

NOAA-21 ATMS Provisional Maturity Review Material

Quanhua (Mark) Liu, Ninghai Sun, Hu (Tiger) Yang, Siena Iacovazzi NOAA/STAR ATMS Team

Edward J. Kim, Matthew W. Sammons, Cheng-Hsuan (Joseph) Lyu, Saji Abraham NASA/GSFC ATMS Team

Vincent Leslie, James Eshbaugh MIT/LL ATMS Team

Disclaimer: The contents of this presentation are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U. S. Government. James Fuentes, James G. Kam Northrop Grumman - Azusa

NOAA-21 ATMS Provisional Maturity Review – December 15th, 2022

1. <u>Beta</u>

- Product is minimally validated, and may still contain significant identified and unidentified errors.
- Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-forpurpose.
- o Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

2. Provisional

- Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.

3. Validated

- o Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).
- Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.
- Product analyses are sufficient for full qualitative and quantitative determination of product fitness-for-purpose.
- Product is ready for operational use based on documented validation findings and user feedback.
- Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument.

- Algorithm Cal/Val Team Members
- ATMS Data Product Requirements
- Post-launch Cal/Val Timeline Updated after Beta Maturity
- Post-launch Cal/Val Tasks Updated after Beta Maturity
- Post Beta Maturity Performance Validation
 - NOAA-21 ATMS Instrument On-orbit Status/Performance Assessment
 - NOAA-21 ATMS Science Data Quality Evaluation
- Downstream Product Feedback
- User Feedback
- Conclusion
- Path Forward to Validated Maturity

JPSS ATMS Cal/Val Team

Name	Organization	Major Task
Quanhua (Mark) Liu	NOAA/STAR	NOAA STAR ATMS Cal/Val Team PI
Ninghai Sun	GST, Inc. @ NOAA/STAR	NOAA STAR ATMS Cal/Val Team
Hu (Tiger) Yang	UMD/CISESS @ NOAA/STAR	NOAA STAR ATMS Cal/Val Team
Siena Iacovazzi	GST, Inc. @ NOAA/STAR	NOAA STAR ATMS Cal/Val Team
Jun Zhou	UMD/CISESS @ NOAA/STAR	NOAA STAR ATMS Cal/Val Team
Vincent Leslie	MIT/LL	MIT/LL ATMS Cal/Val Team
James Eshbaugh	MIT/LL	MIT/LL ATMS Cal/Val Team
Deirdre Bolen	SAIC @ NOAA/JPSS	JPSS Algorithm Manager
Edward J. Kim	NASA/GSFC	NASA ATMS Team PI
Matthew W. Sammons	FIBERTEK, Inc. @ NASA/GSFC	NASA ATMS Team
Cheng-Hsuan (Joseph) Lyu	Morgan @ NASA/GSFC	NASA ATMS Team
Saji Abraham	SGT, Inc. @ NASA/GSFC	NASA ATMS Team
James Fuentes	Northrop Grumman – Azusa	ATMS Instrument Builder
James G. Kam	Northrop Grumman – Azusa	ATMS Instrument Builder

ATMS Flight Requirements with On-orbit Assessment N21 values in parentheses meet the requirements and have good margin

Ch.	Center Frequency (MHz)	Polarization	Max Bandwidth (MHz)	Static Beamwidth (deg)	Dynamic Range (K)	Calibration Accuracy (K)	NE∆T @300K (K)
1	23800	QV	270	5.2	3-330	1.0	0.7 (0.221)
2	31400	QV	180	5.2	3-330	1.0	0.8 (0.277)
3	50300	QH	180	2.2	3-330	0.75	0.9 (0.309)
4	51760	QH	400	2.2	3-330	0.75	0.7 (0.211)
5	52800	QH	400	2.2	3-330	0.75	0.7 (0.204)
6	53596±115	QH	170	2.2	3-330	0.75	0.7 (0.219)
7	54400	QH	400	2.2	3-330	0.75	0.7 (0.207)
8	54940	QH	400	2.2	3-330	0.75	0.7 (0.211)
9	55500	QH	330	2.2	3-330	0.75	0.7 (0.228)
10	57290.344(f _o)	QH	330	2.2	3-330	0.75	0.75 (0.339)
11	$f_o \pm 217$	QH	78	2.2	3-330	0.75	1.2 (0.459)
12	$f_o \pm 322.2 \pm 48$	QH	36	2.2	3-330	0.75	1.2 (0.502)
13	$f_o \pm 322.2 \pm 22$	QH	16	2.2	3-330	0.75	1.5 (0.715)
14	$f_o \pm 322.2 \pm 10$	QH	8	2.2	3-330	0.75	2.4 (1.01)
15	f _o ±322.2±4.5	QH	3	2.2	3-330	0.75	3.6 (1.660)
16	88200	QV	2000	2.2	3-330	1.0	0.5 (0.196)
17	165500	QH	3000	1.1	3-330	1.0	0.6 (0.326)
18	183310±7000	QH	2000	1.1	3-330	1.0	0.8 (0.267)
19	183310±4500	QH	2000	1.1	3-330	1.0	0.8 (0.273)
20	183310±3000	QH	1000	1.1	3-330	1.0	0.8 (0.379)
21	183310±1800	QH	1000	1.1	3-330	1.0	0.8 (0.381)
22	183310±1000	QH	500	1.1	3-330	1.0	0.9 (0.527)

