Validated Maturity Science Review For NOAA-20 EDR Imagery/NCC

Presented by Don Hillger, PhD Date: 2018-08-22

- Algorithm Cal/Val Team Members
- Product Overview/Requirements
- Evaluation of algorithm performance
- User Feedback (Alaska, in particular)
- Documentation (Science Maturity Check List)
- Conclusion and Path Forward

Imagery Cal/Val Team Members/Major Contributors

Name	Organization	Major Task
Don Hillger	NESDIS/StAR	Imagery Product Lead
Tom Kopp	Aerospace	Imagery Cal/Val Lead
Curtis Seaman	CIRA	Imagery/DNB expert
Steven Miller	CIRA	DNB/Imagery expert
Jorel Torres	CIRA	JPSS Liaison / trainer
William Straka III	CIMSS/SSEC	Imagery/DNB expert
Steve Finley	CIRA	IT/data expert
Rosalie Marley	GST	Imagery JAM
Chris Elvidge	NCEI-Boulder	Operational DNB products online
Arunas Kuciauskas	NRL-Monterey	VIIRS Online (for Naval use in particular)
Eric Stevens, Melissa Kreller, Carl Dierking, Nate Eckstein, Jay Cable	Alaska: GINA and NWS	NWS (use in analysis and forecasting)
John Evans, John Paquette	NWS	AWIPS ingest and display

VIIRS Environmental Data Record (EDR)s

VIIRS Band	Central Wavelength (µm)	Bandwidth (µm)	Wavelength Range (µm)	Band Explanation	Spatial Resolution (m) @ nadir
M1	0.412	0.02	0.402 - 0.422		
M2	0.445	0.018	0.436 - 0.454		750 m
M3	0.488	0.02	0.478 - 0.488	Visible	
M4	0.555	0.02	0.545 - 0.565		
M5	0.672	0.02	0.662 - 0.682		
M6	0.746	0.015	0.739 - 0.754	Noor ID	
M7	0.865	0.039	0.846 - 0.885	Near IR	
M8	1.240	0.020	1.23 - 1.25	Shortwave IR	
<mark>M9</mark>	1.378	0.015	1.371 - 1.386		
M10	1.61	0.06	1.58 - 1.64		
M11	2.25	0.05	2.23 - 2.28		
M12	3.7	0.18	3.61 - 3.79	Medium-wave IR	
M13	4.05	0.155	3.97 - 4.13	Medium-wave ix	
M14	<mark>8.55</mark>	0.3	8.4 - 8.7		
M15	10.763	1.0	10.26 - 11.26	Longwave IR	
M16	12.013	<mark>0.95</mark>	11.54 - 12.49		
DNB/NCC	0.7	0.4	0.5 - 0.9	Visible	750 m across full
DND/NCC	0.7	0.4	0.3 - 0.9		scan
I1	0.64	0.08	0.6 - 0.68	Visible	
I2	0.865	0.039	0.85 - 0.88	Near IR	
I3	1.61	0.06	1.58 - 1.64	Shortwave IR	375 m
I4	3.74	0.38	3.55 - 3.93	Medium-wave IR	
I 5	11.45	1.9	10.5 - 12.4	Longwave IR	

M-bands EDRs are highlighted in pale yellow, in addition to I-band EDRs.

True-color component bands are highlighted in red, green, and blue.

Requirement Check List – VIIRS Imagery (L1RDS-134)

Attribute	Requirement	Meet Requirement (Y/N)?
Applicable Conditions:	The Imagery EDR shall be delivered under all weather conditions, including any rain rate	Yes
a. Horizontal Spatial Resolution for visible and IR imagery resolution bands		
1. Nadir	0.4 km	Yes
2. Edge of Swath	0.8 km	Yes
3. Night-time visual, Nadir	2.6 km	Yes
b. Horizontal Spatial Resolution for moderate resolution bands		
1. Nadir	0.8 km	Yes
2. Edge of Swath	1.6 km	Yes
c. Mapping Uncertainty, 3 Sigma		
1. Nadir	1 km	Yes
2. Edge of Swath	3 km	Yes
3. Night-time visual, Nadir	TBS	Yes
d. Refresh for Visible and IR Bands	At least 90% coverage of the globe every 12 hours (monthly average)	Yes

