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ABSTRACT

A combined active/passive modeling system that converts CloudSat observations to simulated microwave

brightness temperatures (TB) is used to assess different ice particle models under precipitating conditions.

Simulation results indicate that certain ice models (e.g., low-density spheres) produce excessive scattering and

implausibly low simulated TBs for stratiform precipitation events owing to excessive derived ice water paths

(IWPs), while other ice models produce unphysical TB depressions due to the combined effects of elevated

derived IWP and excessive particle size distribution–averaged extinction. An ensemble of nonspherical ice

particle models, however, consistently produces realistic results under most circumstances and adequately

captures the radiative properties of frozen hydrometeors associated with precipitation—with the possible

exception of very high IWP events. Large derived IWP uncertainties exceeding 60% are also noted and may

indicate IWP retrieval accuracy deficiencies using high-frequency passive microwave observations. Simulated

TB uncertainties due to the ice particle model ensemble members approach 9 (5) K at 89 (157) GHz for high

ice water path conditions associated with snowfall and ;2–3 (;1–2) K under typical stratiform rain condi-

tions. These uncertainties, however, display considerable variability owing to ice water path, precipitation

type, satellite zenith angle, and frequency. Comparisons between 157-GHz simulations and observations

under precipitating conditions produce low biases (,1.5 K) and high correlations, but lower-frequency

channels display consistent negative biases of 3–4 K in precipitating regions. Sample error correlations and

covariance matrices for select microwave frequencies also show strong functional relationships with ice water

path and variability depending on precipitation type.

1. Introduction

Satellite-based passive microwave instruments have

provided routine retrievals of important geophysical

parameters over the past few decades, while recent

spaceborne active microwave instruments have generated

valuable datasets of cloud and precipitation profiles.

Cloud and precipitation research has particularly benefited

from sustained microwave observations that have en-

abled the development and continual improvement of

global cloud and precipitation climatologies (e.g., Weng

et al. 1997; O’Dell et al. 2008; Hilburn and Wentz 2008;

Liu and Zipser 2009; Ellis et al. 2009). These climatol-

ogies not only are useful to study the global distribution

of clouds and precipitation, but also serve as valuable
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independent datasets to evaluate global climate and nu-

merical weather prediction (NWP) models.

In addition to model validation, global microwave

observations enhance operational NWP applications via

data assimilation. This topic has received considerable

attention in recent years owing to the valuable infor-

mation content contained in microwave observations

that increases forecast skill (e.g., English et al. 2000;

Mahfouf et al. 2005; Weng et al. 2007; Kelly et al. 2008).

Clear-sky data assimilation is a largely tractable prob-

lem, and clear-sky microwave observations have been

routinely assimilated operationally in NWP models over

the past two decades. Advances in all-weather micro-

wave radiance assimilation have been aided by the recent

development of computationally efficient and accurate

radiative transfer (RT) models for scattering-intensive

conditions commonly associated with clouds and pre-

cipitation (e.g., Greenwald et al. 2005; Heidinger et al.

2006; Liu and Weng 2006; Evans 2007). Assimilation of

microwave radiances under cloudy and/or precipitating

conditions, however, is still rife with complexities (see

Errico et al. 2007a,b and references therein), and only

recently have operational centers assimilated all-weather

observations (Bauer et al. 2006a,b).

Properly characterizing forward modeling errors is

essential for effectively incorporating microwave radi-

ances under cloudy and precipitating conditions in op-

erational data assimilation. Numerous possible forward

modeling error sources (e.g., the RT solver, cloud mi-

crophysical assumptions, surface emissivity parameter-

izations, three-dimensional effects, and others) define

the total observation/operator error and its related co-

variance matrix, which influence how the observations

are utilized within the data assimilation procedure. To

illustrate this issue, O’Dell et al. (2006) reported signif-

icant differences in error correlations and covariances

due to the choice of RT model for select microwave

frequencies. Granted, the model errors studied in O’Dell

et al. (2006) are less important than some of the other

possible forward model error sources previously listed,

but they still displayed markedly different behavior de-

pending on the RT solver. More work must be under-

taken to study the larger sources of observation/operator

error and their subsequent impact on data assimilation.

This study focuses on one such forward model error

source related to cloud microphysics—modeling the scat-

tering and extinction properties of frozen hydrometeors—

that can produce significant model uncertainties. The

scattering signature at higher microwave frequencies

due to precipitation-sized frozen hydrometers has been

well documented (e.g., Spencer et al. 1989; Petty 1994;

Bennartz and Petty 2001) and serves as the primary

physical basis for passive microwave remote sensing of

precipitation, especially over land surfaces (e.g., Kongoli

et al. 2003; McCollum and Ferraro 2003). Describing the

complex interaction of microwave radiation with a di-

verse population of frozen particles is important for

properly characterizing the scattering signal, and nu-

merous studies have attempted to find both realistic and

computationally inexpensive methods to perform this

challenging task. Frozen hydrometeors have commonly

been modeled as low-density spheres (e.g., Bauer et al.

1999; Bennartz and Petty 2001; Zhao and Weng 2002,

among many others), and recent efforts have produced

single-scattering properties for nonspherical habits suit-

able for microwave remote sensing (e.g., Hong 2007; Kim

et al. 2007; Liu 2008; Petty and Huang 2010). Physically

assessing these various ice particle models under pre-

cipitating conditions is a necessary and critical task for

microwave precipitation retrieval development and data

assimilation purposes.

In this study, a modeling system will be described

allowing both active and passive microwave response to

clouds and precipitation to be modeled in a framework

requiring relevant backscatter and extinction properties

of ice models to be physically consistent. This approach

uses CloudSat data to provide vertical profiles of hydro-

meteors that are subsequently utilized to simulate multi-

frequency passive microwave brightness temperatures.

The centerpiece of this combined active/passive modeling

system is a database containing over 25 ice particle models

and their associated physical properties that allows side-

by-side objective assessment of these ice models over

a wide microwave spectral range and enables realistic

forward model uncertainties due to ice model properties

to be established. Simulated brightness temperatures can

also be compared with passive microwave observations to

study model errors under all-weather conditions.

Sections 2 and 3 respectively describe the data sources

employed in this study and a methodology overview of

the active/passive modeling system. An assessment of

ice particle models for a synoptic precipitation event is

presented in section 4, and global comparison statistics

and sample error correlations and covariances are shown

in section 5. A summary and concluding remarks are

provided in section 6.

2. Data

The data utilized in this study are from the following

instruments: CloudSat’s Cloud Profiling Radar (CPR),

the Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E), and the Microwave Hu-

midity Sounder (MHS).