NOAA-21 ATMS Post-launch Cal/Val Timeline

		Flight Activity				Ground Activity		
	L + 0 (LRD 11/10/2022)	JPSS-2 Launch						
	L + 10 (11/20/2022)	ATMS HRS Setpoint Adjustment						
	L + 11 (11/21/2022)	ATMS Activation/ Functional Evaluation	-	_	Functional Ev	EOC Cal/Val Tasks: raluation, Dynamic Range, Health Status, First Ligh	nt Image	
	L + 11 (11/21/2022 ~ 11/24/2022)	ATMS Optimal SVP Selection – SP1						
	L + 14 (11/24/2022 ~ 11/27/2022)	Optimal SVP Selection – SP2						
	L + 17 (11/27/2022 ~ 11/30/2022)	Optimal SVP Selection – SP3	L		Beta Maturity Review on November 30, 2022 (L+20 D)			
	L + 20 (11/30/2022 ~ 12/3/2022)	Optimal SVP Selection – SP4			- Deta I	(1) 40 D	,	
Orb Burn #1 12/3/2022	L + 23 (12/3/2022 ~ 12/6/2022)	Optimal SVP Selection – SP1				ICV Cal/Val Tasks:		
Orb Burn #2 12/6/2022 Orb Burn #3 12/10/2022	L + 29 (12/9/2022)	Optimal SVP Selection – Final OMPS Stray Light Maneuver Demo (single orbit)				nsitivity, Stability, Scan Angle, RFI, EMI, Alignme Frequency, Non-lineariy, AS/DS Difference, Lunar Mitigation, Noise Evaluation, Trending		
Orb Burn #4 12/14/2022	L + 31 (12/11/2022)	Roll Calibration Maneuver (-65 & +30 deg)			Wingation, Poise Evaluation, Prending			
Orb Burn #5 12/17/2022	L + 32 (12/12/2022)	Noise Characterization - Part 1			It Delivery of Hedded I IIT-			
		Roll Calibration Maneuver (-65 & +30 deg)			l st Delivery of Updated LUTs			
Orb Burn #6 12/20/2022		Environmental Characterization			Provision	onal Maturity Review on December 15, 2022 (L+35 D)		
	L + 51 (12/31/2022 ~ 1/1/2023)	Lunar Intrusion Mitigation with Final SVP Selection						
	L + 51 (12/31/2022 ~ 1/4/2023)	Dwell Parameters						
	L + 55 (1/4/2023)	ATMS Scan Offset Table Upload to EEPROM						
	L + 59 (1/8/2023)	Noise Characterization – Part 2						
	L + 60 (1/9/2023 ~ 1/12/2023)	Active Geolocation	i					
	L + 67 (1/16/2023)	OMPS Straylight Maneuver				ICV Cal/Val Tasks:		
Note: Timing of post-	L + 68 (1/17/2023)	OMPS Straylight Maneuver (Backup)			Ref	ector Emissivity, Geolocation Accuracy, Trending		
launch tests (PLTs)	L + 68 (1/17/2023 ~ 1/18/2023)	Lunar Intrusion Mitigation (Backup)			3	rd Delivery of Updated LUTs (All Coefficients)		
are subject to change	L + 71 (1/20/2023)	Backflip Pitch Maneuver				Validated Maturity (L+90 D)		