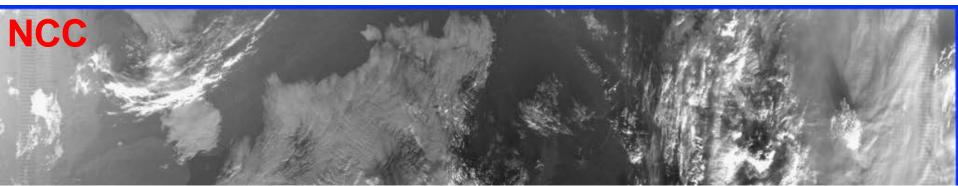
The **Imagery** product consists of:

- Visible/IR radiances/reflectances remapped to the Ground Track Mercator (GTM) grid, eliminating overlapping pixels and bowtie deletions.
 - I-band and M-band Imagery
- NCC Imagery that is a pseudo-albedo derived from the DNB, creating an image product that removes large contrasts in DNB from day to night across the terminator.

Imagery is a **Key Performance Parameter (KPP)**

VIIRS Imagery EDR for (8) bands I1, I3, I4, I5, M14, M15, M16, and DNB for latitudes greater than 60°N in the Alaskan region (I3 and DNB bands added post SNPP launch)

- There are no (quantitative) Imagery requirements that address the quality of the Imagery products.
- Imagery <u>users</u> decide if the quality is acceptable, therefore including the <u>users</u> is a key consideration



Near Constant Contrast (NCC) vs. Day-Night Band (DNB)

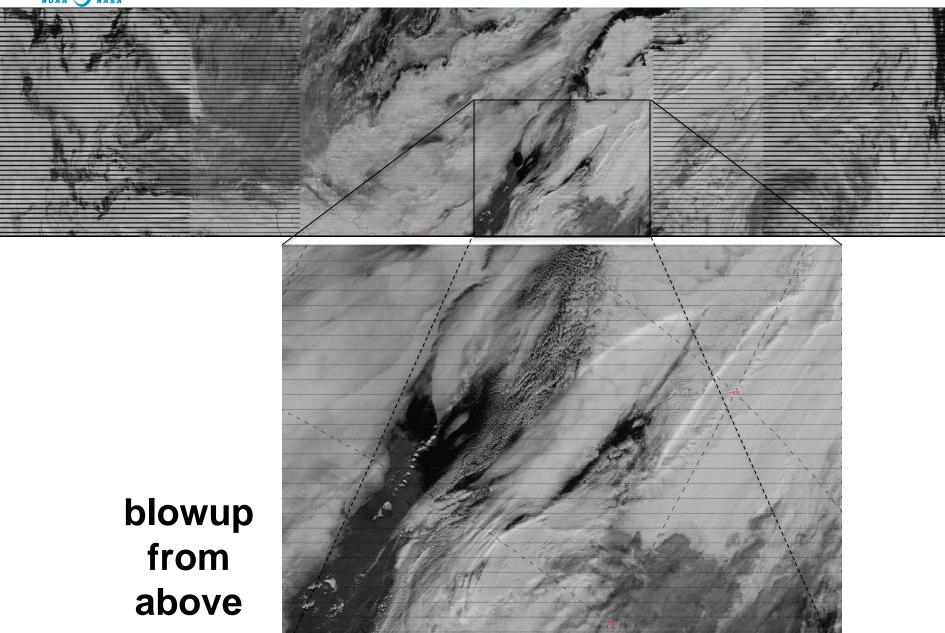
Example of NCC vs. DNB for a day/night terminator (non-lunar) case.

NCC extends constant contrast into the twilight portion of the granule swath.