CloudSat (Stephens et al. 2002) carries the single-

frequency, W-band (94 GHz) CPR (Tanelli et al. 2008)

and has provided cloud and precipitation profiles since
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2006. The CPR is a nonscanning, near-nadir-pointing

instrument with a mean spatial resolution of ;1.5 km

and a vertical range gate spacing of 500 m, although

instrument oversampling enables 240-m data bins in

the CloudSat data products. The following products

(release R04) are utilized: the 2B geometric profile

(2B-GEOPROF), 2B cloud water content–radar only

(2B-CWC-RO), 2C precipitation column (2C-PRECIP-

COLUMN), and the European Centre for Medium-Range

Weather Forecasts auxiliary dataset (ECMWF-AUX).

Section 3 describes how these products are used in this

study.

The AMSR-E is a passive radiometer on the Aqua

satellite operating at six dual-polarized frequencies rang-

ing from 6.9 to 89.0 GHz (Kawanishi et al. 2003). The

AMSR-E conically scans at a 558 earth incidence angle

with a mean spatial resolution of ;5 km for the 89-GHz

channel. The version 2-V08 AMSR-E L2A global swath

spatially resampled brightness temperatures (Ashcroft

and Wentz 2006) and version 2-V06 level-2B global

ocean swath (Wentz and Meissner 2004) products were

used in this study.

The MHS instrument flies on numerous European

Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) and National Oceanographic

and Atmospheric Administration (NOAA) polar-orbiting

platforms and possesses five high-frequency microwave

channels between 89.0 and 190.3 GHz. The MHS scans

in a cross-track fashion with a mean spatial resolution

of ;17 km at nadir.

Data from the AMSR-E and MHS (NOAA-18 satellite)

were collocated with the CloudSat observations for

this study. CloudSat and Aqua are members of the

‘‘A-Train’’ satellite constellation, so collocated AMSR-E/

CPR observations are readily available. Far fewer collo-

cated MHS/CloudSat data points exist, however, since

the NOAA-18 satellite does not fly in a coordinated orbit

with CloudSat. A combined dataset based on 31 CloudSat

overpasses between July 2006 and January 2007 was uti-

lized in this study and is described in detail by Chen et al.

(2008). The distance between the instrument footprint

centers for the vast majority of the observations in the

collocated dataset does not exceed 5 km, with most matches

on the order of a few kilometers. Even though MHS is

a cross-track scanning instrument, the collocated MHS

data are all near-nadir observations. The dataset was fur-

ther quality controlled to include only oceanic obser-

vations not affected by sea ice.

3. Methodology

This section describes a combined active/passive

modeling system that converts CPR reflectivity factor

(hereafter used interchangeably with ‘‘reflectivity’’) ob-

servations to simulated multifrequency passive micro-

wave brightness temperatures (TB).

A few preprocessing steps are first performed to the

CPR data. The W-band radar signal can be significantly

attenuated due to the combined effects of liquid and

melting precipitation, cloud liquid water, large columnar

water vapor amounts, and excessive ice water content

(IWC). The columnar two-way attenuation for all of

these atmospheric constituents is calculated by integrat-

ing the layer extinction coefficient downward from the

highest CloudSat data bin to near-surface levels to cre-

ate an attenuated-corrected reflectivity profile (see fur-

ther details later in the section regarding how layer

extinction properties are obtained). Attenuation cor-

rections at lower altitudes are generally small for snow-

fall cases or for typical profiles of ice content associated

with midlatitude stratiform precipitation (;1–2 dB) but

can be higher for moderate rainfall with elevated freez-

ing levels. The CPR data can also be affected by surface

returns in the lowest data bins. Since this study is limited

to over ocean observations with a fairly stable clutter

pattern, CPR data bins as low as ;500 m AGL are used.

Such data bins can be utilized with a clutter reduction

algorithm applied to data bins 2–5 in the version 011

2B-GEOPROF product (Tanelli et al. 2008). The CPR

reflectivities are also linearly extrapolated to the surface

to provide a complete vertical reflectivity profile.

After these preprocessing steps, layer single-scattering

properties are calculated. Since a main goal of this

study is to investigate simulated TB uncertainties due to

different ice habit models, calculating the scattering

characteristics of frozen particles is arguably the most

important link in the combined active/passive modeling

chain. Above the EMCWF-indicated freezing level, fro-

zen hydrometeor profiles are generated directly from the

CPR reflectivity fields via equivalent reflectivity (Ze)

to ice water content conversions. Note the term ‘‘ice

water content’’ here refers to the total mass of frozen

hydrometeors per unit volume and may be more appro-

priately labeled ‘‘snow water content’’ in the context of

this study.

A priori Ze–IWC relationships are derived using

modeled 94-GHz backscatter properties from the ice

particle habits summarized in Table 1, combined with

the Field et al. (2005, hereafter F05) ice particle size

distribution (PSD) parameterization. The F05 PSD pa-

rameterization is derived from airborne measurements

of midlatitude frozen PSDs and realistically character-

izes the narrow particle concentration peak often ob-

served at smaller particle sizes (e.g., see Figs. 11 and 12

from F05). It also accounts for the inherent temperature

dependency of observed in-cloud PSDs. The F05 PSD
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scheme relies on moment conversions to obtain the PSD

if any moment of the PSD—in this case, the moment of

the PSD defined by the layer IWC—is known. The IWC

is defined as

IWC 5

ð
m(D)N(D) dD, (1)

where m(D) is the mass for a given particle size of max-

imum dimension D and N(D) dD the particle concen-

tration. The m–D relationship for frozen particles is

represented by

m(D) 5 aDb, (2)

where a and b are dependent on the ice particle models

shown in Table 1. For a given set of input IWC values,

the PSD can be derived based on the b moment of the

PSD defined by Eqs. (1) and (2) (e.g., Field et al. 2007;

Kim et al. 2007; Thompson et al. 2008; Kulie and

Bennartz 2009), and Ze for a given IWC value is calcu-

lated by integrating particle backscatter cross sections

from the ice models in Table 1 over the derived PSD.

The Hong (2007), Kim et al. (2007), and Liu (2008) ice

habit models are nonspherical with single-scatter prop-

erties (e.g., volume extinction, single-scattering albedo,

and asymmetry factor) calculated using the discrete di-

pole approximation (DDA) (Draine and Flatau 1994)

assuming randomly oriented particles, whereas the

Surussavadee and Staelin (2006, hereafter SS06) models

are spherical with frequency-dependent effective parti-

cle densities for snow and graupel. Three other variable-

density spherical models shown in Table 1 for snow,

graupel, and hail are also included in the database. Such

‘‘soft’’ or ‘‘fluffy’’ spheres have been used extensively

for microwave remote sensing applications and are stan-

dard ice particle models, for example, embedded within

the Joint Center for Satellite Data Assimilation’s Com-

munity Radiative Transfer Model (Han et al. 2006).