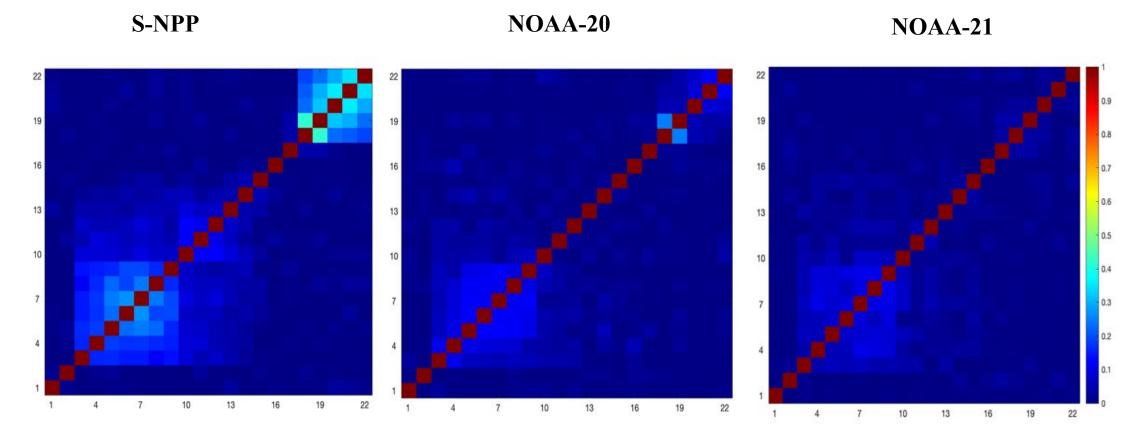
NOAA-21 ATMS Post-launch Cal/Val Tasks

Task #	Title	Teams	Data Available Date & Related PLTs
1	Proxy Instrument Data	NOAA/STAR, MIT/LL, NASA/GSFC, NG	Pre-launch
2	Independent Analysis of TVAC Data	NOAA/STAR, MIT/LL, NG	Pre-launch
3	Analysis of Antenna Pattern Data	NOAA/STAR, MIT/LL, NG	Pre-launch
4	Analysis of Spectral Response Function	NOAA/STAR, NASA/GSFC	Pre-launch
5	Parameter Trending	NOAA/STAR, MIT/LL	L+11
6	Functional Evaluation	MIT/LL, NOAA/STAR, NG	L+11, Activation/Functional Evaluation PLTs
7	Dynamic Range Evaluation	MIT/LL, NASA/GSFC, NOAA/STAR	L+11
8	Digitization Artifacts	MIT/LL, NOAA/STAR, NG	L+11
9	Scan Angle Evaluation	NOAA/STAR, MIT/LL, NASA/GSFC	L+11
10	Temperature Stabilization	MIT/LL, NASA/GSFC, NOAA/STAR, NG	L+11
11	Radiometric Sensitivity Evaluation	NOAA/STAR, MIT/LL, NASA/GSFC, NG	L+11
12	NWP Bias Characterization	NOAA/STAR	L+11
13	Optimal Space View Selection	NOAA/STAR, MIT/LL, NASA/GSFC	L+26, Optimal SVP Selection PLT
14	Striping Analysis and Noise Evaluation	NOAA/STAR, MIT/LL	L+32, Noise Characterization – Part 1 PLT
15	GPS-RO Bias Characterization	NOAA/STAR	L+36
16	SNO Bias Characterization	NOAA/STAR	L+36
17	Geolocation Verification and Correction	NOAA/STAR, MIT/LL	L+36
18	Instrument to Spacecraft Alignment	NOAA/STAR	L+36

NOAA-21 ATMS Post-launch Cal/Val Plan

Task #	Title	Teams	Data Available Date & Related PLTs
19	Continuous Sampling Mode	NOAA/STAR, MIT/LL	L+46, Environmental Characterization PLT
20	Lunar Intrusion Evaluation	NOAA/STAR, NASA/GSFC, MIT/LL	L+51, Lunar Intrusion Mitigation PLT
21	Point and Stare Data for Gain Fluctuation Assessment	NOAA/STAR, MIT/LL, NASA/GSFC, NG	L+59, Noise Characterization – Part 2 PLT
22	Pitch Maneuver Analysis	MIT/LL, NOAA/STAR, NASA/GSFC, NG	L+71, Backflip Pitch Maneuver PLT
23	EMI From Spacecraft Transmitter	MIT/LL, NOAA/STAR, NG	L+71, Backflip Pitch maneuver PLT
24	TDR to SDR Conversion Analysis	NOAA/STAR, MIT/LL	L+71, Backflip Pitch Maneuver PLT
25	Effective Field of View	NOAA/STAR	L+71, Roll & Pitch Maneuver PLTs
26	Polarization Response Angle	NOAA/STAR	L+71, Backflip Pitch Maneuver PLT
27	Central Frequency Stability Assessment	MIT/LL, NOAA/STAR	L+80
28	SDR Validation through Product Retrievals	NOAA/STAR	L+80
29	Warm Load and Space View Bias	NOAA/STAR, MIT/LL	L+80, Roll Maneuver PLT
30	Spatial Resampling Assessments	NOAA/STAR	L+80, Scan Offset PLT (EDR)
31	Terrestrial and Direct TV Sources RFI Detection	NOAA/STAR, MIT/LL	L+80
32	NUCAPS/MiRS Convergence	NOAA/STAR	L+80

NOAA-21 ATMS NEAT Monitoring



NOAA-21 ATMS Provisional Maturity Review – December 15th, 2022

• G-band channel correlation further reduced in NOAA-21 compared to NOAA-20

The reduced NOAA-21 cross-channel noise correlation will ease data assimilation into forecast models compared to previous ATMS builds

NOAA-21 ATMS Optimal Space View Profile Selection

Hot

- Space view (SV) counts may be • contaminated by near field radiation from spacecraft or far field radiation from earth
- There are four space view count readings ٠ each scan from only one space view profile (SVP)
- The bias between space view reading 1 and • 4 are used to determine the optimal space view profile

