar reflectivity models, etc)                     
[f(x) & W-1]

• Research on the optimal strategy to assimilation (e.g
tangent linear, ensemble methods etc…)  [i.e. dΦ/dx→0]



Two key components of the 
‘transfer function’ – the 
forward and inverse functions    

Measurements y(t) are 
connected to the ‘state’ Z 

The state is inferred (retrieved) 
given the measurement, a 
physical model and other 
‘knowledge’ about the system. 

Key parameters & ‘knowledge’:
• Measurement,  y(t) and  error εy
• Model f & its error εf
• Model parameter b
• Constraint parameters c

A satellite ‘Observing System’



MODIS

PATMOS

Cloud occurrence  (e.g. PATMOS, ISCCP, HIRS, MODIS 
etc)

Decadal cloud amount trends, 
precipitation variability



Physical basis for satellite observations of cloud 
properties (ie different types of f(x)’s)

These methods provide primarily 
path integrated information – i.e. little 
or no vertical structure: 

Examples considered – scattered 
sunlight and cloud ‘optical’
properties, thermal emission and 
microwave emission

Passive (radiometry)extinction emission

scattering

Active (lidar, radar and mm  → cm
wavelengths)

Profile information about occurrence, 
optical properties, microphysics and 
bulk water mass – example highlighted is 
of mm-wave radar 



Most cloud &  precipitation retrievals are 
single sensor & ‘physics’ centric – leaving us 
to ponder which of the seemingly myriad of 
different approaches is optimal, how 
accurate is the retrieved information and 
what is to be gained in combining different 
types of measurements ?

The future is perhaps with multi-sensor 
‘assimilation ‘ of information as, for example, 
exemplified by the upcoming A-Train 

One of the messages conveyed in this overview
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An example: MODIS optical property information



There are three different archived 
MODIS re products and these are 
compared to a fourth developed by us 
at CSU –the differences between them 
are substantial and beyond our 
estimated error 

Particle Size retrieval examples – low 
level water clouds



Given the 11 μm cloud emission 
and clear sky temperatures, then 
optical depth and re follow from 
ΔTb and T11. 

Cooper et al., 2003

Split window thermal emission
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Optical properties

‘Same’ optical  information as 
scattering method but limited to 
(optically) thin clouds  



There is no real attempt to achieve a level of ‘consistency’
between different retrieval schemes even using 

measurements from the same instrument

Cooper et al., 2005)



Microwave spectrum
around the 22 GHZ 
water vapor absorption 
line
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Measurement of ΔT at two frequencies 
(19GHz, 37 GHz), estimation of RV/H+ 
Δkw/l, and Trox allows for simultaneous 
solution for w and W, 

Microwave emission –cloud liquid water path





TMI cloud LWP VIRS cloud LWP



Power returned to radar after being 
scattered from cloud volume is related 
directly to size of particles in the volume

For a hypothetical cloud (particles all
the same size), the power returned 

is proportional to the square of the 
water and ice content of the (radar) volume

BUT

For real cloud (particles in the volume range in
size), the power returned (or Z) is approximately
proportional to the square of the  water and ice 
content of the (radar) volume.

( )26 6 3
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Active systems: the mm radar (e.g. CloudSat)



Radar

ln w

ln re

optical
depth

ln re

ln w

The w-re dependency 
of lidar/τ and radar back-
scatter are functionally
orthogonal.

(The CloudSat) Liquid Water content example: 
the general idea
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Derived quantities Fractional Uncertainties 

re

LWC

LWP

Austin and Stephens, 2001;Austin et al., 2005



No drizzle No drizzle

There is a significant bias in the TMI 
LWP information (→30%) compared to 

VIRS

Courtesy Greenwald and Christophermicrowave
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Cloud Liquid Water Path



Stereo example from

The next dimension  -
adding vertical 
resolution



AVHRR Multi-layer Cloud Detection Approach

• For single layer clouds, radiative transfer simulation show that as 
optical depth increase beyond 2, the 11 – 12 micron brightness 
temperature decreases and approaches an asymptotic value

• Multi-layer clouds exhibit a relationship that can not be modeled 
(or confused) assuming single layer clouds.