Figure 1 highlights Ze–IWC relationships for an as-

sumed temperature of 27.58C. These relationships are

temperature dependent and are derived for 11 temper-

ature bins at 58C intervals between 22.58 and 257.58C

to account for PSD differences modulated by tempera-

ture (F05). Figure 2 shows derived PSDs for a repre-

sentative sample of the ice models from Table 1. Note

that an input radar reflectivity factor of 10 mm6 m23 is

assumed in Fig. 2 for illustrative purposes. Since the

derived IWC for a given Ze is different for each ice

model, the derived PSD also differs. The PSDs are also

strongly modulated by the m–D relationships outlined

in Table 1. For instance, some of the ice particles dis-

playing elevated a coefficients and/or b exponents (e.g.,

some of the columns, plates, and droxtals) produce PSDs

that are skewed heavily toward lower particle sizes,

whereas other ice models with lower exponent b values

nearer 2.0—and thus more representative of observed

aggregate particles (e.g., Locatelli and Hobbs 1974;

Brown and Francis 1995; Mitchell 1996)—trend toward

larger particle sizes for the same input Ze value. The

ramifications of these PSD differences will be discussed

in section 6.

CloudSat data products are used to generate profiles

of other quantities needed to calculate layer extinction

properties for RT simulations. Profiles of temperature,

pressure, and water vapor content (WVC) are obtained

from the ECMWF-AUX product. Cloud liquid water

content (LWC) profiles from the 2B-CWC-RO product

(Austin 2007; Chen et al. 2008) are utilized in nonpre-

cipitating regions. The LWC and WVC profiles are scaled

by their collocated AMSR-E retrieved columnar liquid

water path (LWP) and water vapor path (WVP) values.

This scaling is performed to obtain improved emission

TABLE 1. Ice particle model habits and abbreviations from the

DDA results of Hong (2007), Kim et al. (2007), and Liu (2008).

SS06 frequency-dependent soft spheres and three commonly used

variable-density fluffy spheres for snow (FS), graupel (FG), and

hail (FH) are also indicated. The coefficient a and exponent b for

the respective ice habit m–D relationships [Eq. (2)] are also shown

(SI units assumed).

Database Habit Abbreviation a b

Hong (2007) Hexagonal column HC1 0.03 2.00

Hong (2007) Hollow hex column HC2 0.02 2.00

Hong (2007) Hexagonal plate HP 0.75 2.47

Hong (2007) 6-bullet rosette HR6 0.18 2.34

Hong (2007) Aggregate HA 65.45 3.00

Hong (2007) Droxtal HD 347.31 3.00

Liu (2008) Long hex column LC1 37.09 3.00

Liu (2008) Short hex column LC2 116.12 3.00

Liu (2008) Block hex column LC3 229.66 3.00

Liu (2008) Thick hexagonal plate LP1 122.66 3.00

Liu (2008) Thin hexagonal plate LP2 32.36 3.00

Liu (2008) 3-bullet rosette LR3 0.32 2.37

Liu (2008) 4-bullet rosette LR4 0.06 2.12

Liu (2008) 5-bullet rosette LR5 0.07 2.12

Liu (2008) 6-bullet rosette LR6 0.09 2.13

Liu (2008) Sector snowflake LSS 0.002 1.58

Liu (2008) Dendrite snowflake LDS 0.01 1.90

Kim et al.

(2007)

Hexagonal column KC 14.19 2.88

Kim et al.

(2007)

4-bullet rosette KR4 32.30 2.88

Kim et al.

(2007)

6-bullet rosette KR6 47.45 2.88

SS06 Snow (soft sphere) SS 3.69 3.00

SS06 Graupel (soft sphere) SG 19.34 3.00

Snow Snow (soft sphere) FS 5.26 3.00

Graupel Graupel (soft sphere) FG 84.09 3.00

Hail Hail (soft sphere) FH 425.71 3.00
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signature simulations at the scale of the passive micro-

wave observations so the scattering effect of ice particles

can be better isolated. In precipitating regions below

the freezing level, CPR reflectivity data are converted

to rainfall rates (R) using Ze–R relationships devel-

oped for W-band radars (L’Ecuyer and Stephens 2002).

AMSR-E LWP retrievals are also used to supplement

the CloudSat 2B-CWC-RO LWC retrievals since the

2B-CWC-RO LWC retrievals are unusable in precip-

itating conditions. AMSR-E LWP values are distributed

evenly in those data bins containing unphysical (and thus

flagged) 2B-CWC-RO LWC solutions to vertically distrib-

ute cloud liquid water. Layer gaseous (e.g., water vapor,

nitrogen, oxygen) and cloud liquid water absorption are

respectively derived using the Rosenkranz (1998) and

Liebe et al. (1991) algorithms. Liquid precipitation ab-

sorption and scattering properties are generated using

standard Mie theory after applying appropriate fall speed

assumptions suitable for rain and are averaged over an

assumed rain drop size distribution (e.g., Bennartz and

Petty 2001). It should be noted that a melting layer model

is currently not employed to account for partially melted

particles. The implications of this deficiency are dis-

cussed later in the manuscript.

Layer extinction properties due to gaseous absorp-

tion and cloud liquid water are combined with PSD-

averaged hydrometeor extinction properties as input for

RT simulations. Ocean surface emissivities are modeled

using version 2 of the Fast Emissivity Model (FASTEM-2)

(DeBlonde and English 2001), and all RT calculations

are performed with the slant-path version of the suc-

cessive order of interaction (SOI) RT model (Heidinger

et al. 2006; O’Dell et al. 2006) for the following fre-

quencies: 6.9, 10.6, 18.7, 23.8, 36.5, 89.0, and 157.0 GHz.

This frequency subset is particularly relevant for the

upcoming Global Precipitation Measurement (GPM)

mission that will operate a microwave imager at similar

frequencies, and current observations from AMSR-E

and MHS are available for these frequencies. All SOI

simulations are performed using eight streams. The ex-

pected SOI TB error at higher frequencies under highly

scattering conditions should not exceed ;0.1 K using

FIG. 1. Derived Ze–IWC relationships (94 GHz) for 25 ice particle models and the F05 PSD for

the 27.58C temperature bin. Abbreviations for the ice particle models can be found in Table 1.
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eight streams (Heidinger et al. 2006). Two sets of sim-

ulations for each profile are performed using an assumed

55.18 (AMSR-E) and 08 (MHS) zenith angle. Modeled

results are convolved to the approximate passive mi-

crowave footprints along the CloudSat path for com-

parison purposes as a first-order correction for footprint

mismatches between the higher resolution CloudSat data

and the lower footprint resolution of the various passive

microwave sensors. This convolution procedure is most

appropriately suited for larger-scale precipitating sys-

tems, and the results presented in this study concentrate

on such frontal precipitation events.

