

NOAA-20 VIIRS Enterprise Cloud Base Height (CBH) Provisional Maturity

Y.-J. Noh, Steve Miller, John Forsythe, Curtis Seaman (CIRA/Colorado State University)

with

Andy Heidinger (NOAA/STAR, Cloud Team Lead) Yue Li (CIMSS), and William Straka (CIMSS/ASSISTT)

Enterprise Cloud Base Height

- Estimate the base height of the uppermost cloud layer, based upon statistical relationships trained by cloud geometric thickness (CGT), cloud top height (CTH), and cloud water path (CWP) observations from A-Train satellites
- Require CTH and CWP as main input to estimate CGT, and computes CBH by subtracting CGT from CTH
- Additional handling for thin cirrus (extinction method) and deep convection (supplementary NWP data)

- Errors in upstream retrievals of Cloud Mask, CTH and CWP directly impact the accuracy of CBH retrieval
- **Optimal for single layer clouds**, and may not be 'ceiling' for multi-layered cloudy scenes, comprising uncertainties of the upstream retrievals.

- Applied to S-NPP VIIRS and intensively validated against CloudSat/CALIPSO, the Enterprise algorithm yields significantly improved performance over the original VIIRS IDPS algorithm, meeting performance specs (*Seaman et al. & Noh et al., JTECH 2017*)
- The CBH information is made available to improve the Cloud Cover and Layers product (not in the current DAP)
- Support both polar and geostationary satellite sensors as part of the NOAA Enterprise Cloud Algorithm Suite
- Operational for NOAA-20 VIIRS (Beta maturity review in July 2018)

Algorithm	Suomi NPP	NOAA-20	
February 2018 DAP w/o April patch (missing granules) August 2017 Science Code delivery (v1r2)	NDE Currently in Operations since 1200 UTC on 13 August 2018	NDE I&T from 28 March, 2018 to 28 September	
August 2018 DAP February 2018 Science Code delivery (v2r0)	STAR Systematic production since June, 2018 NDE I&T on as of 28 September, 2018	STAR Systematic production since June, 2018 NDE I&T on as of 28 September, 2018	
Jan/Feb 2019 DAP August 2018 Science Code delivery (v2r1)	Delivery and development in progress Delivery schedule provided by ASSISTT	Delivery and development in progress Delivery schedule provided by ASSISTT	

NDE/STAR CBH Production Status & Delivery

Algorithm	Suomi NPP	NOAA-20
January 2017 DAP A smooth transition between CIRA statistical CBH and NWP condensation levels for deep convective clouds and N20 capability (v1r2)	NDE Currently in Operations since 1200 UTC on 13 August 2018	NDE I&T from 28 March, 2018 to 28 September
February 2018 Science Code delivery Minor diagnostic output improvements (v2r0)	STAR Systematic production since June, 2018 NDE I&T on as of 28 September, 2018	STAR Systematic production since June, 2018 NDE I&T on as of 28 September, 2018
August 2018 Science Code delivery Minor diagnostic output improvements (v2r1)	Delivery and development in progress Delivery schedule provided by ASSISTT	Delivery and development in progress Delivery schedule provided by ASSISTT

JPSS/GOES-R Data Product Validation Maturity Stages – COMMON DEFINITIONS (Nominal Mission)

1. <u>Beta</u>

- o Product is minimally validated, and may still contain significant identified and unidentified errors.
- Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-for-purpose.
- Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

2. Provisional

- Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.

3. Validated

- Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).
- Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.
- Product analyses are sufficient for full qualitative and quantitative determination of product fitness-for-purpose.
- o Product is ready for operational use based on documented validation findings and user feedback.
- o Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument.

- JERD-2428 The algorithm shall produce a cloud height product that has a horizontal cell size of 0.8 km at Nadir.
- JERD-2474 The algorithm shall produce a cloud height product that has a vertical reporting interval of top and base of highest cloud in the column.
- JERD-2475 The algorithm shall produce a cloud height product that has a mapping uncertainty, (3 sigma) of 4 km.
- JERD-2476 The algorithm shall produce a cloud base height product that has a measurement precision of
 - **2.0 km** for COT >=1 and **3.0 km** for COT < 1
- JERD-2477 The algorithm shall produce a cloud base height product that has a measurement accuracy of
 - **2.0 km** for COT >=1 and **3.0 km** for COT < 1

