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! T t Point
GPS Occultation 2t
Summary

e An occultation occurs when the
orbital motion of a GPS SV and
a Low Earth Orbiter (LEO)
causes the LEO ‘sees’ the GPS
rise or set across the limb

e This causes the signal path occultation
between the GPS and the LEO
to slice through the atmosphere geometry

e Atmosphere acts as a lens
bending the signal path

1D forward relation 1D Iinverse relation

® Delay(t)=> bending angle(a) => refractivity(z) where a=nr
Dry conditions: => dry density(z) => P(z) =>T(z) via hydrostatic egn
Wet conditions: refractivity + T,p,q (analysis) => better T,p,q

or refractivity + T (analysis) => water vapor(z)



Information vs. Altitude from GPS RO
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Scope of Data Assimilation Research

® GPS RO already has large impact in upper troposphere/Lower
stratosphere

® GPS RO should have Iar?e impact in lower troposphere via water
vapor, PBL top, PBL profile and surface pressure

FOCUS: improve impact of GPS RO, particularly in the
lower troposphere

® Two main areas of emphasis
© Develop ability to profile the marineleboundary layer and
assimilate information into P system
@ Correct for Super-refraction
® Occurs at very sharp PBL top over oceans

® Causes refractivity to be systematically underestimated
via normal refractivity retrieval process

® Assimilate refractivity rather than bending angle

» Improve GPS RO error covariance and related quantities
® Create humidity dependent error covariance
® Examine representativeness error

® Improve tropospheric water vapor
JCSDA May 4, 2010



305-30N, SEP 2008

cosmich

Super-
refraction &
“Negative
N bias”

£
=
-~
=
D
[
I

[ ——
kT

o
-

0 i 0 i :
4 32 -1 0 1 2 3 4 4 32 -1 01 2 3 4 04 06 08
(N-N(NCEP))/N(NCEP) [%] (N-N{ECMWF)}/N(ECMWF) [%] Fractional count

Low latitude, lower troposphere, GPS refractivity tends to be less than
analysis
® Due in part to analyses being too moist?
® GPS problems:
Receiver tracking improved with “open loop” tracking on COSMIC
» Solving the super-refraction problem is a focus of our research

JCSDA May 4, 2010



Super-Refraction and Negative N-bias

e Occurs with very high vertical gradient of water vapor across PBL top
e Causes raypath radius of curvature to be smaller than radius of Earth

* Resultis notangent raypath over a set of altitudes: “"shadow interval”
Lopez, 2008, ECMWF Tech Memo 549 Xie, et al. ( 2010) GRL
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Super-Refractive Boundary Layer Profiling

® Super-refractivity creates a non-uniqueness problem
® Parameterize behavior in the “shadow interval”

® Yields continuum of refractivity profiles consistent
with observed bending angle profile

® Use additional external constraint to select the best
refractivity profile from the continuum of solutions



Super-Refraction: o =|da= Zafdf
Non-uniqueness Problem

ndr n2r?

® Large dN/dz creates
Interval in which
a=nr decreases with
height
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Super-Refraction Solution

® Xie et al. (2006) showed a continuum of refractivity solutions exists

Developed parameterization: Assume impact parameter vs. height

in “shadow region” can be represented by 2 linear segments

® Generate a continuum of refractivity profile solutions consistent
with bending angle and Abel refractivity profiles

Then select

“best” profile in the
continuum and its
uncertainty

This requires external
Information, e.qg.:

- Surface refractivity
- Column water vapor
- Error covariance

- etc. ....

JCSDA-Kursinski

Height (km)

L
£
)
S
@
©
|
—
@
2
@
E
2]
=
<]
o
-
3]
<]
a
£

Recon$tru edt’

280 300 320
Refractivity (N—Unit)

240 260 340 360

Reconstructcd

00 02 04 06 08 1.0 1.2 1.4
Height (km)

Impact Parameter — Re (km)

M

L
)

r
'S

g
o

0.00 0.01

—4 -2
Refractivity Errors(%)

0.02 0.03 0.04 005 0.06
Alpha (radians)




Case Study: Observed Super-Refraction

Example near Lihue, Hawaii sonde
® December 10, 2006 12:00

® 2 COSMIC RO profiles that penetrate close to
surface are very close to sonde time and location

® Classic signhature of super-refraction
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Case Study, Xie et al. (2010),
just accepted by GRL
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Profile Summary

* Very strong thermal inversion

* Very low humidity above PBL
» Large super-refraction effect
* RH < 100%,

* No cloud in sonde profile
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Vertical Resolution of GPS RO

® RO top of boundary layer agrees within few meters of sonde

® Very good news because reconstruction method is very
sensitive to height of PBL top

® Issues with altitude of peak bendinc
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Case Study: Lihue Hawaii

® Construct the continuum of profiles

® "“Best” profile selected from continuum used surface N
constraint from ECMWEF (low res)

