Beta Maturity Science Review For NOAA-21 OMPS SDR Algorithm

> Presented by Banghua Yan (STAR OMPS SDR) Larry Flynn (OMPS SDR User) Vanistarry Manoharan (JPSS DPMS; DRs/CCRs) Date: 02/23/2023



#### I. <u>Beta</u>

- Product is minimally validated, and may still contain significant identified and unidentified errors.
- Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-for-purpose.
- o Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

#### 2. Provisional

- Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.

#### 3. Validated

- Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).
- Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.
- Product analyses are sufficient for full qualitative and quantitative determination of product fitness-for-purpose.
- Product is ready for operational use based on documented validation findings and user feedback.
- Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument.



- Product Requirements
- Pre-launch Performance Matrix/Waivers
- Beta Maturity Performance Validation
  - NOAA-21 OMPS PLT Timeline
  - NOAA-21 OMPS NM and NP First Light Images
  - On-orbit instrument performance assessment
- Users/Downstream-Products feedback
- Risks, Actions, Mitigations
  - Potential issues, concerns
  - Mitigations
- Path forward towards the Provisional maturity stage
- Summary



- Beta Maturity Performance is well characterized:
  - On-orbit instrument performance assessment
    - Provide summary for each identified instrument and product characteristic you have validated/verified as part of the entry criteria
    - Provide summary of pre-launch concerns/waivers mitigations/evaluation and address whether any of them are still a concern that raises any risk.
- Updated Maturity Review Slide Package addressing review committee's comments for:
  - Cal/Val Plan and Schedules
  - Product Requirements
  - Beta Maturity Performance
  - Risks, Actions, Mitigations
  - Path forward (to the next maturity stage)



## BETA MATURITY REVIEW MATERIAL



- Algorithm Cal/Val Team Members\*
- Product Overview/Requirements
- Pre-launch Performance Matrix/Waivers (Starry)
- OMPS PLT Timeline and First Light Images
- OMPS NM/NP Instrument and Data Performance Assessments from STAR
  - OMPS NM and NP instrument performance assessment
  - OMPS NM and NP Post-launch data performance assessment
  - OMPS NM and NP data quality long-term monitoring from ICVS
- User Feedback (Larry)
- Risks, Actions, and Mitigations
- Documentation (Science Maturity Check List)
- Conclusion
- Path Forward



### NOAA-21 OMPS SDR Algorithm Cal/Val Team

| Name                               | Organization    | Major Task                                                                                                                                                                                 |
|------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Banghua Yan<br>(Project team lead) | NOAA/STAR/SCDAB | Project task plan and performance monitoring; OMPS instrument SDR cal/val science development and plan; monthly/quarterly/annual/review reports; ATBD update; first light image report     |
| Trevor Beck                        | NOAA/STAR/SCDAB | Operational OMPS ADL code update and delivery with updated LUTs; OMPS RDR reader development; offline OMPS ADL code development; First light image report; ATBD update                     |
| Glen Jaross                        | NASA            | OMPS instrument pre-launch calibration; OMPS SDR SCDB data set support; OMPS instrument performance maintenance support                                                                    |
| Junye Chen                         | GST/SSAI        | NOAA-21 OMPS wavelength registration; NOAA-21 NM and NP SDR calibration algorithm improvements; OMPS bi-weekly solar LUT derivation                                                        |
| Xin Jin (50%)                      | GST/SSAI        | SNPP/NOAA-20/NOAA-21 OMPS dark, gain and nonlinearity calibration algorithm and code development; OMPS solar raw flux code development; weekly dark LUTs                                   |
| Steven Buckner                     | GST/SSAI        | OMPS data noise characterization analysis; OMPS solar LUTs; SNPP OMPS sensor degradation;<br>Inter-sensor comparison with Tropomi; JSTAR weekly reports                                    |
| Jingfeng Huang (50%)               | GST/SSAI        | VCRTM interface development for OMPS NM/NP radiance simulations; OMPS polarization impact assessment; validations of NOAA-21 OMPS SDR using RTMs                                           |
| Likun Wang (~30%)                  | UMD/CISESS      | OMPS NM SDR geolocation accuracy algorithm development; OMPS x-sensor radiometric calibration bias analysis among three missions; first light image support                                |
| Sirish Uprety                      | UMD/CISESS      | OMPS solar calibration and NM wavelength shift algorithm developments; OMPS SDR calibration and data quality validation; OMPS inter-sensor radiometric calibration bias analysis with GEMS |
| Ding Liang (ICVS)                  | GST             | OMPS RDR and SDR long-term monitoring via ICVS website system; inter-sensor comparison; first light image support                                                                          |
| Vanistarry Manoharan               | SAIC            | OMPS SDR DRs/CCRs support                                                                                                                                                                  |



| Budget Term                         | <b>Requirement/Allocation</b>                            |
|-------------------------------------|----------------------------------------------------------|
| Wavelength range                    | 300-380                                                  |
| Horizontal cell size                | $\leq$ 17 km ( <i>a</i> ) nadir                          |
| SNR radiance @17 x17km <sup>2</sup> | ≥300 ( <u>195</u> for NOAA-21 NM 10 x12km <sup>2</sup> ) |
| Irradiance uncertainty              | < 7%                                                     |
| Wavelength registration accuracy    | <0.01 nm                                                 |
| Intra-orbital wavelength variation  | <0.01 nm                                                 |
| Radiance uncertainty                | < 8%                                                     |
| OOB Stray Light                     | ≤10%                                                     |
| Maximum Albedo Calibration          | <2%                                                      |