-10

10

CC⁹⁷_{SV}-CC¹⁰⁰_{SV}

250

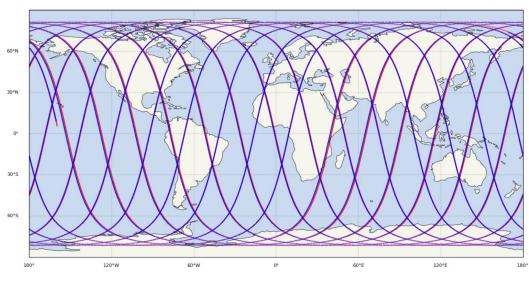
8 200

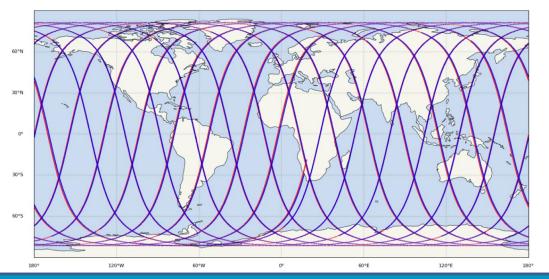
of Sample

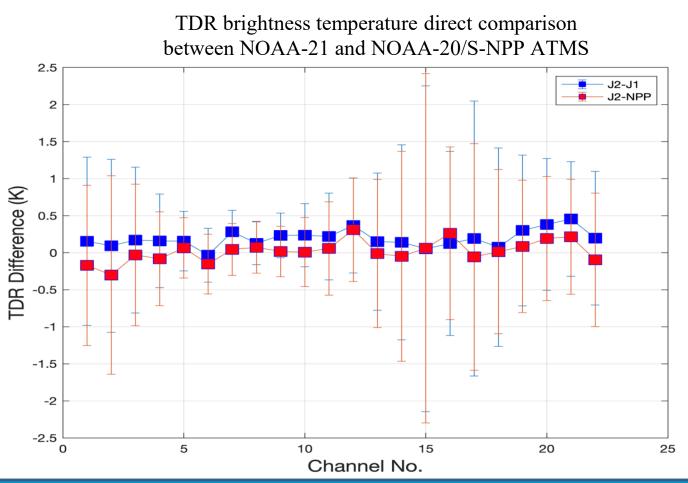
Number 100

50

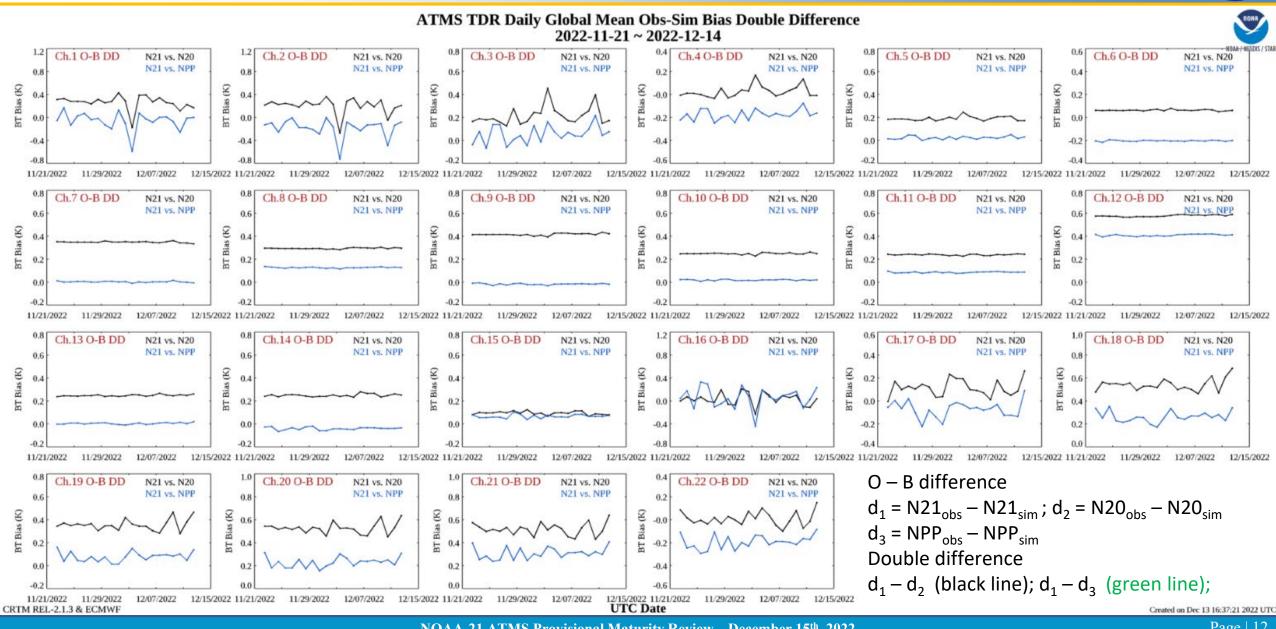
-30




Direct Comparison of NOAA-21 ATMS and NOAA-20 and S-NPP ATMS During Satellite Overlaps

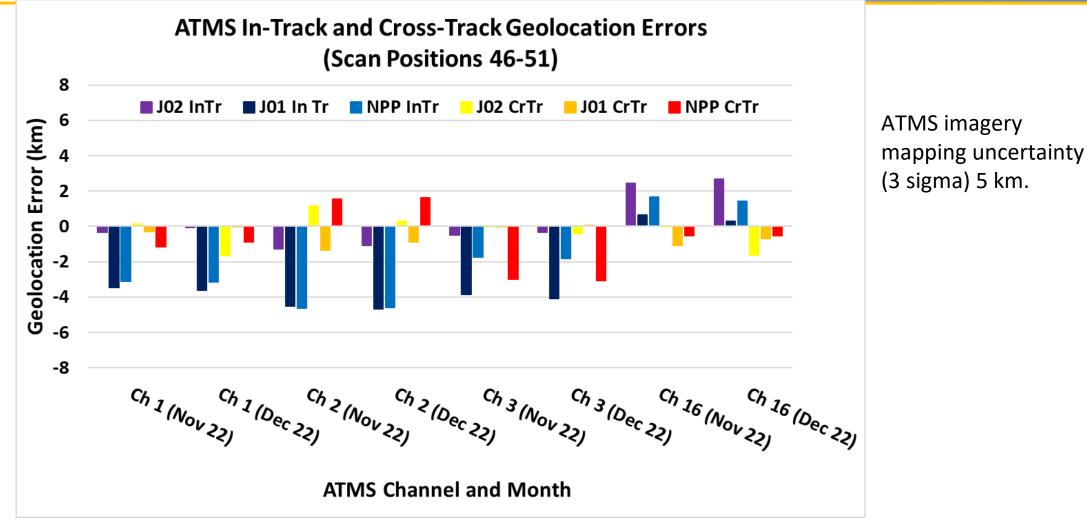

NOAA-21 and NOAA-20 Nadir Track on November 25, 2022

NOAA-21 and S-NPP Nadir Track on December 6, 2022



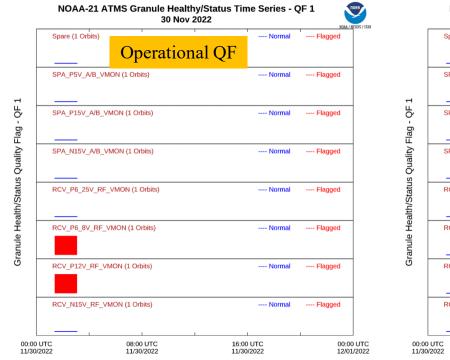
Unique opportunity for direct comparisons between NOAA-21 and NOAA-20/S-NPP ATMS during their orbital overlapping because of the orbit adjustment activities