Surface N from NCEP too high because water vapor is high
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High Resolution 91-Level ECMWF

® High resolution ECMWEF noticeably better than low
resolution ECMWF

® Suspect ECMWEF is so good because it assimilated the sonde
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Future

® ECMWEF evaluation: Plan to look at cases from VOCALS
field campaign off west coast of South America where we
have “truth” and ECMWF has not assimilated it

® Develop other constraints to choose “best” reconstruction
profile

® Assess effects of horizontal refractivity gradients on
bending angle profiles

® Automate reconstruction process
Automate super-refraction detection



PART 2



Two Methods for Extracting Water Vapor
from GPS RO Refractivity Profiles

¢ Simple Method

Determine dry refractivity from analysis temperature
profile and hydrostatic equation

Subtract dry refractivity from GPS refractivity => wet
refractivity => water vapor

@ 1D Variational Method

Combine GPS refractivity with temperature & water
vapor profiles and surface pressure from analysis

Overdetermined, least squares solution

e Advantage of Simple Method: it is not affected by
biases in background water vapor analysis



SimpleMethod: Solving for water vapor given N& T

N = (n-1)x10° = a,+ = (2)

® IUse temperature from a global analysis interpolated to the occultation
ocation

® To solve for Pand P, given Nand 7, use constraints of hydrostatic
equilibrium and ideal gas laws and one boundary condition

Solve for P by combining the
hydrostatic and ideal gas laws and
assuming temperature varies linearly
across each height interval, i

where:
V4 height,
g gravitation acceleration,
m mean molecular mass of moist air
I temperature
R universal gas constant

JCSDA May 4, 2010



Estimating the Accuracy of GPS-derived Water Vapor

The error in specific humidity, g, due to errors in refractivity, N,
temperature, T, and pressure, P, from GPS is (Kursinski & Hajj, 2001)

where C = a,Tm,/a,m, ~ 35 g/kg
Similarly, the error in relative humidity, U, is

where L is the latent heat and B, = a, 7P / a,¢..

® The temperature error is particularly small in the tropics (~1.25 K)

JCSDA May 4, 2010



Negative g and Error Deconvolution

Simple Method can and does produce negative g estimates
=> Produces an unphysical, negative tail in the g histograms

® Fix this by Deconvolving Error distribution from histograms

Linearize error model: G, sure0 = Girue * &4

Measured histogram (PDF) is then the convolution of the
true PDF and the error PDF

PDF jpeas = PDF e~ PDF

gmeas €

e /Fwe understand the error PDF, we can deconvolve it from
the measured PDF to recover the true PDF

Negative tail tells us the shape & extent of the error distribution

® Assuming shape of error distribution is symmetrical

® SOLUTION: Iteratively adjust Error PDF and Solution PDF to
find best fit to observed PDF

May 4, 2010 JCSDA



Error Deconvolution Tropical, Full Annual Cycle (2007)
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Water Vapor Distribution:
GPS RO vs. AIRS

200

(2007) eval. of moisture control

® AIRS vs GPS discrepancies much
larger than GPS RO errors 50

AIRS missing high water portion,
due in part to clouds + ?

AIRS missing dry part (< 0.2 g/kQg)
from anvil detrainment

© Significanitly different implications 90

AIRS from Dessler & Minschwaner &
@
3

for free troposplheric moisture w0 |
conittral

Causes:
e Limited vertical resolution?,
® Biased initial guess from forecast?

® Means of GPS & AIRS are similar:
» 047 vs. 0.42
220 vs. 23
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Effects of Model on
GPS Water Vapor

sImpact of model bias is evident in
comparing Deconvolved & 1DVar
GPS water vapor distributions

«1DVar has pushed extremes toward
center of distribution

* Presumably because model
distribution is narrower

* Likely contributing to the
narrow AIRS distribution

Peak increase at 346 mb coincides
with peak in AIRS distribution at
0.275 g/kg (alzieic zirrany).

*Positive portion of
similar to AIRS distrib.

1DVar has shifted Means lower:
0.38 vs. 0.47 g/kg
1.89 vs. 2.03 g/kg
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Climate Modeling
of Tropical Water
Distribution

Dessler & Minschwaner (2007)
matched model & AIRS distributions

BUT AIRS distribution is incomnrect

*To what extent are the AIRS and
model data independent???

Is agreement between AIRS
& the model incestuous & not
a robust indication of models
realism?

These results demonstrate the need
to measure the atmospheric state
independent of models

— This is the reason we are
developing the next generation
ATOMMS RO system
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Figure 2. Histograms of annual average H:O mixing ratic
(ko) at 346 hPa (top) and 547 hPa {bottom). The thick
solid lines are histograms of the AIRS data from Figure 1.
The three thin solid lines are histograms from the trajectory
model, each using a different conwvective threshold. The
dotied line 15 obfained using the standard trajectory model
with a RH limit of 9%,
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