Geolocation Error

 $\leq$  8.5 km @nadir (AT)



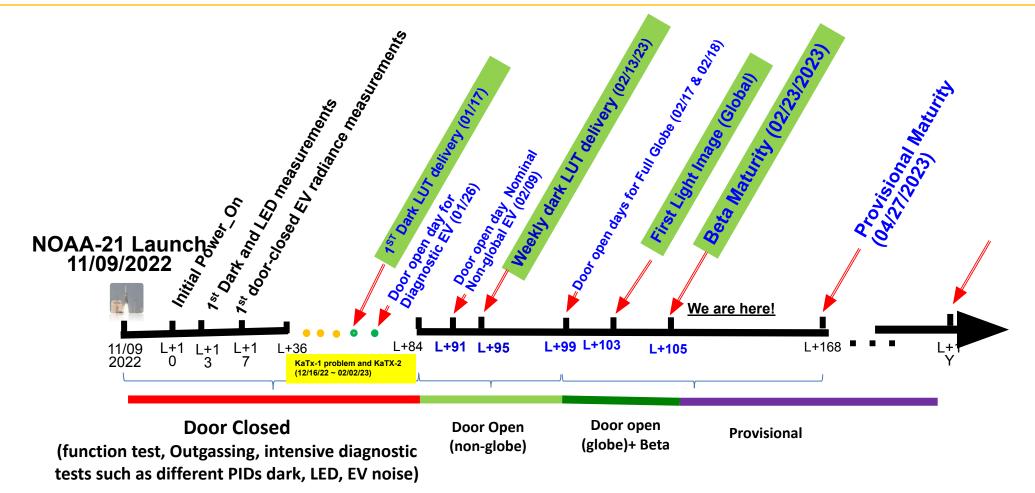
| Budget Term                         | <b>Requirement/Allocation</b>    |  |
|-------------------------------------|----------------------------------|--|
| Wavelength range                    | 250-310                          |  |
| Horizontal cell size                | $\leq$ 50 km @ nadir             |  |
| SNR radiance@50x50km <sup>2</sup>   | varies with wavelength $\lambda$ |  |
| Irradiance uncertainty*             | < 7%                             |  |
| Wavelength calibration*             | <0.01 nm                         |  |
| Intra-orbital wavelength variation* | <0.01 nm                         |  |
| Radiance uncertainty*               | < 8%                             |  |
| Maximum Albedo Calibration          | <2%                              |  |
| OOB Stray Light                     | < 5%                             |  |
| Geolocation Error                   | $\leq$ 25 km @nadir (AT)         |  |
| *Follow NOAA-20 NP SDR requirement  |                                  |  |

#### \*Follow NOAA-20 NP SDR requirement

| Wavelength nm | SNR |
|---------------|-----|
| 250 - 273.6   | 7   |
| 273.6 - 283.1 | 20  |
| 283.1 - 287.7 | 40  |
| 287.7-292     | 52  |
| 292-310       | 80  |