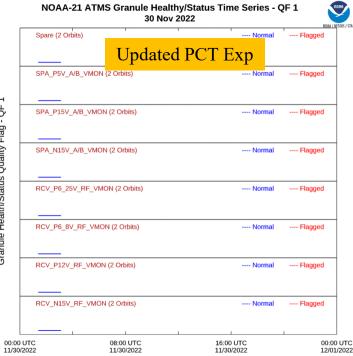
ATMS TDR Comparison by O-B Double Difference


NOAA-21 ATMS Provisional Maturity Review - December 15th, 2022

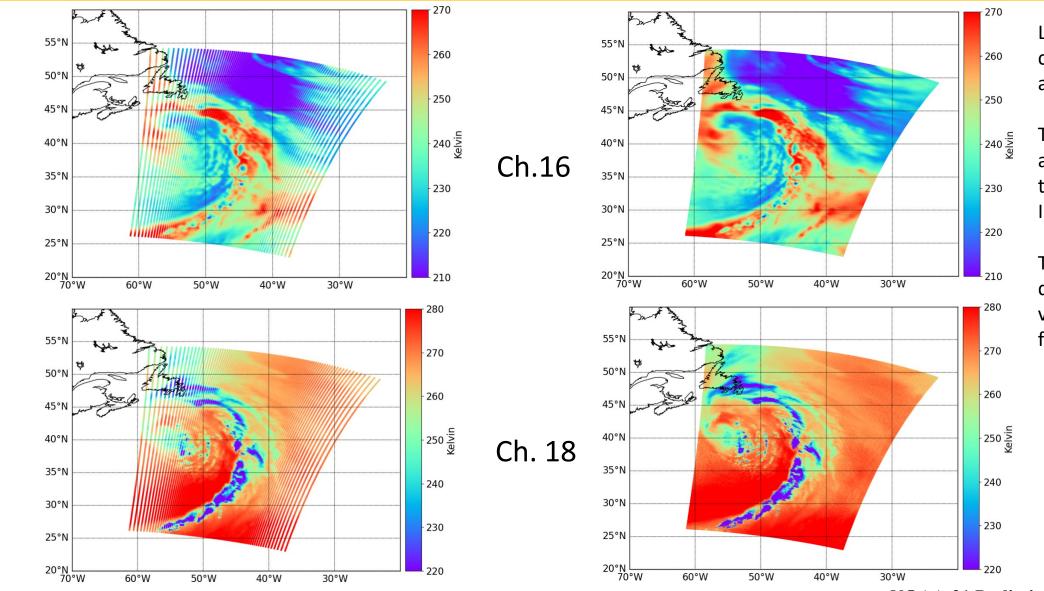
Page | 12

STAR




Initial NOAA-21 ATMS geolocation assessments show that geolocation error is usually infamily or better than NOAA-20 or S-NPP ATMS". Caveat: the orbit is still changing, and this results is preliminary.

NOAA-21 ATMS SDR Health Status Quality Flag Update

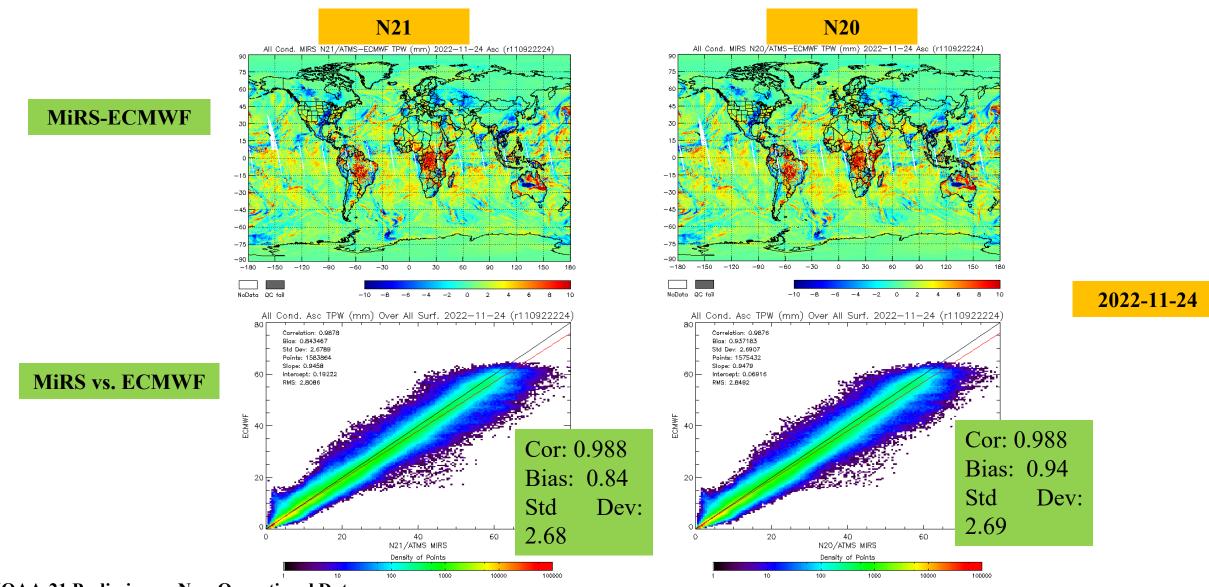

- No impact on science data quality. Instrument health status monitoring purpose only.
- Three telemetry parameters have been changed in NOAA-21 ATMS
- Hard coded conversion coefficients in IDPS are for S-NPP and NOAA-20
- Short term solution: PCT update to extend the quality range
- Permanent solution: Update IDPS code to include satellite dependent conversion coefficients