Low Level Water Cloud
High Level Ice Cloud
Cirrus over water cloud (τ = 10)

Courtesy Heidinger & 
colleagues





• Raining Cloud, mostly, 
Re_top<Re_base

• Re_top>Re_base could 
happen for raining cloud 
because of the non-raining 
part within the pixel

• For non-raining cloud, mostly 
R_top>R_bot

• R_top<R_bot could happen 
for raining cloud because the 
cloud particle is too small to 
form rain or the rainfall is too 
weak for microwave detection

Particle size ‘profile’ retrieval

Chang & Li, 2002;2003



MODIS Retrieved Cloud-top and Cloud-bottom 
re and TRMM Rainfall Data

Cloud-top re

TRMM rainfall rateCloud-bottom re

Chang & Li, 2002,2003



Model evaluation



Model vs. HIRS 11 μm window (K)

HIRS 11μm  
window (K)

NOAA-11
01/1990 PM 
orbits
(~14:00 LT)

Obs

ERA-40



Recent comparison

15 November 2004

1200 UTO
L
R

A
L
B
E
D
O

Model cloud 
errors can easily 
be distinguished. 
Near-real time 
comparisons are 
valuable for a 
wide range of 
other studies  
(e.g. outbreaks of 
Saharan dust)

GERB NWP model

Slingo et al, 2005

Model-observation comparison



ISCCP histogram-cluster analysis 
(Jakob and Tseloudis)

TWP Manus ECMWF

Frequ.= 33 %

TCC= 32 %

Frequ.= 33 %

TCC= 75 %

Frequ.= 11 %

TCC= 99 %

Frequ.= 59 %

TCC= 53 %

Frequ.= 21 %

TCC= 92 %

Frequ.= 14 %

TCC= 99 %



Example of the use of orbit data for evaluating
NWP model predicted cloudiness

ECMWF/LITE correlative study Statistics for 60+ LITE Orbits, ±1 
bin horizontal and vertical
Hit Rate = fraction cloudy+clear correctly forecast, =0.896
Threat Score = fraction of cloud points correctly forecast = 0.714
Probability of Detection = ratio of cloud hits to total # of obs

clouds = 0.796
False Alarm rate = rate of forecasting cloud when clear = 0.126

Miller et al., 2000,GRL

Assessment of forecasts of this nature, even just in terms 
of quantifying cloud occurrence model errors, is 
presumably an important first step toward eventual 
assimilation of cloud data. 



Many satellite measurements offer redundant  information about 
clouds and precipitation. This is good for the purpose of cross-
comparing information as a step to validating knowledge but  we 
cannot be confident about knowing if we are approaching a truth 
and we have not articulated a clear path to do so.

There is generally little rigor in uncertainty analysis attached to 
cloud products (if it exists at all), mostly because uncertainties are 
difficult to validate. This leads to many problems:

• We cannot make meaningful judgments about  which of the 
different approaches is most accurate,

• We have little basis for arguing for small changes in key 
parameters as being real (e.g. cloud trends)

• We cannot determine the value of combining different 
measurements such as from multi-sensor observing 
systems,

• We cannot meaningfully assimilate the observations into 
dynamical systems

Summary



As we enter an era of the grand challenge, an era of multi-
sensor integration and data assimilation, it becomes 
essential that we develop tools that: 

1. Determine more precisely what information resides in 
measurements of different types as a step to better use 
of them,

2. Optimally mix information from multiple sources of 
measurements, and

3. Convert this optimal information to knowledge through 
(at a minimum) quantification and validation of errors
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Adiabatic Diabatic

This is a period of great optimism but much is 
left to be done.

…. Well, I think one could always devote more effort. 
Effort by itself isn’t enough, I think inspiration is also 
important! 

Charney to Platzmann

Better NWP cloud predictions →
richer assimilation →more rigorous 
test of knowledge



By mid 2005, we expect to have a wide range of different sensors,  
active and passive, optical, infrared and microwave, hyper-spectral 
to coarse band, all approximately viewing Earth at the same time. 