#### NOAA-21 OMPS NM/NP Pre-launch Performance Matrix (Presenter: Starry)

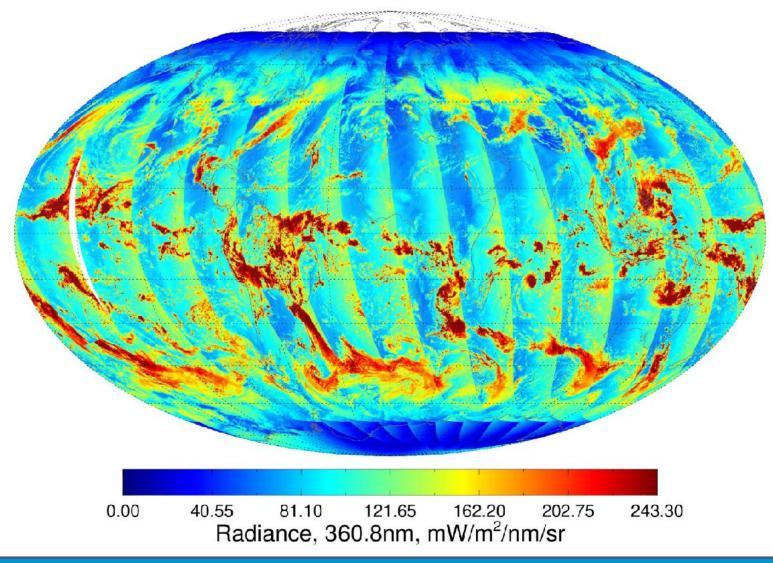

| NOAA  |      |                                                                                                                                                        |                                                                                                                                                                                                                                                  |                      |                               |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
| ADR   | CCR  | Title                                                                                                                                                  | Description                                                                                                                                                                                                                                      | Projected<br>Build   | Status                        |
| 9633  | 5577 | NOAA-21 OMPS Nadir Mapper (NM)<br>geolocation code change for off-nadir<br>geolocation error correction                                                | Correct the mistake in the formula for calculating the OMPS geolocation unit vectors                                                                                                                                                             | Mx7                  | In Operation<br>7/18/22       |
| 9905  | 5513 | NOAA-21 OMPS Mounting Matrix<br>Updates (pre-dynamic)                                                                                                  | Update the J02 OMPS Mounting Matrix using NOAA-21 satellite pre-dynamic data                                                                                                                                                                     | Mx7                  | In Operation<br>7/18/22       |
| 9908  | 5926 | NOAA-21 OMPS Nadir Version Table<br>Update N_TIM_PAT_VER Value                                                                                         | An update to the Nadir Version Table for<br>OMPS-TBL-VERS-GND-PI_j02 is required to account for<br>raw data record (RDR) from the redundant side of the<br>instrument.                                                                           | Mx7                  | In Operation<br>7/18/22       |
| 9959  | TBD  | NOAA-21 OMPS Nadir Mapper (NM)<br>operational sample table includes 3<br>additional CCD spectral-columns that<br>have no valid irradiance coefficients | includes 3 additional CCD spectral-columns that                                                                                                                                                                                                  | MX7                  | To be<br>delivered<br>(March) |
| 9960  | 5997 | NOAA-21 OMPS Nadir Mapper (NM)<br>and NOAA-21 Nadir Profiler (NP)<br>show significant/unacceptable<br>discrepancies in albedo coefficients             | <ol> <li>NOAA-21 OMPS-NM and NOAA-21 OMPS-NP show<br/>significant/unacceptable discrepancies in albedo<br/>coefficients between 300-310 nm.</li> <li>NASA delivered the updated NOAA-21 NM radiance<br/>coefficients in February 2023</li> </ol> | MX                   | To be<br>delivered<br>(March) |
| 10037 | 6101 | NOAA-21 OMPS pre-launch LUTs update                                                                                                                    | 10 OMPS LUTs needed to be updated pre-launch                                                                                                                                                                                                     | At NOAA-21<br>launch | In Operation                  |
| 10039 | 6112 | NOAA-21 OMPS Total Column code<br>change and OMPS-TC MACROPIX<br>and EV-SAMPLE tables update                                                           | An incorrect table was used for the OMPS-TC<br>MACROPIX and EV-SAMPLE tables for J02 TC-OMPS.                                                                                                                                                    | Mx9                  | Expected May<br>2023          |
| 10044 | 6135 | NOAA-21 OMPS Mounting Matrix<br>Coefficients Update (post dynamic)                                                                                     | NOAA-21 OMPS post TVAC sensor mounting matrix coefficients update                                                                                                                                                                                | At NOAA-21<br>launch | In Operation 0                |



| CCR     | Title                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-4768 | OMPS Nadir Stray Light<br>GSegDPS Waiver at 252nm                                         | Waiver requesting relaxation of stray light requirement for NOAA-21 OMPS Nadir Profiler for 252nm from 5% to 7.3%.<br>Rationale: The Nadir Profiler passes the stray light requirement of 5% at all wavelengths channel except for the shortest wavelength channel at 252nm.                                                                                                                                 |
| 19-1799 | OMPS Nadir Stray Light<br>PRD Waiver at 252 NM                                            | Waiver requesting relaxation of stray light requirement O_PRD-11438 from 5% to 7.3% at 252nm only. Rationale: The Nadir Profiler passes the stray light requirement of 5% at all wavelength channels except for the shortest wavelength channel at 252nm.                                                                                                                                                    |
| 19-0292 | OMPS Nadir Stray Light<br>MMSS and FSRD Waiver at<br>252nm                                | Waiver requesting relaxation of stray light requirement for NOAA-21 OMPS Nadir Profiler for 252nm from 5% to 7.3%.<br>Artifacts regarding comparative performance to J1 and NOAA-21 OMPS instrument and relevant science impact are attached to 472-CCR-19-1799.                                                                                                                                             |
| 18-0246 | Flow-Down of Approved<br>NOAA-21 OMPS Nadir<br>Resolution/SNR<br>Requirements to the FSRD | The Flight Segment Requirements Document (FSRD) Rev B CCR (470-CCR-17-0195) included incorporation of approved mission-level changes to OMPS Nadir Mapper horizontal resolution (approved as NJO-2016-014 Rev C) and OMPS Nadir wavelength coverage requirement specifications (approved as NJO-2017-008 Rev B).<br>This CCR has no impacts to Level 3 OMPS PRD requirements or to NOAA-21 SRD requirements. |