NOAA-2	21 ATMS Receiver Secondary Voltage (+6.8 V RF) (RCV_P6_8V_RF_VMON) 30 Nov 2022	NOMA / NESDIS / STAR	NOAA-21 ATMS Receiver Secondary Voltage (+6.8 (RCV_P6_8V_RF_VMON) 30 Nov 2022		bit #	SNPP/NOAA-20	NOAA-21	NOAA-21 Update
12.0675	econdary Voltage (+6.8 V RF) (15 Orbits)	23	6.8300 Receiver Secondary Voltage (+6.8 V RF) (15 Orbits) 6.8275	-	4	RCV +6V RF [5.75, 6.5]	RCV +6.25V RF [6.0, 6.5]	Mean: ~ 6.0 [5.0, 7.0]
5 12.0650 - 12.0625 - 12.0600		>	6.8250		5	RCV +12V RF-2 [11.25, 12.75]	RCV +6.8V RF [6.45, 7.15]	Mean: ~ 12.0 [11.0, 13.0]
23:42 UTC 11/29/2022	Operational Values	01:00 UTC 12/01/2022	23:42 UTC 11/29/2022 08:08 UTC 16:34 UTC 11/30/2022 11/30/2022 Correct Values	01:00 UTC 12/01/2022	6	RCV +15V RF [14.25, 15.75]	RCV +12V RF [11.47, 12.42]	Mean: ~ 14.25 [13.25, 15.25]

NOAA-21 ATMS Limb-corrected and AI Resolution Enhanced Images

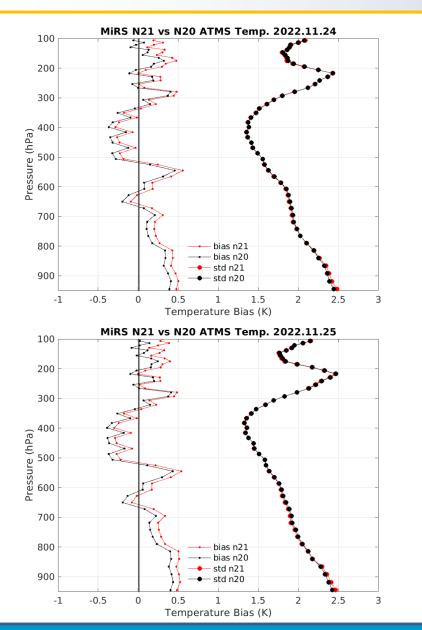
Limb-correction makes cross-scan observations as a nadir-looing.

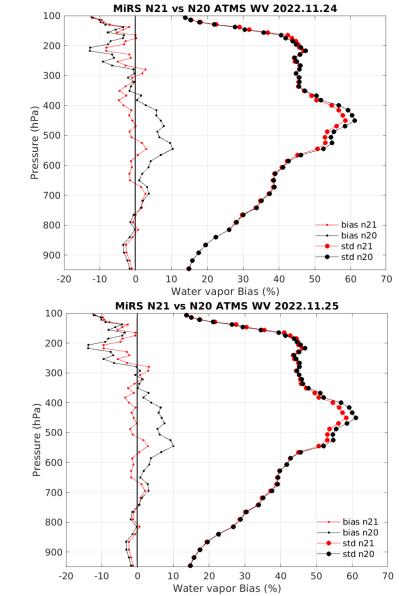
The second step Al algorithm enhanced the limb-corrected Images by a factor of 4.


The two steps algorithms deliver good visualization for weather patterns.

NOAA-21 Preliminary, Non-Operational Data

MiRS N21 and N20 TPW Comparison with ECMWF

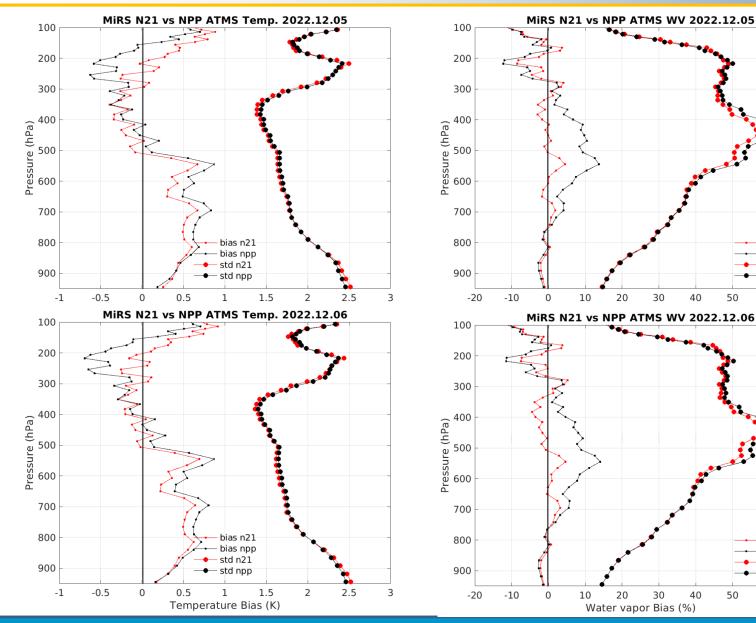





NOAA-21 Preliminary, Non-Operational Data

MiRS N21 and N20 Temperature & Moisture Profiles Comparison with ECMWF

Low noise of N21 water vapor channels improved water vapor retrieval (red line for N21 vs black line for N20).