Curtis Seaman, CIRA

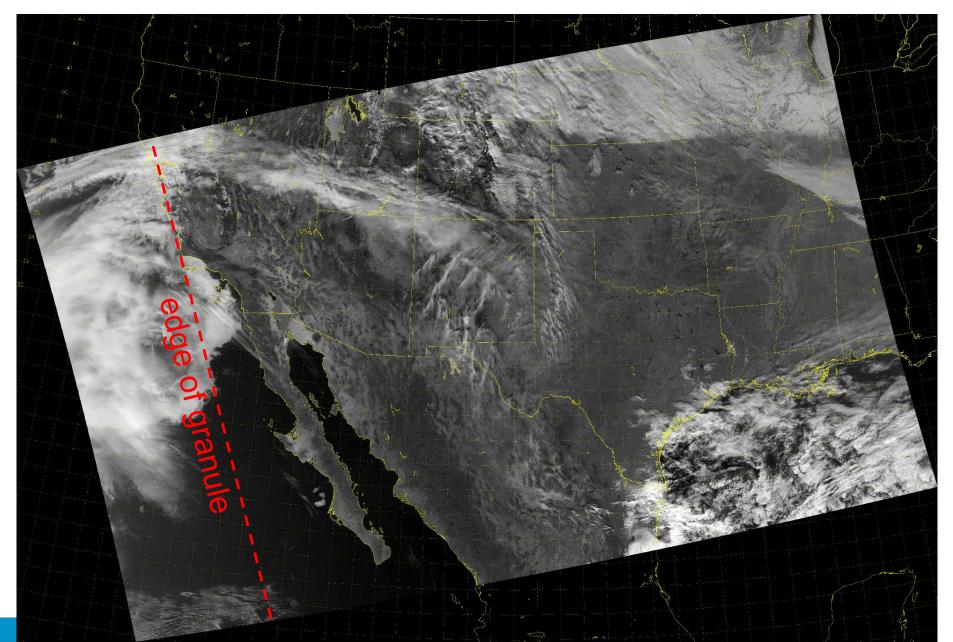
- Description of processing environment and algorithms used to achieve validated maturity stage:
 - Algorithm version (IDPS, Version I2.1.02)
 - Version of LUTs used (Gain Value Versus Scene Source Elevation (GVVSSE or "Goosey") tables)
 - Version of **PCTs** used (none)
 - Effective date (22 August 2018)

Findings/Issues at Previous Reviews


- VIIRS M-bands (all good) vis/IR bands
- VIIRS I-bands issues at Beta that were resolved,
 - I3 bad detector
 - Causing striping in the I3 SDR (CCR3742/ADR8560)
 - Imagery algorithm successfully removes striping from the I3 Imagery EDR
 - I4 and I5 fill values
 - I4/I5 blank images (CCR3742/ADR8559) 80% of all granules were not usable
 - The former I4 and I5 issue of missing Imagery EDRs at beta no longer exists
- VIIRS DNB/NCC issues:
 - Extended DNB granule processing by NCC is working
 - Geolocation issues (resolved with LUT updates)
 - Stray light (VIIRS SDR Team)
 - Not unlike striping on SNPP DNB, except for extended granule
 - Extended granule is part of DNB, not part of NCC
 - Corrections for stray light began in February 2018 and are ongoing
- Better together: NOAA-20 and SNPP (50 min half-orbit separation examples)

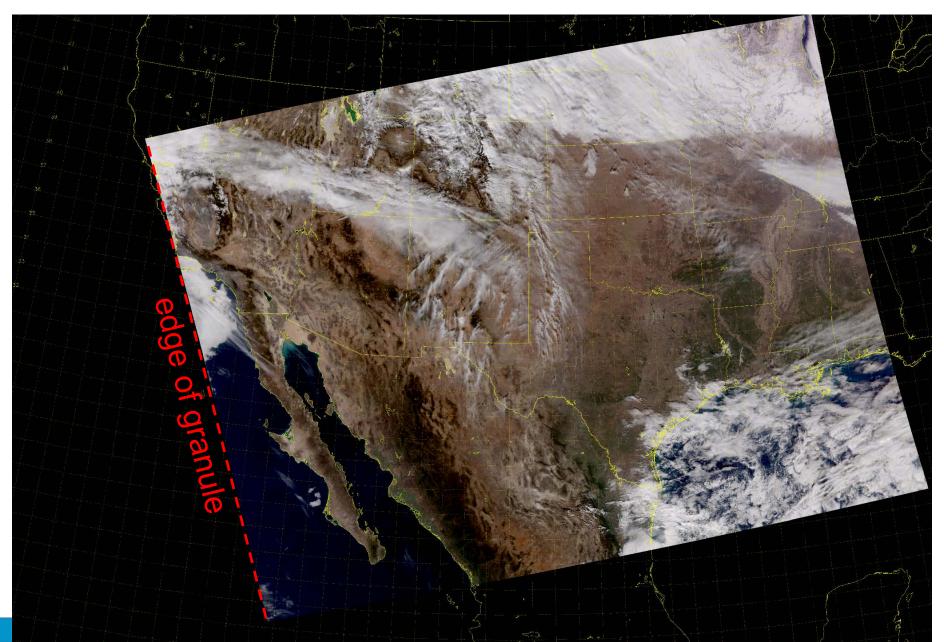
NOAA-20 I3 bad detector (Now properly identified!)