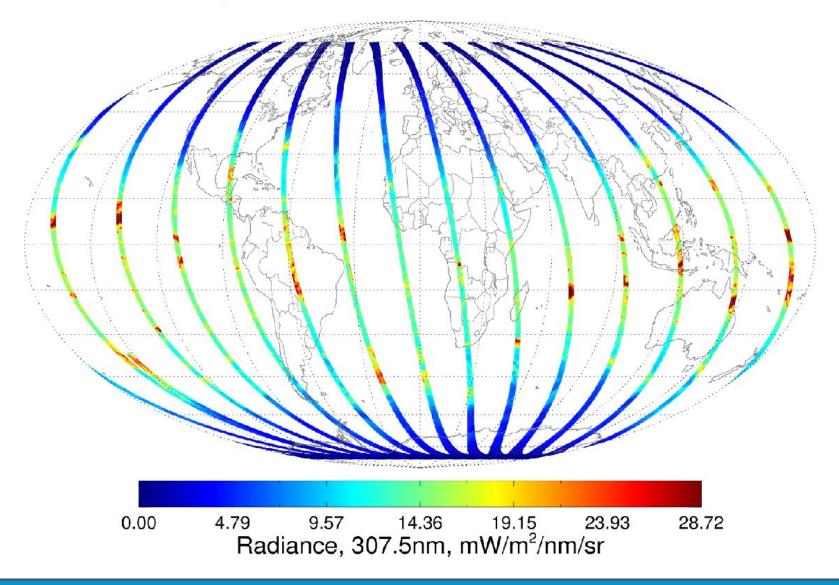


### NOAA-21 OMPS Nadir Mapper and Nadir Profiler PLT Timeline<sup>1,2</sup>



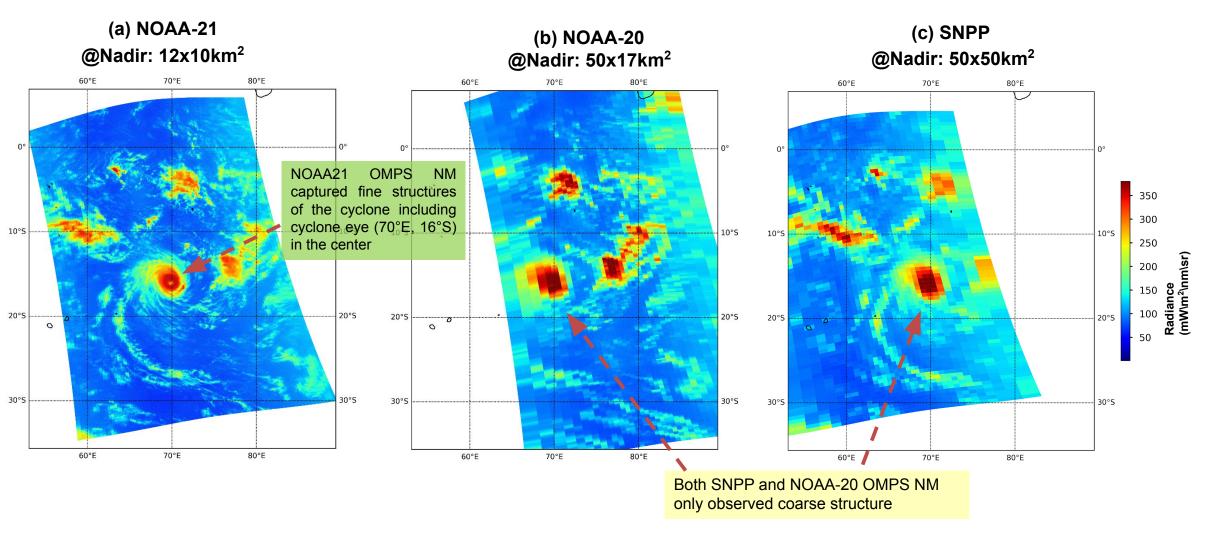

<sup>1</sup> Courtesy of NASA OMPS Group for sharing the NOAA-21 OMPS PLT Activity Schedule