2022-11-25

NOAA-21 Preliminary, Non-Operational Data

NOAA-21 ATMS Provisional Maturity Review - December 15th, 2022

MiRS N21 and SNPP Temperature & Moisture Profiles Comparison with ECMWF

Low noise of N21 water vapor channels improved water vapor retrieval (red line for N21 vs black line for NPP).

bias n21

---- bias npp

- std npp

60

bias n21

----- bias npp

🔶 std n21

std npp

60

70

50

70

50

2022-12-06

NOAA-21 Preliminary, Non-Operational Data

NOAA-21 ATMS Provisional Maturity Review - December 15th, 2022

NOAA/EMC Summary and Plan

- ATMS N21 channel statistics for data over the data behaves similarly to N20 and NPP
- No significant stripping observed in N21

Courtesy: Emily Liu and Andrew Collard

- Noticeable scan bias remains after antenna correction
- The radiances calculated using a boxcar SRF coefficients are more accurate than the ones using the measured SRF for surface sensitive channels
- ATMS N21 will be tested in parallel experiment and is expected to be operational in March

ž

<u>जौ</u>

 κ

DOL

 \mathbb{A}

User Feedback – ECMWF

•After bias correction, NOAA-21 ATMS is mostly in line with other ATMS instruments

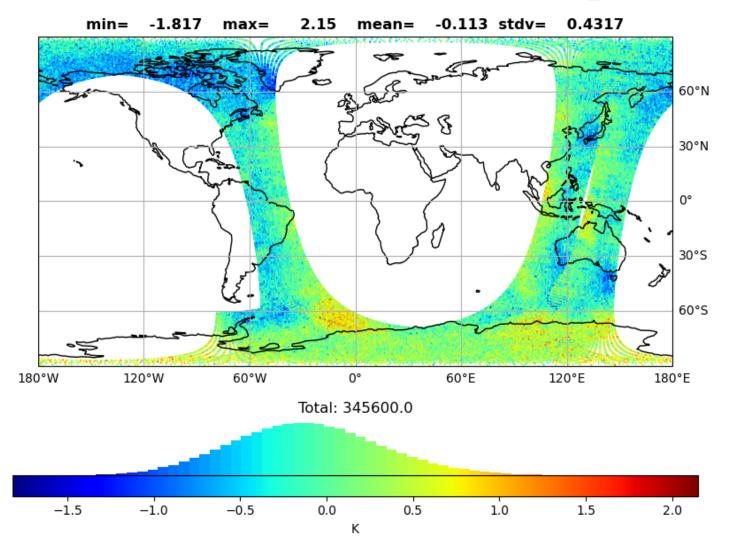
•Subject to assimilation trials, we would expect to be able to use NOAA-21 ATMS in a similar way as other ATMSs

 However, current phasing is highly sub-optimal for NWP (almost complete overlap with NOAA-20). Due to thinning, very little extra data would be used. We assume this will be changed after cal/val.

•Some minor aspects noted:

- More asymmetric and less flat scan-biases, esp. for temperature-sounding channels. Possibly due to unoptimized antenna pattern correction?
- Slightly higher stdev(o-b) before bias correction for the temperature-sounding channels. Probably linked to the scan-bias pattern.
- Cross-track striping qualitatively similar to NOAA-20, but not evaluated quantitatively here.

20



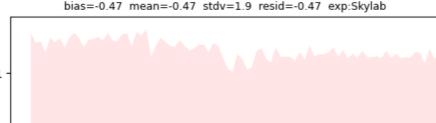
Dr. Ruston at JCSDA provided the comparison between NOAA-21 ATMS measurements and DA simulations.

The difference displays gaussian Distribution and looks normal for the first look.

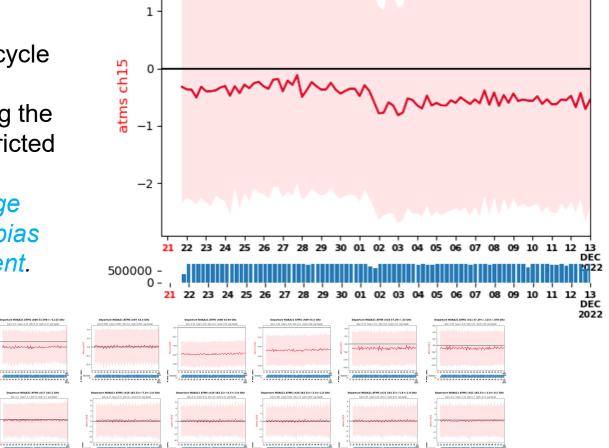
ATMS Observation - H(x) ch10 20221121T15Z_PT6H

