STAR CrIS SDR CalVal Task
Performance Status and Results

Yong Han, Denis Tremblay, Xin Jin, Yong Chen, Likun Wang

April 4, 2012, CrIS Review Meeting
Task Performed at NOAA-STAR

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
<th>Key People</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Trending and Monitoring</td>
<td>Monitor the CrIS instrument (RDR and SDR)</td>
<td>Xin Jin, Bi Li</td>
<td>Functional, continuous activity; 90% completion (still need minor update)</td>
</tr>
<tr>
<td>2. SNO Cross Calibration</td>
<td>SNO CrIS with AIRS and IASI</td>
<td>Likun Wang, Denis Tremblay</td>
<td>On-Track</td>
</tr>
<tr>
<td>3. Satellite Intercomparison</td>
<td>Radiance comparison with GOES/VIIRS</td>
<td>Mark Liu, Fangfang Yu</td>
<td>On-track</td>
</tr>
<tr>
<td>4. Double-difference Cross Comparison</td>
<td>Double Difference CrIS-AIRS/IASI-CRTM</td>
<td>Yong Chen, Yong Han</td>
<td>On-track</td>
</tr>
<tr>
<td>Software Update</td>
<td>Bug fix, update and refinement</td>
<td>Yong Han, Denis Tremblay, Xin Jin</td>
<td>On-track</td>
</tr>
<tr>
<td>Management</td>
<td>Coordination, Meetings, scheduling, DR, Budgeting, Risk Management</td>
<td>Yong Han/Denis Tremblay/Lihang Zhou/Fuzhong Weng/Laurie Rokke</td>
<td>Continuous activity</td>
</tr>
</tbody>
</table>
Web-based CrIS Trending and Monitoring System

Housekeeping RDR: Velocity, electrical currents ... (5 par.)

Science RDR: Temperature, servo error ... (12 par.)

SDR: Radiance, Quality Flags, Laser wavelength, ... (38 par.)

Total of 55 parameters are monitored on a continuous basis since the start of the mission.

http://www.star.nesdis.noaa.gov/smcspb/xjin
Comparison between RTN Factory, NG G-ADA, STAR-ADL of the Golden Day Data Acquired on 02/26/2012

• Data
 – CrIS SDR products of Feb 26th 2012
 – Created by NOAA using ADL (ADL), NG using G-ADA (ADA), and Raytheon factory (RTN)
 – Total number of granules are: 2694 (RTN), 2689 (ADA), 2668 (ADL).
 – A total number of 10565 valid scans with same time stamps are found in all three data sets, i.e. 97.8% of the maximal daily coverage

• Methodology
 – Compare RTN and ADA
 – Compare RTN and ADL
RTN vs ADA

COS(Lat):
Mean: -2.125130e-09
Min: -4.109575e-06
Max: 4.111241e-06
SD: 1.046802e-06

COS(Lon):
Mean: 1.850591e-08
Min: -4.618932e-03
Max: 4.931967e-03
SD: 7.402938e-06

BT(11um):
Mean: 9.071458e-08
Min: -2.511588e-05
Max: 5.769840e-05
SD: 2.408898e-06

Imgy. Rad.(11um):
Mean: -7.805517e-11
Min: -1.788139e-06
Max: 1.728535e-06
SD: 3.712515e-08
LW Unapodized BT difference RTN - NG G-ADA
Differences between RTN and ADA, and between RTN and ADL (Overall Mean and STD)