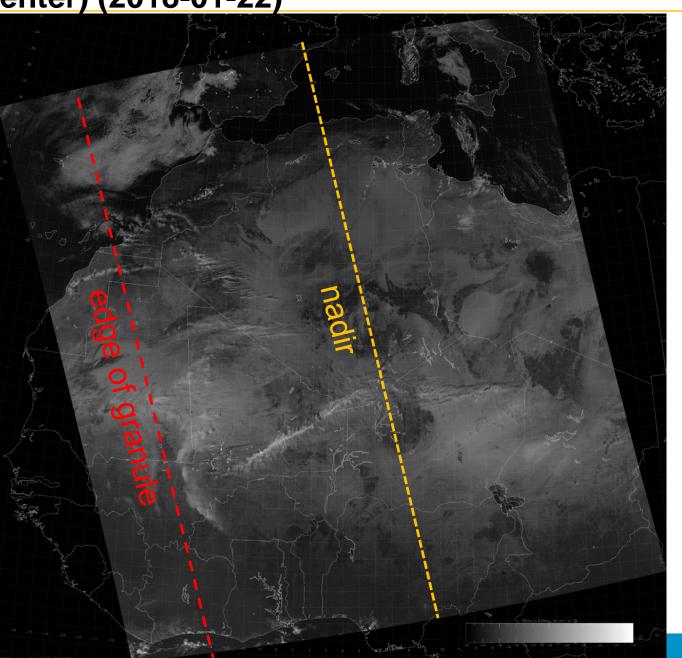
I3 bad detector/striping (now properly identified!)



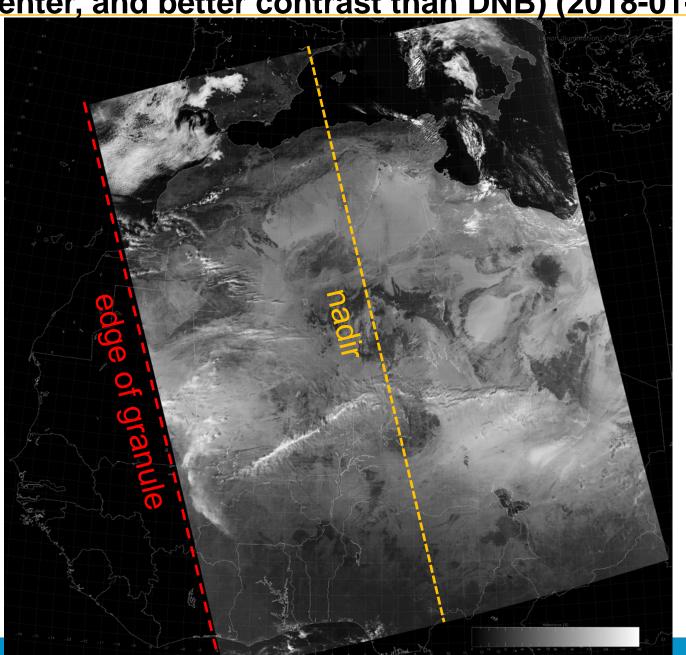
NOAA-20 DNB extended granule

DNB Extended Granule – SW USA (2018-01-05)


(C. Seaman, CIRA)


True-color RGB – SW USA (2018-01-05)