<sup>2</sup> Timeline is not shown on scale


## First Light Image on 02/18/2023: OMPS NM

First Light NOAA-21 OMPS Nadir Mapper, 360.8nm

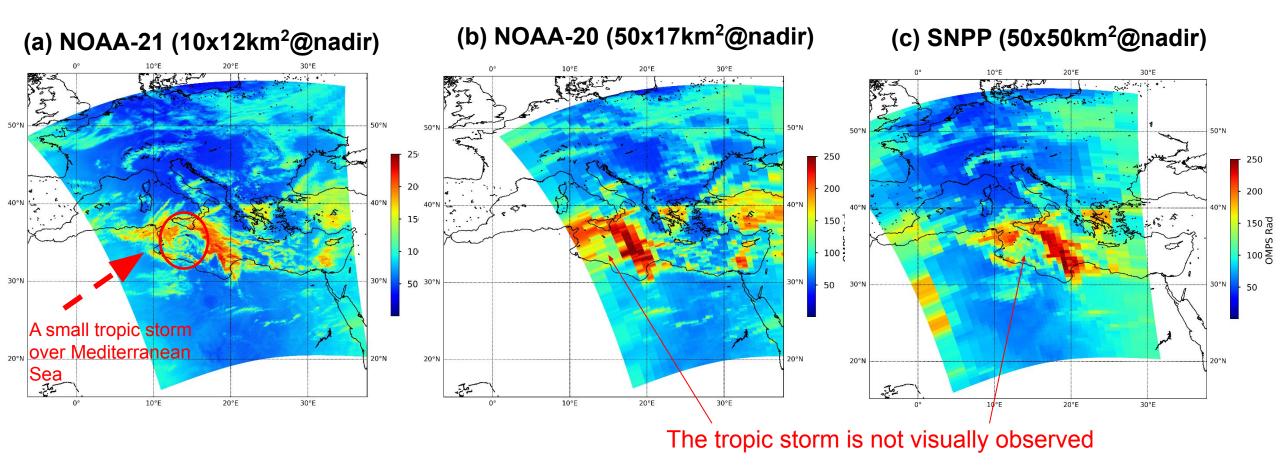



## First Light Image on 02/18/2023: OMPS NP

First Light NOAA-21 OMPS Nadir Profiler, 307.5nm






### First Light Image on 02/18/2023: Tropical Storm in the Indian Ocean

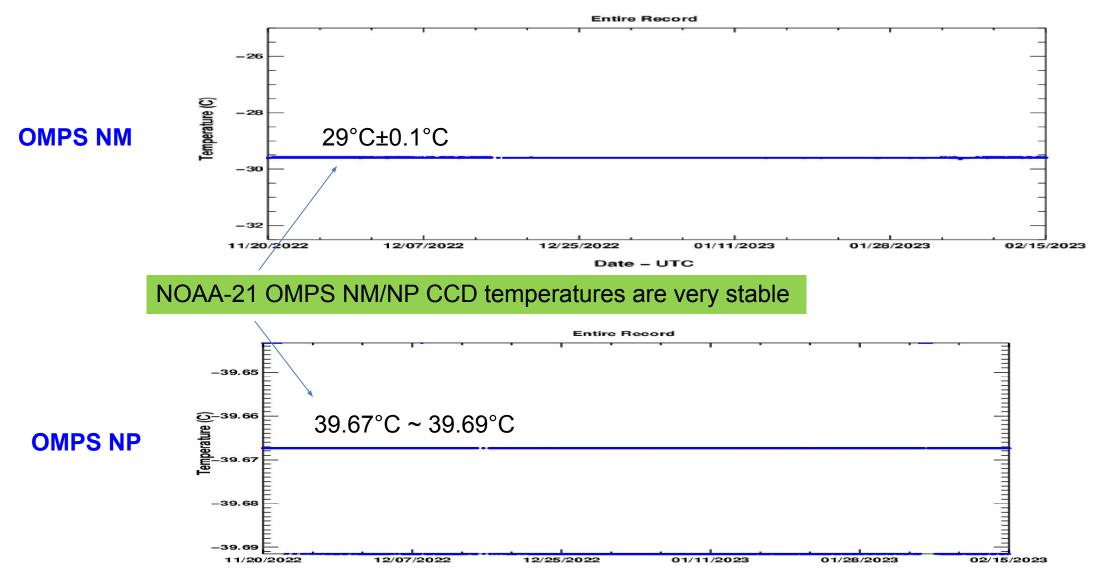


The NOAA-21 OMPS NM demonstrates a much-improved capability in capturing severe weather events due to its higher spatial resolution (around 7 times as NOAA-20 and 20 times as SNPP).



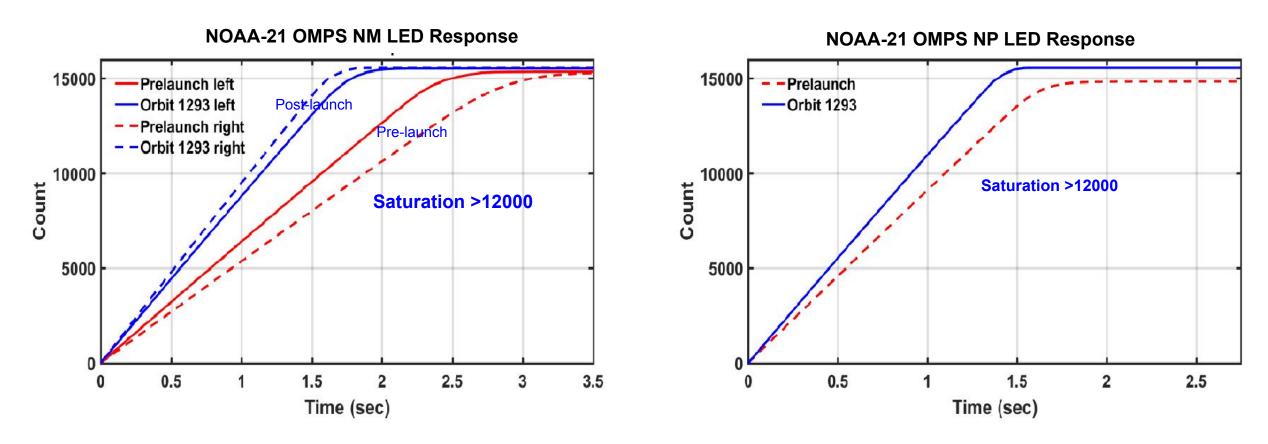
### Door-Open for Non-Global Earth View Radiance: Small Tropic Storm on 02/09/2023




• The door-open for non-global NOAA-21 OMPS NM and NP earth view (EV) radiance measurements since 02/09/2023.