NOAA-21 Preliminary, Non-Operational Data

ATMS NOAA-21: Preliminary non-operational


Courtesy: Benjamin Ruston, Joint Center for Satellite Data Assimilation

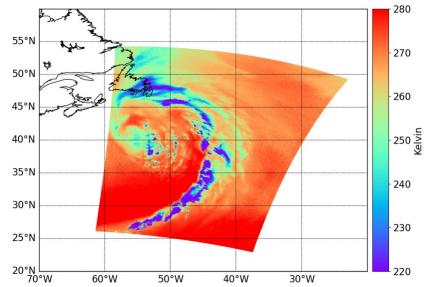
Trend analysis

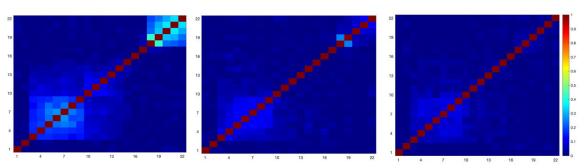

All channels exhibited stable behavior in time ~750K "native" resolution obs per 6-hourly cycle

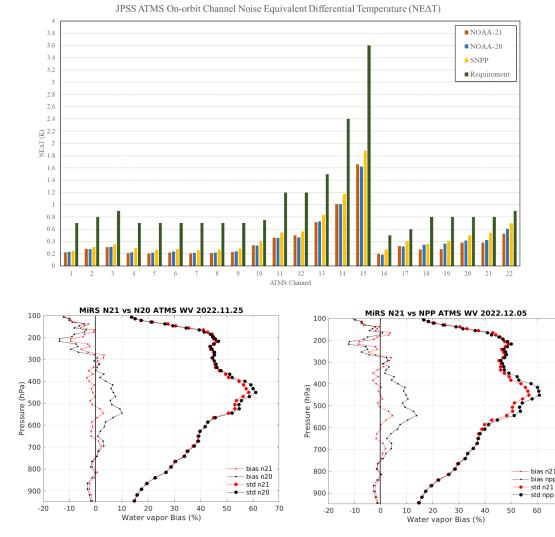
A small anomaly was found which occurred during the update on 01Dec2022. This was found to be restricted to a small change in bias for channels 14 and 15.

From an NWP perspective: this small change would have very little impact, particularly if bias correction was generated pre- and post-event.

Departure NOAA21 ATMS ch15 57.29+/-.003 GHz


Provisional Maturity End State	Assessment
Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.	ATMS global science data (TDR/SDR/GEO) have been thoroughly analyzed using different evaluation methods and tools since it was switched to operational mode. NWP centers and MiRS EDR results support the key point.
Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.	Major instrument health status/performance and science data quality evaluation tasks have been performed. Results indicate that all index have met the quality requirements. Data are sufficient for limited quantitative determination.
Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.	ATMS provisional maturity data user README file has been updated to reflect the new findings and improvements after the beta maturity review. It can be used as the reference for data users. Calibration documents are also released to support users.
Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.	ATMS science data products are recommended for operational testing in various applications following the recommendations in README file.


NOAA-21 ATMS SDR Provisional Maturity Highlights


ATMS limb-corrected and AI resolution enhanced, ch. 18

On orbit ATMS channel to channel noise correlation NOAA-20

On orbit ATMS channel

OSPO planned N21 ATMS BUFR data beta are available for restricted

NOAA-21

Science Maturity Check List	Yes ?
ReadMe for Data Product Users	Yes
Algorithm Theoretical Basis Document (ATBD)	Yes
Algorithm Calibration/Validation Plan	Yes
(External/Internal) Users Manual	In-Progress
Instrument Calibration Data Book	Yes
Instrument Spectral Response Functions (SRF) Public Release	Yes
System Maintenance Manual (for ESPC products)	N/A
Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)	Yes
Regular Validation Reports (at least annually) (Demonstrates long-term performance of the algorithm)	

- ✓ Through PLT, optimal Space View Profile Selection (SP1) is found and in operation;
- ✓ On orbit channel-to-channels noise correlations among S-NPP, NOAA-20, and NOAA-21 are analyzed. NOAA-21 ATMS is the best;
- ✓ NOAA-21 ATMS channel NE Δ Ts are stable and comparable to NOAA-20;
- ✓ Good agreement between nearly simultaneous NOAA-21 and NOAA-20 ATMS measurements;
- ✓ Good agreement between nearly simultaneous NOAA-21 and S-NPP ATMS measurements;
- ✓ NOAA-21 ATMS starts generating radiance data (TDR/SDR/GEO) from Nov. 21, 2022;
- ✓ ATMS telemetry data show a nominal condition after the activation;
- ✓ Low noise of NOAA-21 ATMS water vapor channels improves MiRS water vapor EDR performance;
- ✓ Details are referred to https://www.star.nesdis.noaa.gov/icvs-beta/status_J02_ATMS.php
- ✓ ECMWF Analysis showed "After bias correction, NOAA-21 ATMS is mostly in line with other ATMS instruments".

ATMS SDR science team recommended that NOAA-21 ATMS SDR meets Provisional maturity. NOAA-21 ATMS Provisional Maturity Review – December 15th, 2022

- Continue to monitor ATMS instrument stability and performance, as well as science data (TDR/SDR/GEO) quality
- Keep assessing science data quality based on additional PLTs and report assessment results in Validated maturity review following the Cal/Val plan
- Update IDPS ATMS calibration algorithm Processing Coefficient Table (PCT) based on the overall on-orbit data analysis results, including reflector emissivity, antenna pattern correction coefficients, warm/cold bias correction coefficients, and others
- Update ATMS instrument heath status telemetry calculation coefficients and program in IDPS to reflect the changes from NOAA-21
- Analyze scan-dependent bias