- Monitoring time series to check consistency between S-NPP (v1r1) and NOAA-20 (v1r2) algorithm operations
- Examine CBH (and CGT=CTH-CBH), compared with CIRA's CLAVR-x output
- Case studies (June to Sep 2018) to identify issues for the individual granules
- Comparison with ARM (U.S. DOE Atmospheric Radiation Measurement) site measurements (ceilometer over NSA, AK and SGP, OK) for selected periods

Real-time CLAVR-x run at CIRA (Alaska and CONUS domains): Cloud Geometric Thickness (CTH-CBH, km)

Monitor mean CBHs from S-NPP (v1r1), NOAA-20 (v1r2), and CIRA CLAVR-x

Mean CBH per granule (0-20 km valid pixels only)

Compare global CGT and CBH (1°x1°) from NOAA-20 (v1r2) and CIRA CLAVR-x

Mean CGT NDE (km)

CBH = CTH - CGT

- CBH is highly dependent on CTH
- In general, the main part of the current CBH algorithm (obtaining CGT) is working ok
- Some missing upstream retrievals often found over the central Antarctica region

996 NOAA-20 VIIRS granules (16 Sep 2018)

Mean CBH NDE (km)

Mean CBH CLAVR-x (km)

Compare CBHs from NOAA-20 (v1r2) with CIRA's CLAVR-x output

Case	No. of granules examined	Valid CTH but Invalid CBH (%)	Out of spec (%) compared with CLAVR-x (within 200m CTH range)
Jun 2018	620	1.57	1.49
Jul 2018	194	1.30	2.20
Aug 2018	64	1.00	0.64
Sep 2018	855	1.74	1.83

- The CBH algorithm with NOAA-20 VIIRS (v1r2) is working normally as long as the upstream cloud retrievals and supplementary data are valid (CTH, CWP from DCOMP in daytime, NWP at night)
- "Invalid CBH" pixels with valid CTH values: primarily due to no CWP input
- "Out of spec" pixels (difference > 2 km) need further investigation through evaluation against observations, including potential improvement on nighttime performance and multi-layered clouds

CBH performance against ARM measurements

- Ongoing evaluation efforts using ground ceilometer and lidar data from ARM sites
 - Blue squares: VIIRS CBHs (NOAA-20 v1r2)
 - Black/gray circles: ceilometer
 - Brown/red asterisks: lidar
- Examine individual cases and multi-months
- Continue more quantitative assessment for precip (surface obs) and multilayered cloud cases (CALIPSO data)

ARM NSA **64 matchup cases** within 2-km CTH error range (VIIRS and ARM ground lidar - MPL)

- → Valid CBHs against lidar (within 2 km) = 85.94 %
- → Valid CBHs against ceilometer = 68.75 %

- The NDE Enterprise CBH algorithm with NOAA-20 VIIRS (v1r2) is working nominally without serious issues (valid day/night operations), as long as the upstream cloud retrievals and supplementary data are valid (Cloud Mask, CTH, CWP from DCOMP in daytime, NWP at night)
- Invalid CBH pixels (despite valid CTH) account for ~1.60 % of 1733 granules in this evaluation. The primary cause is invalid CWP (either from DCOMP or NWP)
- 'Out-of-spec' CBHs with >2 km difference compared to CIRA CLAVR-x (~1.71% in valid pixels that CTH is in an accurate range (200 m) between v1r2 and CLAVR-x)
- Discrepancies often found in twilight and some daytime zones: possibly due to different DCOMP and NWP versions in NDE and CIRA's CLAVR-x
- Often missing CBHs over the central Antarctica: missing upstream input
- Will continue further investigation on the identified issues
- Recommend 'Provisional maturity'

- The CIRA and CIMSS teams continue to support the STAR ASSISTT for its correct operation and long-term monitoring within the operational frame.
- Continue validation over an extended period
 - Intercomparison between NOAA-20, S-NPP, and CLAVR-x (separate evals for Day/Night/Terminator)
 - Use ARM ground-based measurements
 - Employ CALIPSO and CloudSat upon data availability
 - Utilize new quality flags to examine each subroutine in the algorithm
- Continue improvement of the algorithm implementation and science codes for the identified issues
- Add evaluation of CCL products when the CBH component will be included in the next DAP round.

BACKUP

CBH performance against ARM measurements

- Ongoing evaluation efforts using ground ceilometer and lidar data from ARM sites
 - Blue squares: VIIRS CBHs (NOAA-20 v1r2)
 - Black/gray circles: ARM ceilometer data
- Examine individual cases and multi-months
- Continue more quantitative assessment for precip (surface obs) and multilayered cloud cases (CALIPSO data)