We are left to pose a strategy that optimally combines these 
measurements, converting them to meaningful information with  

verified uncertainties.



Backup



Rain retrieval

4D-Var analysis

Observed 
Radiances

Model FG
T, q

Model FG
T, q
Cloud water + ice
rain + snow

4D-Var analysis

1D-Var
Retrievals of TCWV

Radiative transfer
FG ‘rainy radiance’

Observed 
Radiances

(TMI , SSM/I)

Alternative approaches for assimilation 
of rain information



Total Column
Water Vapor

(= pseudo-obs)

Model FG
T, q
Cloud water + ice
rain + snow

Radar reflectivity model

1D+4D-Var on TRMM/PR reflectivities

1D-Var
Retrieval of temperature and

Specific humidity

TRMM-PR
reflectivities

4D-Var 
Assimilation

Analysis/Forecast 



1D-Var retrievals using PR reflectivities with different error assumptions on PR-Z
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ZOE TRACK FORECAST (BASE: 2002122612)

-As suggested by the MSLP changes, the track forecasts are substantially improved when TRMM   
observations are assimilated in rainy areas.

-Despite the smaller spatial coverage of TRMM/PR data (200-km swath) compared to that of   
TMI data (780-km swath), the impact of both types of observations is comparable.

Comparison of track forecasts (started on 26 December 2002 at 1200 UTC) obtained 
from the control, two TRMM/PR, and two TMI experiments to the observed track.



Concluding comments:

1. The assimilation methods pioneered at the 
Centre represents an important a bridge linking 
the traditional factions of the sciences.

2. While assimilation of data on quantities 
characterized as smooth and continuous, we are 
now entering a period  of assimilation of 
hydrological parameters

And then, of course, there remains, even in the short-range 
problem, I think, the physical factors, which are still not 
adequately understood. The matter of the boundary layer 
and precipitation process …. Charney to Platzmann



1980

1970
The first phase: the 

period of great 
imagination The first 24hr view of global clouds

TIROS-9, February 13, 1965

The launch of TIROS-1, 
April 1960

2000
The third phase: grand 

challenge to create 
‘knowledge’

Decadal cloud amount trends, 
precipitation variability

Assimilation of precipitation and
cloud radiances

(Heidinger poster)

1990

The second phase: 
the period of great  

information-
gathering

1. Global climatologies
of cloud occurrence*, 
optical properties, 1983-
present  * Cloud mask/ 

identification /screening
First flight of back-
scatter lidar, LITE, 1996

First flight of precipitation 
radar, TRMM, 1997



Aqua, CO2 slicing AVHRR, split window

MODIS-AVHRR comparisons: Hurricane Ivan

Courtesy, Heidinger

We use different techniques based on the same physics (e.g. emission 
and scattering) for  arriving at the same information



Example application:  Aircraft Contrail Detection

““RacetrackRacetrack””
flight patternflight pattern

Coutesy S. Miller



CloudSat Examples
1. Illustrating simple ideas of Information content

Information is an augmentation of existing knowledge

P(xa) Sa

P(x⏐y) Sx

Therefore we might think 
that the measurement has 
added information if the 
‘volume’ of the distribution 
is reduced

Shannon total information
)]([)]([ xPsxPsH a −=

The observing system identifies 2H states over and above our 
background knowledge. It is a measure of system resolution.



MODIS ice cloud 
optical properties IWP~100

Re=16
Ht=9km

IWP~100
Re=16
Ht=14km

Hi

The point about this is 
there is no one optimal 
combination of channels 
– the combination of 
channels varies 
according to conditions

Hi

Cooper et al., 2004



Example using MAS data from Crystal FACE

A 5 channel algorithm is being developed for CloudSat – this 5 
channel method is superior to two channel methods currently 
being used to retrieve cirrus properties Cooper et al., 2004

Ice cloud Example  - combining the physics of 
thermal emission and visible/nir scattering



Bayes Theorem
( ) (

( )
(

P P
P

P
=

y x x)
x y

y)

Forward model

Adding measurements to some prior knowledge of the state: 
Bayes’ Theorem

A priori knowledge

P(x|y)

Desired (most 
likely) solution



3. Error   Validation

The CloudSat validation goal is to confirm the 
retrieval error estimates provided by all algorithms
- ground truth when possible (ISO GUM*, method 
A)                     
- component analyses (ISO GUM, method B)
- consistency analyses (ISO GUM, method B)

RMS~30%

Total errors derived from actual 
comparison of retrieved with in situ, 
method A

* International Organization for 
Standards (ISO) Guide to the 
expression of uncertainty in 
Measurements



As we add channels, we can see how information is increased and how 
retrieval errors are reduced. 