<table>
<thead>
<tr>
<th>Band</th>
<th>Band Radiance Real Part (STD)</th>
<th>Band Radiance Imaginary Part (STD)</th>
<th>BT (STD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTN – ADA LW</td>
<td>10E-5 (10E-4)</td>
<td>10E-9 (10E-8)</td>
<td>10E-5 (10E-4)</td>
</tr>
<tr>
<td>RTN - ADL LW</td>
<td>10E-3 (10E-3)</td>
<td>10E-5 (10E-4)</td>
<td>10E-3 (10E-3)</td>
</tr>
<tr>
<td>RTN – ADA MW</td>
<td>10E-5 (10E-5)</td>
<td>10E-9 (10E-8)</td>
<td>10E-5 (10E-4)</td>
</tr>
<tr>
<td>RTN - ADL MW</td>
<td>10E-3 (10E-4)</td>
<td>10E-6 (10E-5)</td>
<td>10E-3 (10E-3)</td>
</tr>
<tr>
<td>RTN – ADA SW</td>
<td>10E-7 (10E-7)</td>
<td>10E-10 (10E-9)</td>
<td>10E-5 (10E-5)</td>
</tr>
<tr>
<td>RTN - ADL SW</td>
<td>10E-5 (10E-5)</td>
<td>10E-7 (10E-6)</td>
<td>10E-3 (10E-3)</td>
</tr>
</tbody>
</table>

- (RTN-ADL) is larger than (RTN-ADA)
- All BT difference are less than 0.01 K.
- All 3 codes can be utilized for ICV.
CrIS Engineering Packet Evaluation

• Update Eng. Packet V32 with nonlinear coefficient a_2 from UW (referred as “UW O2”, FOV-2-FOV), rerun ADL to generate golden days 02/24/2012 and 02/25/2012 SDR.

• Update Eng. Packet V32 with ILS parameters from UMBC (referred as “UMBC ILS”) in addition to a_2, and rerun ADL for the two golden days.

• Use the Community Radiative Transfer Model (CRTM) and ECMWF forecast data to simulate CrIS radiance, remove cloud scenes, and obtain clear channels over ocean.

• Evaluate the a_2 and ILS parameters impacts for the FOVs and FORs.

• Evaluate March 24 anomaly event impact.

• Replacing V32 a_2 with “O2”, the FOV-2-FOV spread is reduced significantly.

• Replacing the V32 ILS parameters with UMBC ILS, the improvements of the spectra are most significantly shown in FOVs 4 and 9.

• The improvements made with UW O2 and UMBC ILS are important to the NWP community.
CrIS vs NWP CRTM Relative Bias for CrIS FOVs

(remove the mean bias between observations and CRTM simulations)

\[BIAS_{FOVi} = (Obs - CRTM)_{FOVi} - (Obs - CRTM)_{all} \]

total clear sky observation points \(\sim 400000\)
Bias with UMBC ILS and UW Non-Linear a2
STD of Bias over 9-FOVs
Sweep Direction Bias: CrIS Observations compared with CRTM calculations

\[\Delta BT_{O-B} = \frac{(Obs - CRTM)_{FOR_i}}{(Obs - CRTM)_{all}} \]

CRTM – Community Radiative Transfer Model

Total clear sky observation points ~600000 within +-60 degree latitude over ocean

The difference between adjacent FORs can reach 0.4 K
Relative Bias for FOVs with UMBC ILS and UW Non-Linear a2 before and after 24 March Anomaly

The impact of the anomaly event is small
Bias with UMBC ILS and UW Non-Linear a2: STD of Bias over 9-FOVs before and after 24 March Anomaly

- 02/24/2012
- 03/29/2012
SNO and Satellite Intercomparison

• CrIS and IASI SNO shows that CrIS warmer than IASI about 0.1-0.2K (3/29-3/31).

• Intercomparison with GOES-13 imager to all the “Golden Day” data available (02/24/2012, 02/25/2012 and 03/11/2012 – 03/23/2012)
 – CrIS overall is very well calibrated with mean Tb bias difference to AIRS and IASI: <0.12K
 – The mean Tb bias to CrIS is in between AIRS and IASI at GOES-13 Imager Ch3 (6.5um) and Ch4(10.7um).
 – CrIS seems slightly warmer than AIRS and IASI at GOES-13 Imager Ch6 (13.3um)
 – Time-series of day-time Tb bias to CrIS is consistent at the three broad-band channels, as that to AIRS/IASI.