4. Case study results

a. Overview

A synoptic precipitation event is presented to high-

light the active/passive modeling system and offer an

assessment of the ice particle models. This oceanic case

study was observed between Australia and Antarctica

near 0400 UTC 9 August 2006 (CloudSat orbit 01497).

Figure 3a depicts extensive clouds and precipitation as-

sociated with a large frontal system. Cloud-top heights

are between 8 and 10 km; maximum CPR reflectivities

are between 10 and 15 dBZe in the cold sector and 15–

20 dBZe in the warmer, raining locations. An interesting

feature of this particular CloudSat overpass is the tran-

sition from frozen to liquid precipitation coinciding with

a freezing level increase from 0 to 2 km near 57.58S

latitude. Obvious brightband features accompany this

transition and confirm the existence of liquid hydrome-

teors below 2 km AGL. [The term ‘‘brightband’’ is used

throughout this paper to denote the increased reflec-

tivity associated with the melting level. Note, however,

that the physical mechanism responsible for increased

reflectivity signatures accompanying the melting level at

94 GHz differs from the well-documented peak reflec-

tivity associated with melting particles at lower fre-

quencies (e.g., Sassen et al. 2007).] With the exception of

some liquid clouds near 608S, retrieved LWP values are

very low in the snowfall regions (Fig. 3f). LWP increases

north of the transition zone, with numerous LWP max-

ima exceeding 0.2 kg m22 coinciding with near-surface

reflectivity maxima.

Figures 3b through 3e show AMSR-E observations

for the vertically polarized (V) 36- and 89-GHz chan-

nels, as well as MHS observations at 89 and 157 GHz.

These observations indicate warmer TBs at all frequen-

cies coincident with liquid clouds and precipitation and

lower TB values between ;598 and 578S in snowing re-

gions due to reduced LWP and enhanced scattering from

frozen hydrometeors.

b. Validity of ice particle models

Simulation results using the ice habits from Table 1

are also overlaid in Fig. 3 revealing the TB sensitivity to

ice particle properties. The most obvious feature in the

simulation results is the large deviation from observa-

tions associated with certain ice models. For instance, the

Hong (2007) and Liu (2008) (hereafter referred to as the

‘‘DDA’’ ensemble containing 17 ice models) 36V simu-

lation results realistically follow the AMSR-E observa-

tions (Fig. 3b). Since the 36V channel is most sensitive

to LWP emission and not as susceptible to scattering as

higher-frequency channels, sensitivity to the various ice

particle models is not expected. However, all spherical

and some nonspherical models deviate from the obser-

vations in the snowfall regions when the columnar ice

water path (IWP) reaches a critical level. Similarly, the

emission signals revert to TB depressions in high-LWP

regions (Fig. 3f) for these same ice models. This trend is

magnified at higher frequencies (Figs. 3c–e) with large

simulated TB depressions in precipitating regions. Con-

versely, the simulated TBs from the Hong (2007) and

Liu (2008) models produce physically realistic results for

all frequencies. Similar discrepancies between the ice

models are pervasive throughout the entire dataset for

precipitation events. Note that the nonweighted DDA

ensemble average TBs for each frequency is indicated by

a solid gray line in Figs. 3b–e. The 61 standard deviation

FIG. 2. PSDs derived for the ice particle models indicated in the

legend using the F05 parameterization. An input radar reflectivity

factor of 10 mm6 m23 is assumed.
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(1s) of the DDA ensemble simulated TB is also high-

lighted by the gray shading.

The cause of the simulated TB discrepancies is due

primarily to the following two effects related to differ-

ences in the scattering properties of the ice models:

1) Ze–IWC relationships and 2) extinction properties. The

first link in the modeling system uses backscatter prop-

erties for each ice model to convert CPR reflectivities to

IWC using Ze–IWC relationships. Figure 4 compares the

derived IWP from two ‘‘fluffy’’ spherical models (FS and

FG, Table 1)—as well as the KR6 habit and DDA en-

semble average—for the precipitation event shown in

Fig. 3. The IWP derived from the low-density snow

model (FS) consistently exceeds the DDA-derived IWP

by about two orders of magnitude due to the Ze–IWC

relationships shown in Fig. 1. For a given CPR reflec-

tivity, the FS-derived IWC is much larger than the DDA-

derived IWC owing to comparatively smaller backscatter

FIG. 3. (a) Attenuation-corrected CPR reflectivity and freezing level (blue line) from

CloudSat orbit 01497. (b)–(e) Brightness temperature (K) for the following instruments and

channels (black lines/asterisks): (b) AMSR-E 36V and (c) 89V GHz; (d) MHS 89 and

(e) 157 GHz. (f) AMSR-E derived LWP (green) and IWP (blue) derived from the DDA en-

semble results. Simulated TBs for the DDA ensemble and 1-s uncertainties (light gray shad-

ing), as well as spherical and Kim et al. (2007) models (using the same color scheme as in Fig. 1)

are also included in (b)–(e). Also, (a) shows five separate zones that are used for calculating the

individual ice habit biases in Fig. 8.
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cross sections of the low-density spherical model at

all particle sizes (not shown) that strongly affect the

Ze–IWC relationships. The inflated layer IWC retrievals

cumulatively produce excessive column-integrated IWP

and are the primary reason for the large simulated TB

depressions due to intensive scattering.

The higher-density graupel spherical model (FG) and

the KR6 habit also exceed the DDA ensemble average

IWP—and the upper IWP limit defined by the DDA

ensemble uncertainty—by a smaller, yet still significant,

margin compared to the FS habit (the large derived IWP

uncertainty exceeding that of the DDA ensemble by

;60% will be highlighted in section 6). However, these

particles also exhibit larger PSD-averaged extinction

properties for a given IWC compared to the DDA en-

semble average (Fig. 5). The combination of elevated

retrieved IWP and increased extinction are therefore

both significant factors contributing to reduced simu-

lated TBs for the FG and KR6 models. The volume ex-

tinction coefficients for these ice models reside within

the uncertainty range of the DDA ensemble at lower

IWC amounts and only exceed the DDA ensemble en-

velope at larger IWCs, so the PSD-averaged extinction

properties do not differ as dramatically from the DDA

ensemble compared to the FS backscatter properties.