Ice cloud Example  - combining the physics of thermal 
emission and visible/nir scattering



Passive:Passive:
EngelenEngelen and Stephens, 1997, JGR,6929and Stephens, 1997, JGR,6929--6939 6939 (ozone)(ozone)
HeidingerHeidinger and Stephens, 1998; 2000,J.Atmos.Sci.,57and Stephens, 1998; 2000,J.Atmos.Sci.,57,(cloud),(cloud)
Miller, Austin and Stephens, 2001,JGR,106,17981Miller, Austin and Stephens, 2001,JGR,106,17981--17995 17995 (cloud)(cloud)
Cooper, Cooper, LL’’EcuyerEcuyer and Stephens,2003, JGR,108and Stephens,2003, JGR,108,(cloud),(cloud)
Engelen et al., 2002; COCO22

PassivePassive--PassivePassive
EngelenEngelen and Stephens,1999;QJRMS,125,331and Stephens,1999;QJRMS,125,331--351; 351; water vaporwater vapor
Christi and Stephens, 2004;JGR; Christi and Stephens, 2004;JGR; COCO22

Active Active -- Passive:Passive:
Stephens, Stephens, EngelenEngelen, Vaughan and Anderson,2001,JGR, , Vaughan and Anderson,2001,JGR, (aerosol/cloud)(aerosol/cloud)
Austin and Stephens, 2001, Austin and Stephens, 2001, JGRJGR, , 106106, 28,233 , 28,233 -- 28,242)28,242) (cloud).(cloud).
LL’’EcuyerEcuyer and Stephens, 2002, and Stephens, 2002, J.ApplJ.Appl. Met., 41,271. Met., 41,271--285 285 ((precipprecip).).
Benedetti, Stephens and Haynes, 2003; JGR, 108 Benedetti, Stephens and Haynes, 2003; JGR, 108 (cirrus)(cirrus)
Austin and Stephens, 2004; JGR submitted Austin and Stephens, 2004; JGR submitted (cloud)(cloud)
MitrescuMitrescu, Haynes,Stephens, , Haynes,Stephens, HeymsfieldHeymsfield and McGill, 2004 and McGill, 2004 (cirrus)(cirrus)

Information Content:Information Content:
EngelenEngelen and Stephens, 2003, and Stephens, 2003, J.Appl.MetJ.Appl.Met..
LL’’EcuyerEcuyer, Cooper, , Cooper, Leesman,,StephensLeesman,,Stephens, 2004; In preparation. , 2004; In preparation. 
Cooper, et al., 2004; in preparation Cooper, et al., 2004; in preparation 
LabonnoteLabonnote and Stephens, 2004;JGRand Stephens, 2004;JGR



Bayes Theorem
( ) (

( )
(

P P
P

P
=

y x x)
x y

y)

Forward model

Adding measurements to some prior knowledge of the state: 
Bayes’ Theorem

A priori knowledge

P(x|y)

Desired (most 
likely) solution



Example: Return to our ‘simple’ example and apply 
Optimal Estimation technique

( ) ( )11 1 1 1 1.05
ˆ

0.95
T T

y a y a a

−− − − − ⎛ ⎞
= + + = ⎜ ⎟

⎝ ⎠
x K S K S K S y S x

1.2
ˆ

1.1a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

xA priori assumption

Assume diagonal covariance matrices with 0.001 for the error
in the measurements and 0.5 for the error in the a priori guess.