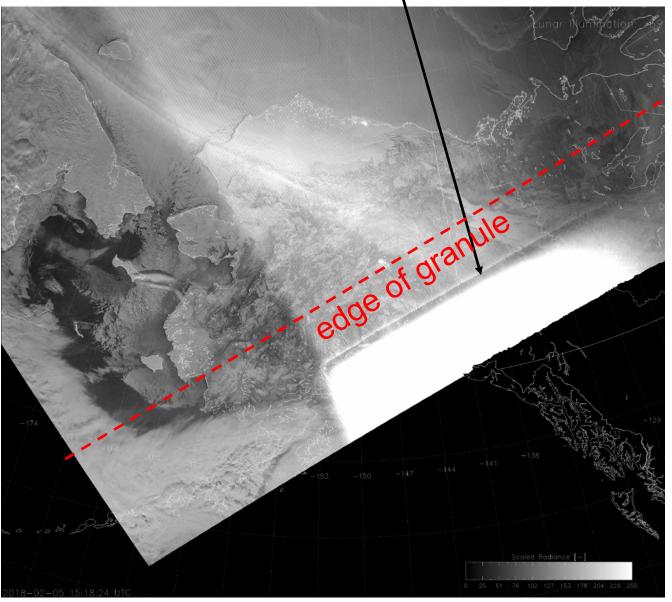
(C. Seaman, CIRA)



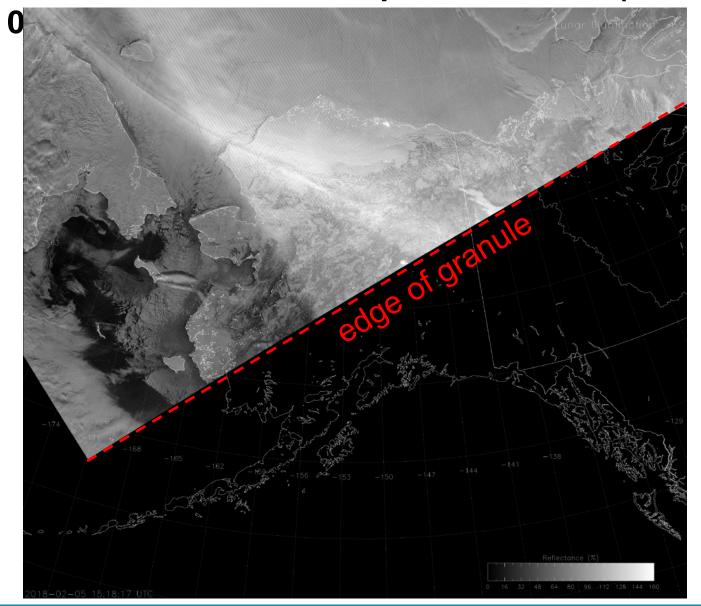
DNB (extended granule on left and nadir not at

center) (2018-01-22)

NCC (extended granule not included, and nadir at center, and better contrast than DNB) (2018-01-22)



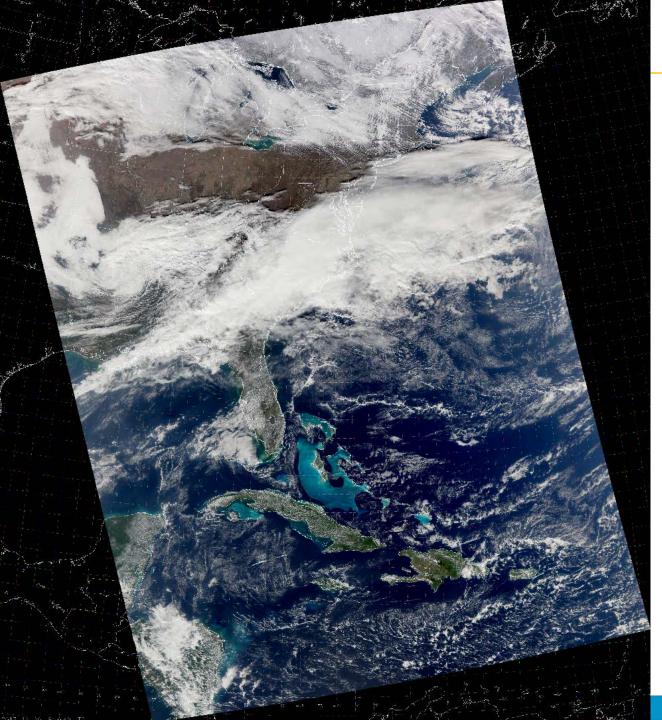
NOAA-20 DNB stray light


Extra strong patch of stray light in extended DNB

granule (2018-02-05)