Note also the reduced extinction properties of the FS

model in Fig. 5 compared to the DDA ensemble aver-

age, thus confirming the dominant role of the Ze–IWC

relationships—not extinction properties—in producing

excessive scattering for this ice model.

c. Simulation uncertainties and errors

Since the relative validity of the DDA ensemble has

been established, only DDA results are shown in Fig. 6 to

highlight the 1-s simulation uncertainties at each fre-

quency. Simulated TB36V uncertainties are low (,0.75 K)

for this emission-sensitive channel, with excellent

comparisons to ASMR-E TB36V observations in the

snowfall sector due to low LWP values in this region

(Fig. 3b). Note, however, the excellent agreement be-

tween simulation results and observations near the LWP

maximum located at ;59.78S associated with a shallow

liquid cloud feature—an expected result since the model

LWP is directly scaled to AMSR-E-derived LWP. In the

raining regions, however, there are several areas of nega-

tive TB36V bias where the model underestimates emission.

Larger simulated TB89V uncertainties display a func-

tional relationship with IWP and range from 4 to 9 K in

the snowing regions (Fig. 6), indicating stronger sensi-

tivity of this channel to the scattering properties of the

different ice models in higher-IWP regions. Simulated

TB89V uncertainties in the warm sector of the synoptic

weather system are generally around 2–3 K. The simu-

lated TB89V results are consistently biased low (up to

;14 K, but with large uncertainties) when compared to

AMSR-E observations—but are not egregiously low

FIG. 4. Derived ice water path (kg m22) for fluffy spheres (FS),

graupel (FG), and the Kim et al. (2007) six-arm rosette (KR6). The

DDA ensemble average (solid gray line) and 1-s uncertainty re-

sults (light gray shading) are also shown. FIG. 5. Simulated volume extinction coefficient (km21) as a

function of IWC (g m23) for the same ice habits indicated in Fig. 4.

The DDA ensemble average (solid gray line) and 1-s uncertainty

results (light gray shading) are also shown.

FIG. 6. Simulated TB uncertainties for 36V (light dashed), 89V

(dark solid), 89 GHz (light solid), and 157 GHz (light dashed–

dotted). The five separate zones from Fig. 3a are also indicated.
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like the spherical model results (Fig. 3). As shown in

Fig. 7a, the simulated 89-GHz scattering index (S89)

(Petty 1994) indicates excessive scattering in the snow-

fall region. Vertical (V) and horizontal (H) polarization

information from the 89-GHz channels—combined with

estimates of TB89V/H in nearby cloud-free regions—are

used to calculate S89 to estimate the TB depression due

to scattering by frozen particles. Simulated S89 values

exceed those derived by AMSR-E observations by a

factor of 2 over much of the snowfall region. The sim-

ulated S89 values are not inflated in the liquid precipi-

tation regions (Fig. 7a), while simulated TB89V values in

these same regions are consistently lower than observed

values (Fig. 3c), thus hinting at emission underestima-

tion similar to the 36V results.

The satellite zenith angle also needs to be consid-

ered when characterizing simulated TB uncertainties. In

contrast to 89V results with an oblique satellite viewing

angle, the MHS 89-GHz near-nadir observations and

simulated results display a much lower sensitivity to fro-

zen hydrometeors and only respond to emission from

LWP (Fig. 3d). Simulated TB89 uncertainties are gener-

ally around 1–2 K in the snowfall region and are negli-

gible elsewhere (Fig. 6). This lack of sensitivity to IWP is

also emphasized by no discernible TB89 depression when

compared to cloud-free RT simulations (Fig. 7b).

The 157-GHz MHS observations and simulated TBs

display obvious sensitivity to IWP at near-nadir viewing

angles. There are noticeable TB157 minima coinciding

with high IWP values (Fig. 3e), simulated TB157 uncer-

tainties are between 2 and 5 K in these same regions

(Fig. 6), and TB157 depressions compared to cloud-free

simulations are readily apparent (Fig. 7b). Additionally,

differences in TB157 and TB89 emphasize the enhanced

FIG. 7. (a) AMSR-E (dark) and simulated (light) scattering index for 89 GHz (K), (b)

MHS 89 (dark asterisk)–157-GHz (light diamond) and simulated 89 (dark solid line)–157-GHz

(light solid line) brightness temperature depression (K) compared to water vapor-only results,

and (c) MHS (triangles) and simulated (solid line) 157–89-GHz brightness temperature dif-

ference (K). The latitude domain corresponds to Fig. 3.
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sensitivity of the 157-GHz channel to the IWP (Fig. 7c).

Unlike the 89V results, comparisons between MHS and

simulated TB157 are excellent and exhibit relatively low

bias in the highest scattering regions (Fig. 3e). Also note

the higher simulated 89V versus 157-GHz uncertainties

due to viewing angle effects (Fig. 6).

d. Individual ice particle model comparisons

Some of the Hong (2007) and Liu (2008) ice habits (e.g.,

columns, plates, droxtals, simple rosettes, etc.) are prob-

ably not intended as realistic proxies for precipitation-

sized ice particles, but rather for smaller ice habits

commonly observed in higher-level ice clouds. To justify

using an ensemble containing all of these habits to cal-

culate model uncertainties in precipitating regions, Fig. 8

shows simulated versus observed TB157 biases for the

case study. A few ice habits demonstrate very low biases

(,0.3 K) across the entire precipitating system between

;608 and 518S (i.e., the ‘‘All’’ column in Fig. 8), specifi-

cally the LC1, LSS, LR3, LC2, and HA models. Note,

however, the extreme variability in simulated biases when

regional subsets (labeled I–V in Fig. 3a) are considered.

These may indicate fundamental changes in scattering

properties of the frozen particles in different sections

of the synoptic weather system. For instance, the HR6

model has one of the higher bias values (;1.9 K) over

the entire domain, but displays the lowest biases in re-

gion III and V. The LP2 shape exhibits typical biases

near 2 K in all other areas except region IV, where its

bias is very low. The variability of these results seems to

justify using an ensemble populated by the entire Hong

(2007) and Liu (2008) dataset since the combined active/

passive properties of even the pristine crystal habits

compare well in the precipitating regions. However, other

error sources not related to the scattering properties

of the ice models could also affect the results in Fig. 8.