We also obtain a covariance matrix for the result:

( ) 11 1 0.25 0.25
0.25 0.25

T
x y a

−− − −⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

S K S K + S

So what have we gained???



Assume NT and σlog

are constant in height

The CloudSat Liquid Water content example

Measurements vector

m = p+1 elements

State vector

n = p+2 elements

“forward model” f(x,b)

A priori vector

p+2 elements



Application to ARM data

Old with width parameter  specified New with width parameter retrieved 



Passive:Passive:
EngelenEngelen and Stephens, 1997, JGR,6929and Stephens, 1997, JGR,6929--6939 6939 (ozone)(ozone)
HeidingerHeidinger and Stephens, 1998; 2000,J.Atmos.Sci.,57and Stephens, 1998; 2000,J.Atmos.Sci.,57,(cloud),(cloud)
Miller, Austin and Stephens, 2001,JGR,106,17981Miller, Austin and Stephens, 2001,JGR,106,17981--17995 17995 (cloud)(cloud)
Cooper, Cooper, LL’’EcuyerEcuyer and Stephens,2003, JGR,108and Stephens,2003, JGR,108,(cloud),(cloud)
Engelen et al., 2002; COCO22

PassivePassive--PassivePassive
EngelenEngelen and Stephens,1999;QJRMS,125,331and Stephens,1999;QJRMS,125,331--351; 351; water vaporwater vapor
Christi and Stephens, 2004;JGR; Christi and Stephens, 2004;JGR; COCO22

Active Active -- Passive:Passive:
Stephens, Stephens, EngelenEngelen, Vaughan and Anderson,2001,JGR, , Vaughan and Anderson,2001,JGR, (aerosol/cloud)(aerosol/cloud)
Austin and Stephens, 2001, Austin and Stephens, 2001, JGRJGR, , 106106, 28,233 , 28,233 -- 28,242)28,242) (cloud).(cloud).
LL’’EcuyerEcuyer and Stephens, 2002, and Stephens, 2002, J.ApplJ.Appl. Met., 41,271. Met., 41,271--285 285 ((precipprecip).).
Benedetti, Stephens and Haynes, 2003; JGR, 108 Benedetti, Stephens and Haynes, 2003; JGR, 108 (cirrus)(cirrus)
Austin and Stephens, 2004; JGR submitted Austin and Stephens, 2004; JGR submitted (cloud)(cloud)
MitrescuMitrescu, Haynes,Stephens, , Haynes,Stephens, HeymsfieldHeymsfield and McGill, 2004 and McGill, 2004 (cirrus)(cirrus)

Information Content:Information Content:
EngelenEngelen and Stephens, 2003, and Stephens, 2003, J.Appl.MetJ.Appl.Met..
LL’’EcuyerEcuyer, Cooper, , Cooper, Leesman,,StephensLeesman,,Stephens, 2004; In preparation. , 2004; In preparation. 
Cooper, et al., 2004; in preparation Cooper, et al., 2004; in preparation 
LabonnoteLabonnote and Stephens, 2004;JGRand Stephens, 2004;JGR



Information content: elementary ideas

Information is an augmentation of existing knowledge thus it is a relative concept

P(xa) Sa

P(x⏐y) Sx

Therefore we might think 
that the measurement has 
added information if the 
‘volume’ of the distribution 
is reduced



Shannon’s measure of information
Entropy is a measure of the # of distinct states of a system, and 
thus a measure of information about that system. If the system is 
defined by the pdf P(x), then 

( ) ( ) ln ( )

for
P(x) exp[-(x- x ) (x- x )]
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x

x

s P k P x P x dx
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s P S

= −

→

=

∫

In our context, information is the change (reduction) in entropy of the 
‘system’ after a measurement is made 
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)( # of measurements above noise

Singular values of this scaled 
Jacobean matrix above unity tell 
us about how many pieces of 
information are contained in the 
measurements. The singular 
vectors tell us what combination of 
state parameters are retrievable

Summary of information properties

Property Interpretation

The observing system identifies 
2H states over and above our 
background knowledge. It is a 
measure of system resolution.

Provides a measure of where 
information comes to produce the 
retrieved state x
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