Extra strong patch of stray light not in NCC granule which cuts off extended portion of DNB (2018-02-

Evaluation of the effect of required algorithm inputs

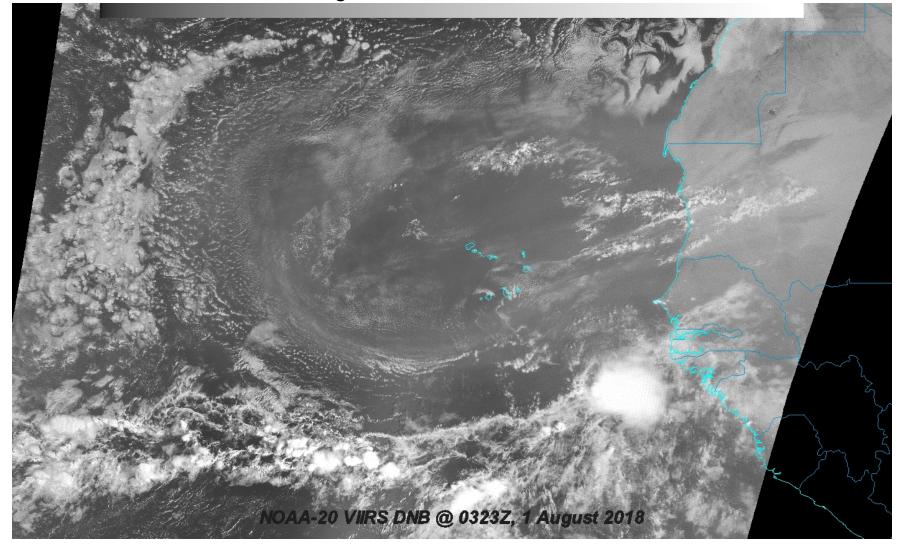

- Required Algorithm Inputs:
 - Primary Sensor Data (VIIRS Imagery EDRs: radiance/reflectance and Geo files)
 - Ancillary data (none)
 - Upstream algorithms/data (SDRs radiance/reflectance and Geo files)
 - LUTs / PCTs (to be updated at Provisional+1 year)
- Evaluation of the effect of required algorithm inputs:
 - Study / test cases (checking of test datasets as needed)
 - Results (reported to JPSS Program)

- Provisional review slides provided to J. Paquette for use in SPSRB presentation about declaring Imagery operational in AWIPS2
- ReadMe and updated VIIRS EDR Imagery ATBD provided to JPSS Program, revised to reflect specific changes with NOAA-20 compared to S-NPP.
- Numerous test data checkouts (acquired and tested for proper ingest and display in McIDAS-X, McIDAS-V, and IDL.):
 - JPSS-1 JCT5 Test data
 - Block 2.0 test data vs Block 1.2 data.
 - J01 test data for Mx1 I&T
 - J2 DNB test data with modeled LSF (Line Spread Function) issue
 - Block 2.1 MX 2 l&T Deploy Regression Data (excessive fill values in N20 l4 products from very cold scenes were found)
 - Block 2.1 MX 3 SOL Deploy Regression Review/Checkout
- NOAA-20 VIIRS Imagery display (I-bands, M-bands, and DNB/NCC)
 - http://rammb.cira.colostate.edu/ramsdis/online/noaa-20_viirs.asp

- Quality Flags
 - Flags for various radiance/reflectance issues
 - Flags for fill values
- Quality flag analysis/validation
 - Correct handling of bad detector in I3 band
 - Flagged and replaced by using an average of adjacent "good" values in I3 Imagery EDR