The 157-GHz channel, however, should be substantially

less sensitive to error sources from lower atmospheric

levels in the presence of adequate IWP (e.g., Bennartz

and Bauer 2003). This trait is highlighted in Fig. 7b,

which shows the enhanced sensitivity of the nadir 89-GHz

channel to emission in the high-LWP regions. Conversely,

the 157-GHz results do not display large peaks in the

same regions because of enhanced scattering by ice par-

ticles aloft, and the biases reflected in Fig. 8 are pre-

sumably more immune from error sources other than the

ice particle model.

e. Summary of case study results

In summary, the case study highlights the following

issues:

d Spherical models produce unrealistic simulated TB

results, while certain nonspherical (DDA) models are

physically consistent
d IWP retrieval uncertainty exceeds 60% for the DDA

ensemble
d High (low) sensitivity of the 89V–157 nadir (36V–

89 nadir) channels to IWP
d Large simulated TB89V (up to 9 K) and TB157 (up to

5 K) uncertainties
d Excellent agreement between simulations and obser-

vations for 36V, 89, and 157 GHz in the snowfall re-

gion, but excessive simulated TB89V depressions
d Negative simulated TB biases at all frequencies in the

rainfall region
d Highly variable simulation-MHS TB157 comparisons

for the different ice particle models in subregions of

the synoptic weather system

5. Global results

a. Statistical comparison by precipitation type

In this section, results from the entire collocated

CloudSat/AMSR-E/MHS dataset are tabulated by

FIG. 8. Simulated vs observed 157-GHz brightness temperature

bias (K) corresponding to the case study illustrated in Fig. 3a. The

‘‘All’’ column refers to the entire latitudinal domain shown in

Fig. 3; the other columns (I, II, II, IV, V) refer to the regional

subsets indicated in Fig. 3a. The ice habit labels follow the same

nomenclature as Table 1.
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different criteria to demonstrate variability to cloud or

precipitation type. Table 2 shows the cloud and pre-

cipitation categories, as well as the number of collocated

CloudSat/AMSR-E/MHS observations associated with

each category used to calculate the statistics displayed

in Fig. 9. Precipitation classification was performed

manually/visually based on the CloudSat swaths and

auxiliary temperature information. Since this study fo-

cuses on precipitation and since Chen et al. (2008) pro-

vides a detailed examination of RT validation based

on many additional cloud categories from the CloudSat

products, only three basic nonprecipitating cloud cate-

gories are indicated in Table 2. Note that the ‘‘cold’’

cloud category is defined very broadly and, in addition to

ice clouds, this category may also include clouds com-

prised of supercooled water.

Statistics for the various cloud and precipitation types

are shown in Fig. 9. These statistical measures [bias,

bias-corrected rms error (RMSE), and average TB un-

certainty] are defined with respect to simulations versus

observations. Linear correlation coefficients were also

calculated and almost universally exceeded 0.90–0.95

without marked variability (not shown). The average TB

uncertainty (s) is the standard deviation between the

TB results for the different ice models and is thus a

measure of the spread between the different simula-

tions. As illustrated in the case study, there are notable

differences between the spherical and DDA ensembles.

The spheres consistently produce large biases and RMS

errors, low correlations, and very large s values for the

entire collocated dataset (not shown). The remaining

analysis and discussion will therefore focus exclusively

on the DDA ensemble results shown in Fig. 9.

For clear-sky cases all frequencies exhibit low biases,

correlations exceeding 0.95, and low RMSE values, in-

dicating that clear-sky atmospheric and ocean surface

properties are well modeled. The cloud categories con-

tain relatively small negative biases and similar statisti-

cal results. The global DDA results, however, display

trends dependent on frequency and precipitation type.

Highlights of the global DDA ensemble results from

Fig. 9 include

d distinct statistical differences between precipitation

categories, especially the simulated TB uncertainties
d stratiform brightband events display the largest neg-

ative biases, while negative biases of 3–4 K exist for

many precipitation categories
d distinct viewing angle differences between 89V and

89 nadir results
d lower 157-GHz biases (21 to 21.5 K) compared to

other frequencies for most precipitation categories,

most likely due to scattering effects that modulate

emission from below the freezing level

The average simulated TB uncertainties (s) shown in

Fig. 9c mimic the test case results with their dependence

on frequency and also highlight differences between

precipitation categories. Simulated s36V are very low

due to decreased sensitivity of this channel to scattering

effects, whereas s89V has higher values exceeding 1 K

for most categories and 2.5 K for the brightband cases.

The s89 nadir values are consistently below ;0.6 K ex-

cept for the brightband category (;0.9 K). The s157

nadir values display substantial variability between the

precipitation categories with the brightband events pos-

sessing the highest average simulated TB uncertainty

(1.8 K). Also note that simulated TB uncertainties are

generally much lower than rms errors, indicating that the

models display increased similarity to each other com-

pared to the observations.

b. Dependence on ice content

The average TB uncertainties presented in Fig. 9 are

useful to illustrate the sensitivity of simulated results to

the ice particle model, but they should be analyzed with

caution since these uncertainties exhibit a functional de-

pendence on IWP (Fig. 6). Since IWP retrievals are

dependent on the ice model, an integrated reflectivity

TABLE 2. Description of the different cloud and precipitation categories used for simulation vs observation comparisons. Abbreviations

used to denote the categories in various figures and tables are also indicated. The number of CloudSat/AMSR-E/MHS coincident

observations for each category (Nobs) used to generate the statistics in Fig. 9 is also shown.

Cloud/precip category Label Nobs Description

All clouds AC 9043 All clouds, no precipitation.

Cold clouds CC 2494 Cold clouds only (,08C), no precipitation.

Warm clouds WC 2894 Warm clouds only (.08C), no precipitation.

All precipitation AP 5153 All precipitation occurrences.

Stratiform (midlat) SML 1911 Mid-latitude (lat . j308j) stratiform precipitation.

Stratiform (low FL) SLFL 916 Mid-latitude stratiform, freezing level (FL) , 1 km.

Stratiform (high FL) SHFL 583 Mid-latitude stratiform, FL . 1 km.

Stratiform (brightband) SBB 412 Mid-latitude stratiform with obvious brightband.

Low-topped convection LTC 1148 Shallow, higher latitude (lat . j458j) convection.
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quantity (Zint, mm6 m22) is introduced as a proxy for

IWP:

Z
int

5

ðHCT

HFL

Z
CPR

(z) dz, (3)

where ZCPR is the attenuation-corrected CPR reflec-

tivity at a given height z and HFL and HCT are the re-

spective freezing level and cloud-top height: Zint is

a useful metric since it conveys a vertically integrated

property above the freezing level, yet is independent of

the ice habit model. Histograms of Zint are shown in

Fig. 10 and indicate disparities between precipitation

categories. For instance, ‘‘all precipitation’’ peaks near

30 dBZint, while the various stratiform subcategories

display higher, but variable, peaks in their Zint distri-

butions. Most notably, the ‘‘stratiform brightband’’ cat-

egory possesses the highest Zint maxima compared to all

other midlatitude stratiform categories.

Figure 11 illustrates 157-GHz simulation biases for

the individual habits in the DDA ensemble as a function

of Zint for all midlatitude stratiform observations. The

bias magnitudes are consistently low (&1 K) below the

35-dBZint data bin. There is also minimal spread in the bias

results among the various ice particle models below this

threshold, so the ice particle model employed is not

particularly crucial until a critical Zint level is reached.