 NOAA-21 OMPS NM shows a much improved spatial resolution than SNPP and NOAA-20, thus capturing fine structure of a small tropic storm over Mediterranean Sea? This feature ids in our visually observed by both SNPP and NOAA-20




### **OMPS CCD Temperature Monitoring from ICVS**

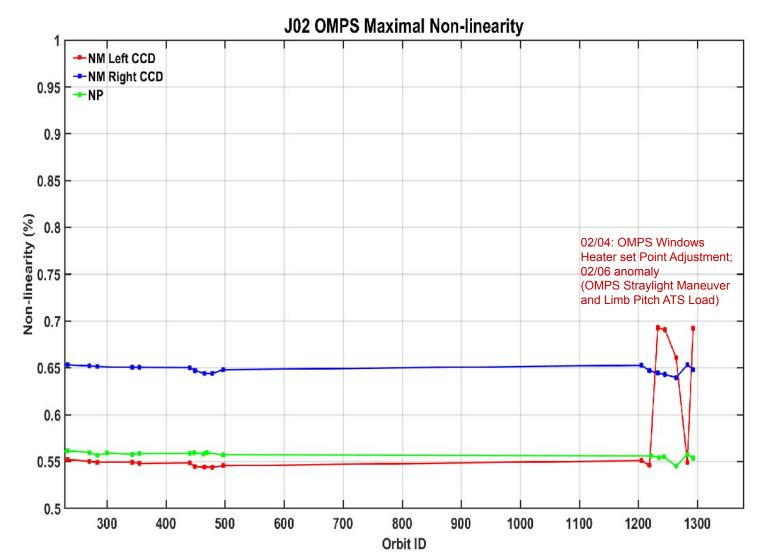
#### **CCD** Temperature



Date – UTC

# MPS Instrument Performance: CCD Signal Dynamic Range

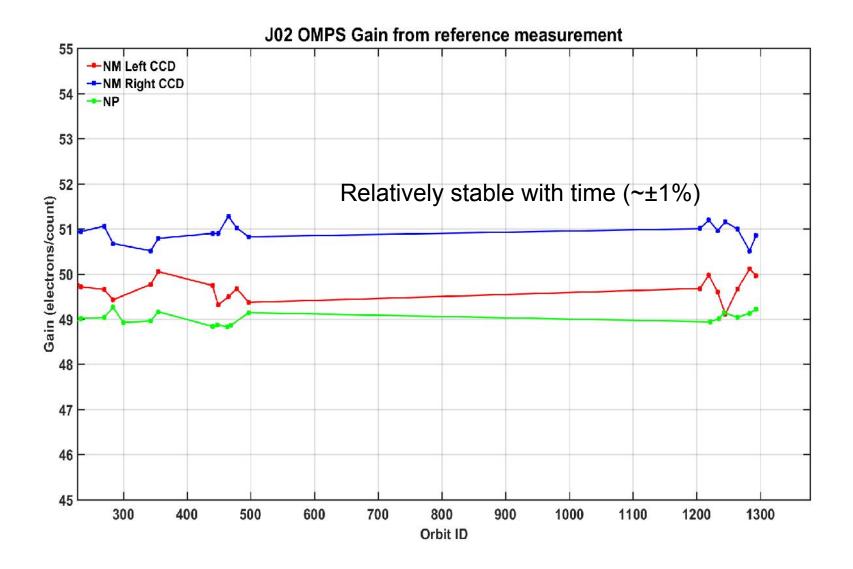



NOAA-21 OMPS CCD raw counts dynamic range:

– Saturation happens after 12000 counts

## **Content Content Conte**

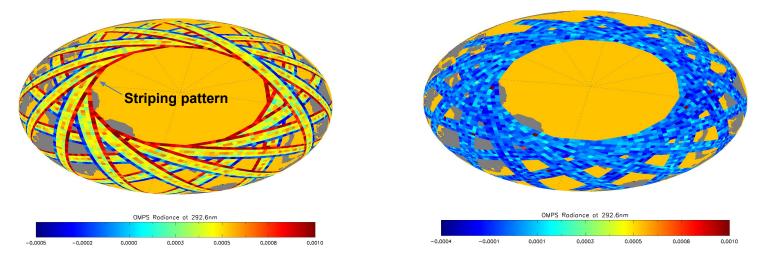
#### • According to our analysis results,


- The on-orbit OMPS nonlinearity performance is very comparable to the pre-launch (figure omitted)
- The pre-launch and on-orbit NOAA-21 OMPS NM and NP system nonlinearity are less than 0.65%
- On-orbit NM and NP show an improved nonlinearity than the pre-launch (figure omitted).
- Time series of maximum nonlinearity for the NOAA-21 OMPS NM (left and right CCD) and NP is shown in the figure.
  - The maximum nonlinearity is constantly smaller than 0.7%, within the requirement of 2%

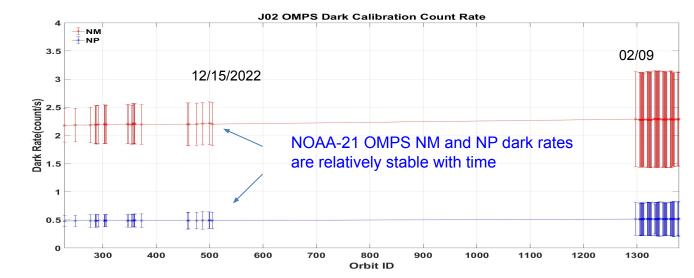




## **OMPS Gain Performance: Stable**


- The NOAA-21 OMPS NM and NP system gains (electron#/count) are assessed based on the LED data by using the mean variance method that was used in the SNPP and NOAA-20 OMPS (Kowalewski et al., 2012)
- Time series of the NOAA-21 NM and NP gains are showed in the figure, demonstrating a relatively stable gain with small offsets relative to the pre-launch TVAC values.