NOAA-20 M-bands visible/IR bands

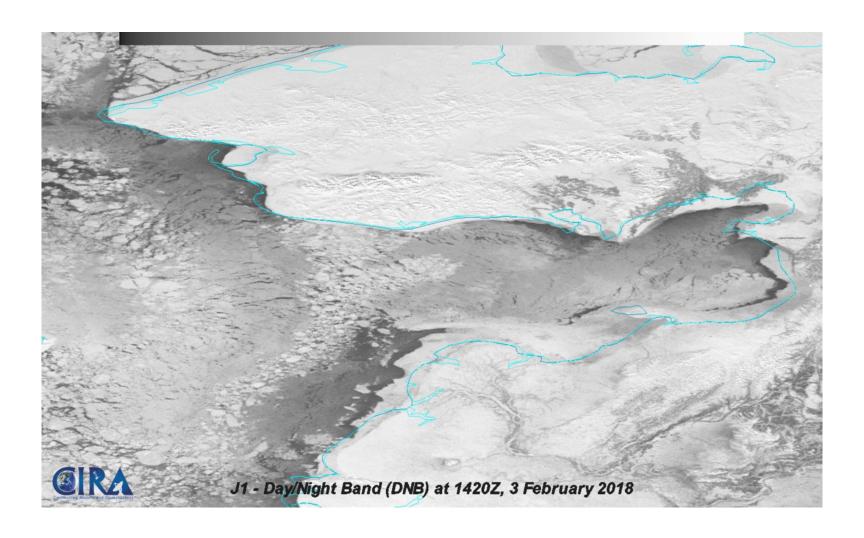
VIIRS True Color Eastern US (2017-12-20) (C. Seaman, CIRA)



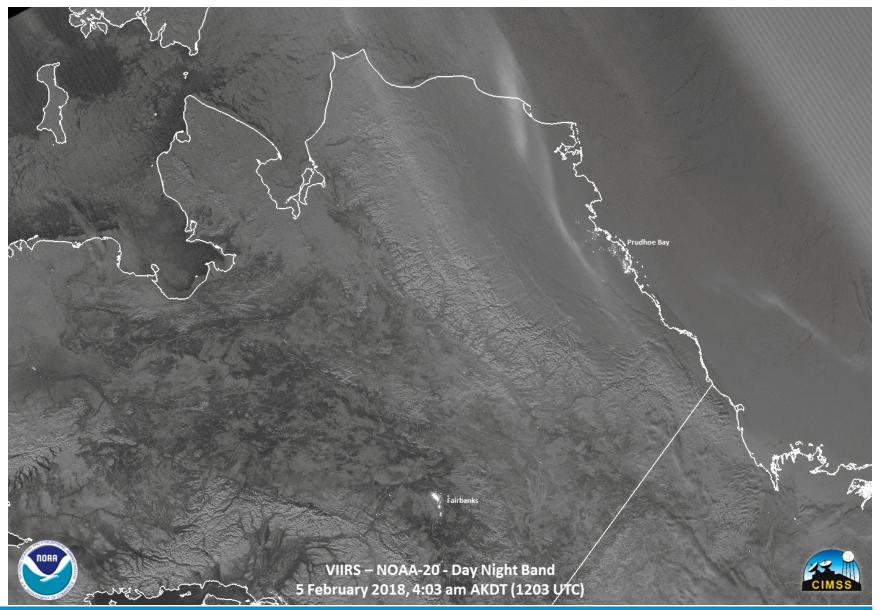
Day-Night-Band First Light CONUS (2017-12-14)

(S. Miller, CIRA; NOAA Facebook)

Large areal extent of dust, advecting west, along the African Coast. 1 August 2018 @ 0323 UTC.