There is considerable divergence in the results above the

35-dBZint threshold, and numerous ice particle models

exhibit large negative biases owing to excessive scatter-

ing when dBZint exceeds about 45. In contrast to the case

study results, a few ice models produce more consistent

results across the entire Zint spectrum (e.g., HP, HR6,

and LDS), while others become outliers at the highest

Zint levels (e.g., HC1, HC2, HA, LC2, LC3, LP1, and

LP2). The number of midlatitude stratiform observa-

tions is reduced above ;45 dBZint, so the statistics above

this threshold are not as robust. Nonetheless, these re-

sults indicate potential systematic errors in the scattering

properties for many of the DDA ensemble members at

high Zint levels, so the veracity of some ice models for mi-

crowave remote sensing of high-IWP precipitation events

remains questionable.

FIG. 9. Simulated DDA ensemble brightness temperature vs

AMSR-E/MHS (a) bias, (b) bias-corrected RMSE, and (c) average

simulated TB uncertainty (s) for different cloud and precipitation

categories. Abbreviations for the cloud and precipitation cate-

gories can be found in Table 2.

FIG. 10. Histograms of column-integrated reflectivity above the

freezing level (dBZ) for different precipitation categories in 2-dB

bins.
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To investigate simulated TB uncertainty differences

among the precipitation categories due to average co-

lumnar ice properties, Fig. 12 shows s157 for different

selected values of Zint based on best-fit lines between

these two quantities (not shown). As Fig. 12a indicates,

the differences in s157 are not wide among the stratiform

categories at lower Zint levels, but larger variations oc-

cur at higher Zint data bins. The bias-corrected RMSE

values for 157 GHz are also shown in Fig. 12b. When

used in combination with the results from Fig. 12a, the

TB uncertainties due to scattering characteristics of the

ice models contribute significantly to the overall model

error variability at the highest Zint values, while other

model error sources appear to dominate the error vari-

ability at lower Zint levels—especially for the ‘‘all pre-

cipitation’’ category.

c. Error correlations/covariances

To illustrate the utility of the combined active/passive

modeling results to data assimilation applications, error

correlations and covariances for the lower and higher

freezing level midlatitude stratiform precipitation cate-

gories are shown in Tables 3 and 4. Model errors are

defined as the average simulated ensemble TB subtracted

from the observed TB for each frequency. Since the

dependence of simulated TB uncertainties on Zint has

already been demonstrated, these tables only consider

results from the 40-dBZint data bin. The off-diagonal ele-

ments of such error covariance matrices influence how the

observations are utilized in data assimilation schemes, yet

are difficult to characterize under precipitating conditions.

Tables 3 and 4 combine the error correlations (upper

right half of the matrix) and covariances (lower left half

of the matrix, including the diagonal elements). The

complete observational error matrix would contain all

FIG. 11. Simulated vs observed 157-GHz brightness temperature bias (K) using the DDA

ensemble of ice particle models for the midlatitude stratiform precipitation category.

FIG. 12. (top) Simulated TB157 uncertainty (K) and (bottom)

bias-corrected RMSE (K) as a function of Zint for the different

precipitation categories listed in Table 2.
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microwave channels, but only the vertically polarized

channels are indicated in Tables 3 and 4 for brevity.

Lower-frequency channels are also not illustrated ow-

ing to their low sensitivity to ice particle model. Since

157-GHz observations containing polarization diversity

at an AMSR-E-like viewing angle are not available, the

nadir results are assumed to realistically represent the

error correlations/covariances.

The error correlations and covariances shown in

Tables 3 and 4 again highlight the importance of parti-

tioning the results between different precipitation types.

Error correlations exceed 0.75 between all of the lowest

three channels (18, 23, and 36 GHz) in both precipi-

tation categories, with the higher freezing level category

displaying slightly increased correlations at these fre-

quencies. Note, however, that the covariances for these

same channels display marked differences between the

two precipitation categories. For instance, the 36V var-

iance increases from 1.84 (low freezing level) to over

11 K2 (higher freezing level). Error correlations between

the 89/157-GHz channels and the lower three frequen-

cies are consistently lower, although the 36V–89V error

correlation increases from 0.13 (low freezing level) to

0.31 (high freezing level). The error correlations be-

tween 89V and 157 are much higher than the 89V–157

error correlations with lower frequencies. The higher

freezing level category also has a noticeably higher

89V–157 error correlation than lower freezing level

events, while a large 89V covariance disparity exists

between the two precipitation categories. Figure 13

also highlights 89V–157 and 89V–36V error correlation

differences—and 157-GHz variance calculations—as a

function of Zint for three different precipitation categories.

The midlatitude stratiform categories display mostly

similar 157–89V error correlation trends and magni-

tudes, but there are larger discrepancies evident at cer-

tain Zint data bins. The shallow convective precipitation

157–89V error correlations, however, diverge strongly

from the stratiform categories below the 40-dBZint data

bin. Considerable variability also exists between the

three precipitation types in the 89V–36V error correla-

tions. Similar to Fig. 12, the 157-GHz variances exhibit

a Zint dependency and are dictated by enhanced scat-

tering effects at the highest Zint levels (Fig. 13c). Note

that the variances in Fig. 13 link the error correlations

with covariances shown in Tables 3 and 4.

6. Summary and conclusions

This study describes a combined active/passive mi-

crowave modeling system that converts CloudSat CPR

reflectivity fields to multifrequency passive microwave

brightness temperatures (TB). The hydrometeor profiles

provided by the CPR are particularly beneficial, and

TABLE 3. Lower freezing level midlatitude stratiform pre-

cipitation model error covariances (K2) (boldface, lower left half)

and correlations (upper right half) from the 40-dBZint data bin for

the following frequencies: 18V, 23V, 36V, 89V, and 157 GHz.

18V 23V 36V 89V 157

18V 1.99 0.85 0.74 0.06 0.25

23V 1.70 1.99 0.75 0.13 0.24

36V 1.42 1.44 1.84 0.13 0.11

89V 0.18 0.43 0.40 5.21 0.41

157 0.80 0.75 0.33 2.13 5.13

TABLE 4. As in Table 3 but for higher freezing level midlatitude

stratiform precipitation.