### OMPS NM and NP Dark Calibration and LUT Development: Fixed Anomalous Patterns in Door-Closed Earth View Radiance

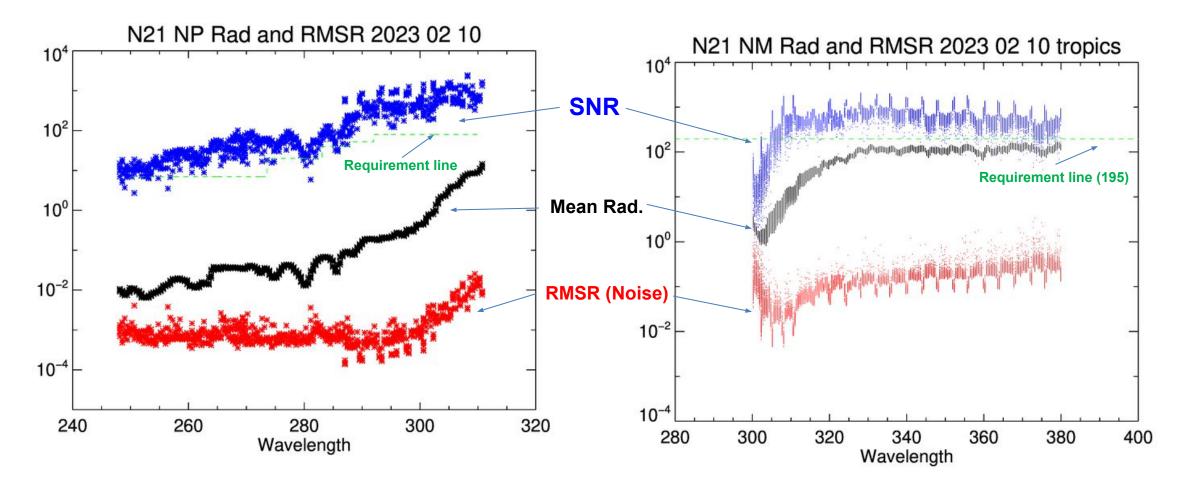
- The analysis showed that the pre-launch dark LUT caused anomalous features (striping pattern) in the door-close NOAA-21 OMPS NM and NP radiance data. An example for NP is given in Fig. a)
- With a postlaunch dark rate LUT, the above striping feature was significantly mitigated (see Fig. b)
- The first dark rate LUT was delivered on 01/17/2023
  - Fixed the striping and other unexpected features in the door-closed EV radiance image D (01/17)
  - Started the weekly dark LUT delivery since 02/13/2023

(a) Operational NOAA-21 OMPS NP Door-Close Radiance ( A prelaunch dark LUT or JCT3 TVAC version) (b) NOAA-21 OMPS NP Door-Close Radiance (A post-launch dark LUT based on on-orbit data)



#### (c) NOAA-21 OMPS NM and NP Dark Rate Time Series



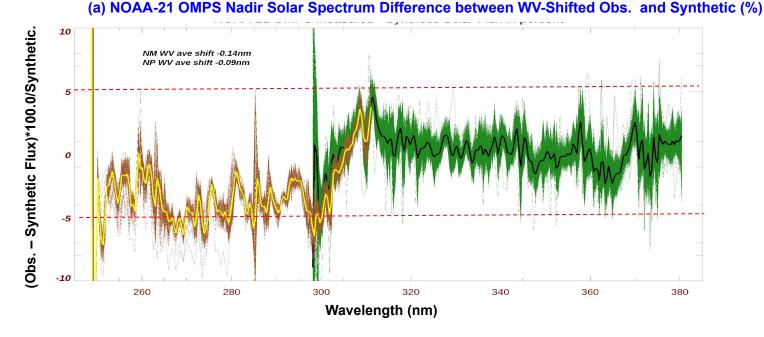



### **Earth View Noise Meets Requirements**

(NP: 250 ~ 310nm; NM:305~380nm)

#### (a) NOAA-21 OMPS NP SNR

(b) NOAA-21 OMPS NM SNR




Both NOAA-21 OMPS NM and NP meet the SNR requirements except for part of the dichroic range (300 ~ 305nm) for NM



### **OMPS NM and NP Wavelength Registration Changes**

- The NOAA-21 OMPS NM and NP wavelength registration is changed due to the instrumental thermal temperature change from ground to orbit.
- The NM/NP wavelength changes relative to the pre-launch (a synthetic solar spectrum) are determined based on the first solar diffusor measurement data. The methodology is similar to the OMPS ATBD methodology).
- The preliminary results show that the wavelength mean changes are -0.14 nm for NM and -0.09 nm for NP.
- Further improvement is needed to improve the calibration accuracy per sensor and consistency between NM and NP in 300-310nm