• 15 days of GOES - CrIS vs. 29 days of GEO-AIRS and GEO-IASI (02/24/2012 thru 03/23/2012)
 • Continue monitoring the Tb bias
SNO Cross Calibration: CrIS vs IASI convolved
CrIS (North Pole)

See Likun Wang’s presentation this afternoon
CrIS Radiometric Calibration Accuracy Evaluation using GSICS GEO-LEO Inter-calibration

Day-time collocated homogeneous scenes for GOES-13 imager

Courtesy of Fangfang Yu and Xiangqian Wu
Time-series of day-time Tb bias – Ch6 (13.3µm)

Courtesy of Fangfang Yu and Xiangqian Wu
Satellite Intercomparison: CrIS Comparison With VIIRS (BB LUT updated)

March 18, 2012

Courtesy of Mark Liu
Radiometric Validation: Double Difference between CrIS and IASI Convolved CrIS for Clear Sky over Ocean on Feb. 25, 2012

About 10% data are clear sky ~300,000 for CrIS and ~100,000 for IASI

\[DD = (\text{Obs} - \text{CRTM})_{\text{CrIS}} - (\text{Obs} - \text{CRTM})_{\text{IASI2CrIS}} \]
Summary of Code Change (1/3)
Severe bugs found in ADL v3.1/MX5.2

• Incorrect interferogram time stamp: Incorrect type casting of the time stamp bias (give +32583 millisecond instead of -183 millisecond). (NG and RTN)
• Warm load: ICT temperature set to 293.00K instead of PRT temperature readout of about 278K (NG)
• Incorrect conversion of IAR frame to SSMR frame, transformation of microradians to radians not done in the code. (NOAA-STAR)
• FCE algorithm has been turned OFF. (UW and NOAA STAR)
• Bit trim mask not updated in ADL. (NOAA-STAR and UW)
Summary of Code Change (2/3)
Severe bugs found in ADL v3.1/MX5.2

-The Fringe Count Error (FCE) algorithm has been turned OFF.
- Temporary code change has been implemented.

FCE turned ON FCE turned OFF
Summary of Code Change (3/3)
Radiance before & after the trim table problem fix (for EngPkt v32).
STAR results

Before

After
High Priority Discrepancy Report (DR) Status

<table>
<thead>
<tr>
<th>DR Number</th>
<th>Description</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4646</td>
<td>Radiometric bias with sweep direction dependency</td>
<td>03/27/12</td>
<td>New</td>
</tr>
<tr>
<td>4557</td>
<td>CrIS IFGM packet with fill released to RDR/SDR</td>
<td>02/06/12</td>
<td>On-going</td>
</tr>
<tr>
<td>4534</td>
<td>Fringe Count Error reformulation</td>
<td>01/25/12</td>
<td>On-going</td>
</tr>
<tr>
<td>4481</td>
<td>FCE correction algorithm does not work for cold scenes (add DQF based on imaginary part)</td>
<td>12/06/11</td>
<td>On-going</td>
</tr>
<tr>
<td>4478</td>
<td>CrIS Overall DQF set to invalid for cold scenes</td>
<td>12/02/11</td>
<td>On-going</td>
</tr>
<tr>
<td>4407</td>
<td>Inconsistency with serialization</td>
<td>10/19/11</td>
<td>On hold</td>
</tr>
</tbody>
</table>
Summary

• The STAR CrIS RDR/SDR Trending and Monitoring system has been established and has played an important role in our Cal/Val process

• Comparisons between ADL and G-ADA and between G-ADA and RNT test run show that the three codes can produce similar SDRs

• Comparisons between observations and RTM calculations show that the SDRs have reach the level useful for NWP applications

• The inter-satellite/sensor comparisons showed good agreement between CrIS and AIRS/IASI/GOES, with CrIS slightly warmer