18V 23V 36V 89V 157

18V 4.51 0.93 0.82 0.07 0.13

23V 3.52 3.17 0.81 0.05 0.09

36V 5.86 4.87 11.39 0.31 0.13

89V 0.57 0.35 4.17 15.79 0.55

157 0.60 0.35 1.00 4.99 5.15

FIG. 13. (a) 157–89V and (b) 89V–36V show error correlations for

three different precipitation categories as a function of integrated

reflectivity above the freezing level (Zint). (c) Error 157-GHz error

variances for the same precipitation categories. The low freezing

level midlatitude stratiform (Low FL), higher freezing level mid-

latitude stratiform (High FL), and higher latitude, shallow convec-

tive precipitation categories are shown (see Table 2).
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CPR observations also allow the variability of the results

to be studied by precipitation classification. This mod-

eling system also constrains the physical properties of

frozen hydrometeor models, requiring both backscat-

tering (converting Ze to IWC to derive the PSD) and

extinction (calculating PSD-averaged properties for pas-

sive microwave RT simulations) properties to be self-

consistent for realistic results to be obtained from both

an active and passive perspective.

Since scattering by frozen hydrometeors produces the

primary higher-frequency passive microwave precipita-

tion signature and is a large source of uncertainty in

forward models, this study illustrates the sensitivity of

simulated results to the choice of ice particle model. Syn-

optic precipitation case study results, as well as globally

averaged results, indicate that certain ice particle models

(e.g., low-density spheres) produce consistently im-

plausible results compared to coincident AMSR-E and

MHS observations because of excessive scattering. These

unphysical TB depressions are caused by inflated layer-

derived IWC due to a priori Ze–IWC relationships es-

tablished for the ice particle models, as well as increased

PSD-averaged extinction for some ice models. Recent

work by Petty and Huang (2010) also highlights dis-

crepancies between extinction and backscatter proper-

ties of spherical and complex aggregate ice models, so

the results in this study confirm the inherent difficulty

using spheres for combined active and passive microwave

remote sensing applications. Nonspherical ice models

from Hong (2007) and Liu (2008) possess more physically

realistic combined microwave backscatter and extinction

properties, and these models produce consistently better

results when compared to multifrequency passive mi-

crowave observations of precipitation.

An ensemble approach using the Hong (2007) and

Liu (2008) nonspherical ice models is adopted to high-

light forward model uncertainties and errors due to the

choice of ice particle model on a global scale. Overall,

consistently negative model biases exist, but there is con-

siderable variability in these results due to frequency,

zenith angle, and precipitation type. The simulated TB

uncertainty due to the ice particle model is also shown to

be as high as 9 K for the vertically polarized 89-GHz

channel under heavier snowfall conditions, but this un-

certainty is reduced to about 2 K in liquid precipitation

regions and appears to be a strong function of IWP. Two

other high-frequency nadir-viewing channels display lower

uncertainties of about 4 (2) K for nadir 157 (89)-GHz

simulated results under high-IWP conditions. The 157-GHz

simulated brightness temperature uncertainties are also

stratified by integrated CPR reflectivity above the freez-

ing level (as a proxy for IWP), and precipitation-type

dependencies are noted.

These results also indicate a one-size-fits-all precipi-

tation categorization might not be the most optimal way

to characterize forward model uncertainties and errors.

It might be preferable to instead partition results into

further subcategories based on a combination of lati-

tude, precipitation type, and an integrated quantity in-

dicative of columnar ice content (e.g., integrated CPR

reflectivity above the freezing level). For instance, the

stratiform category of precipitation displays distinctive

trends between the various stratiform subcategories

reported in this study. Variability in model error corre-

lations and covariances between select microwave fre-

quencies is evident owing to precipitation type and

columnar ice amount, and the promise of improved all-

weather data assimilation of microwave observations ul-

timately relies on better characterizing error correlation/

covariance behavior under different precipitating condi-

tions. Future efforts should be devoted to developing a

larger combined active/passive microwave observational

dataset to increase the sampling of all precipitation sub-

categories presented in this work. For instance, another

stratiform precipitation category such as ‘‘snowfall only’’

could be developed with more observations to truly iso-

late errors due to scattering by frozen hydrometeors and

decouple them from emission-based errors.

Future work will also be devoted to improve model

components that may be the source of errors highlighted

throughout this study. For instance, negative simulated

36- and 89-GHz biases observed under raining condi-

tions are not directly related to scattering by frozen

hydrometeors but, rather, to a possible combination of

the following effects: 1) underestimation of columnar

total water path, 2) liquid/ice partitioning near the freez-

ing level (especially model-derived temperature errors

exist), and 3) no explicit modeling of melting layer effects.

Melting particles can significantly increase TB emissions

(e.g., Bauer et al. 1999), and the current methodology

may accordingly suffer from no explicit treatment of the

melting layer’s enhanced emissive qualities. The 157-GHz

channel, however, displays reduced biases compared to

the lower frequencies under raining conditions, so this

frequency seems more immune to emission-based bias

sources because of its enhanced sensitivity to scattering

by frozen particles aloft. Additionally, excessive scatter-

ing is evident in the 89-GHz oblique viewing angle sim-

ulations but not in the nadir 89- and 157-GHz results, so

further work must be conducted to isolate this error

source. In light of recent work by Matrosov and Battaglia

(2009), multiple scattering versus attenuation effects in

W-band snowfall observations must be studied more

thoroughly, as the attenuation correction scheme em-

ployed in this study may contribute to excessive ice con-

tent that, in turn, can produce excessive scattering signals.
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Finally, the large derived IWP uncertainties due to the

ice model selected, combined with the simulated passive

microwave results, indicate potential IWP retrieval im-

plications. Even if the spherical models are disregarded,

IWP uncertainties from the Ze–IWC relationships still

exceed 60% for the DDA ensemble in the higher IWP

regions. These large IWP uncertainties, however, do not

translate into particularly large simulated TB uncertain-

ties at a scattering sensitive frequency such as 157 GHz,

and realistic TB157 results are obtained using the DDA

ensemble. These findings suggest that the accuracy of

IWP retrievals using passive microwave observations

in the 36–157-GHz range may suffer. It must be recog-

nized, however, that IWP uncertainties are largely con-

trolled by the Ze–IWC relationships of the ice models

used in this study, and many of the ice models are

probably not representative of aggregate particles (from

a mass-size perspective) that typically dominate snow-

fall, even though they adequately capture the radiative

properties of frozen hydrometeors associated with pre-

cipitation. It must be noted that increased 157-GHz

biases were associated with many ice models (e.g., cer-

tain columns and plates) for high IWP events, so the

realism of these ice models may be questionable under

such circumstances and must be tested further. If these

questionable high-IWP nonspherical ice models were

removed from the DDA ensemble, retrieved IWPs are

reduced by ;10%–15%—a marked improvement, but

the overall IWP uncertainty still exceeds about 45%.

Continued work must still be undertaken to verify the

physical mechanism responsible for the results presented

in this study—especially isolating the influence of the

derived PSD and PSD-averaged single-scatter properties

on simulated TB for each ice particle model—and to de-

velop ice models more representative of aggregate-type

particles.
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