SNPP and **NOAA-20** DNB comparisons (~50 minutes separation)



NOAA-20 DNB animation shows NW Alaska (near Nome, AK) of snow-covered areas, sea-ice edges and sea-ice motion over a period of 3 days: 3-5 February 2018. (J. Torres, CIRA)

NOAA-20/SNPP DNB animation of aurora – note how quickly the light show changes! (W. Straka, CIMSS/SSEC)

Name	Organization	Application	User Feedback - User readiness dates for ingest of data and bringing data to operations
Chris Elvidge	NCEI-Boulder	Worldwide DNB	Reports of JPSS Program and Imagery Team
Arunas Kuciauskas	NRL-Monterey	Worldwide VIIRS	Reports to JPSS Program
Eric Stevens, Melissa Kreller, Carl Dierking, Nate Eckstein, Jay Cable	Alaska: GINA and NWS	Alaska analysis and forecasting applications	See next presentation; also JPSS Annual Meeting presentation
John Evans, John Paquette	NWS	AWIPS2 ingest and display	To NDE and thru SBN

Science Maturity Check List	Yes ?
ReadMe for Data Product Users	Yes
Algorithm Theoretical Basis Document (ATBD)	Yes
Algorithm Calibration/Validation Plan	Yes
(External/Internal) Users Manual	Yes
System Maintenance Manual (for ESPC products)	NA
Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)	Several (SNPP)
Regular Validation Reports (at least annually) (Demonstrates long-term performance of the algorithm)	NA

Validated Maturity End State	Assessment
Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).	Yes
Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.	Yes
Product analyses are sufficient for full qualitative determination of product fitness-for-purpose.	Yes
Product is ready for operational use based on documented validation findings and user feedback.	Yes
Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument	Yes

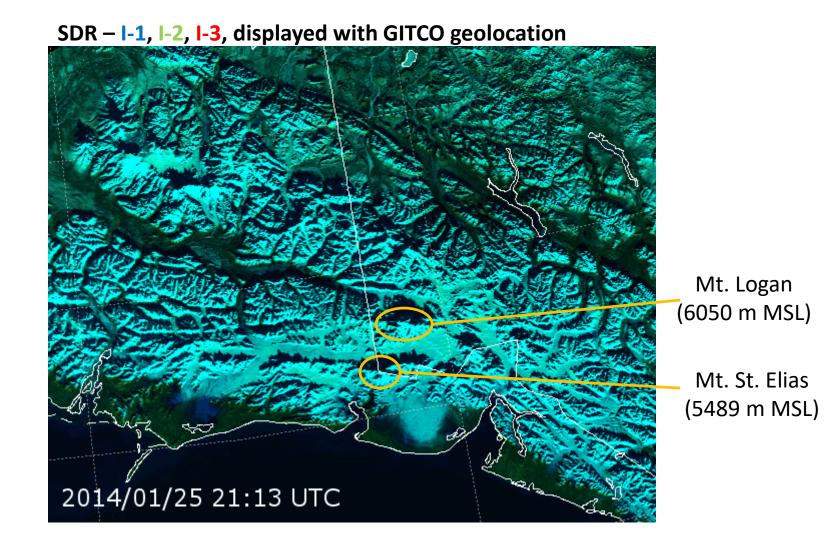
- Team recommends Validated Maturity for EDR Imagery
 - Each VIIRS instrument is unique, involving both similar and unique issues
 - Imagery is good based heavily on Alaska user feedback

- Planned improvements, future cal/val activities and milestones
 - NCC LUT Update
 - Terrain Corrected Geo-locations

- NCC LUT "Goosey" Table Update:
 - No indication that an update is needed
 - Will update once for JPSS-1 (for each satellite)
 - Update tool/software has been located, but is currently not installed on GRAVITE.
 - Restore LUT update tool onto GRAVITE
 - GVVSSE/"Goosey" LUT update (March 2019, enabled, but may not be needed)

- Terrain Correction for EDR Imagery:
 - Terrain Correction <u>not</u> currently available for VIIRS Imagery EDRs.
 - Requested by VIIRS EDR Imagery users in Alaska (in particular)
 - Terrain Correction required for MX3 (JPSS-2)
 - Imagery Team and VIIRS Geo Team are working together to address TC implementation
 - ADL testing via Imagery/Geo Team/AIT collaborations
 - Create necessary GRC_TC file for I-bands and NCC (never part of the processing to date)
 - Terrain Corrected Imagery EDR code delivery (Sep 2019)

Imagery EDRs are **not** Terrain Corrected!


Mt. Logan (6050 m MSL)

Mt. St. Elias (5489 m MSL)

Terrain Correction Works for SDRs!