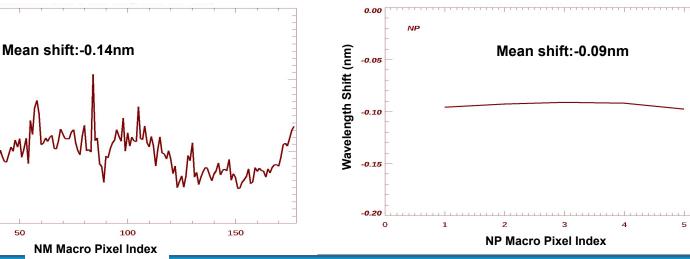




-0.12

0.14

-0.15


0

50

Wavelength Shift (nm)

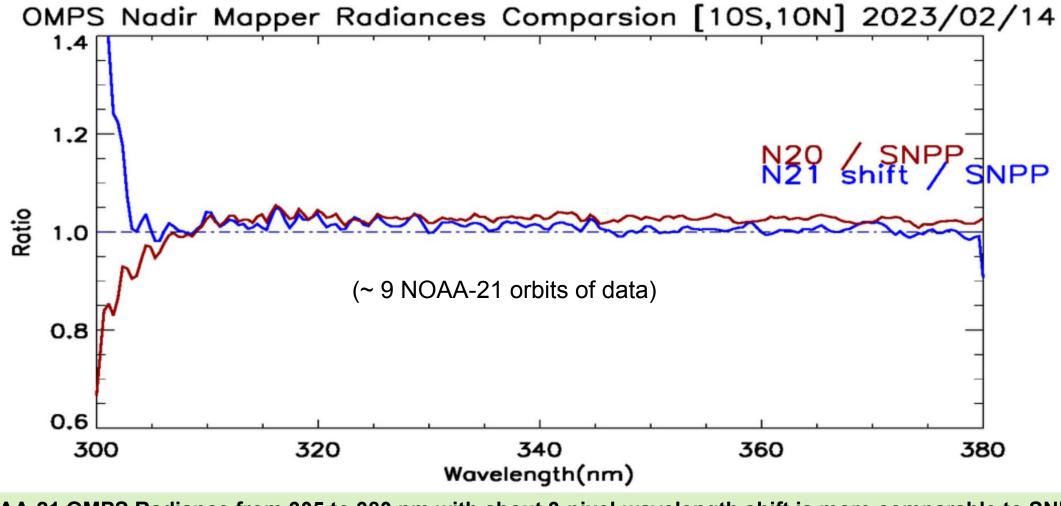
NM





NOAA-21 Calibration/Validation Maturity Review Courtesy of NASA solar diffusor calibration I 1B data from the SIPS NOAA-21 OMPS NM 3 Pixel-Position Wavelength Shift Issue

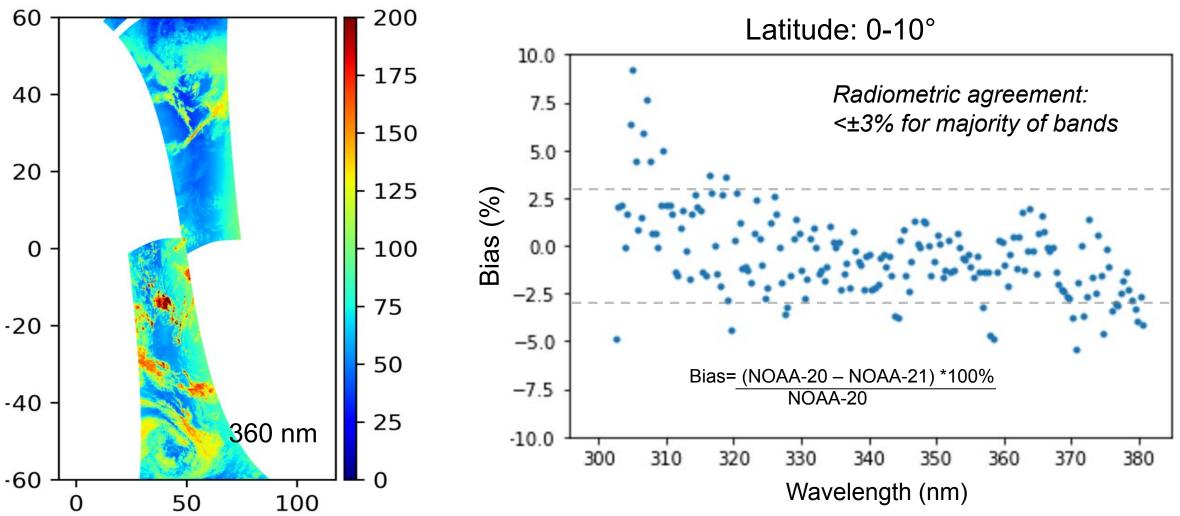
A direct comparison was made between NM and NP (Orbit 1299)


.

- Data coverage (relatively homogeneous)
  - LAT: 8.65°N~9.08 °N; LON: -104.98
     °W ~ -104.52 °W
- Matchup data set: one pixel from NM and nearly 30 pixels from NM
- According to the results, the operational NOAA-21 OMPS NM radiance shows a large discrepancy with NOAA-21 OMPS NP in the range from 300 to 310 nm.
- By shifting about 1.3nm, 'new' NOAA-21 OMPS NM data shows a much improved consistency with the NP data.
- According to our analysis, the inconsistency between the NOAA-21 OMPS NM and NP is primarily caused by the inconsistency in the used NOAA-21 OMPS NM wavelength table that has 3-pixel shift in the wavelength

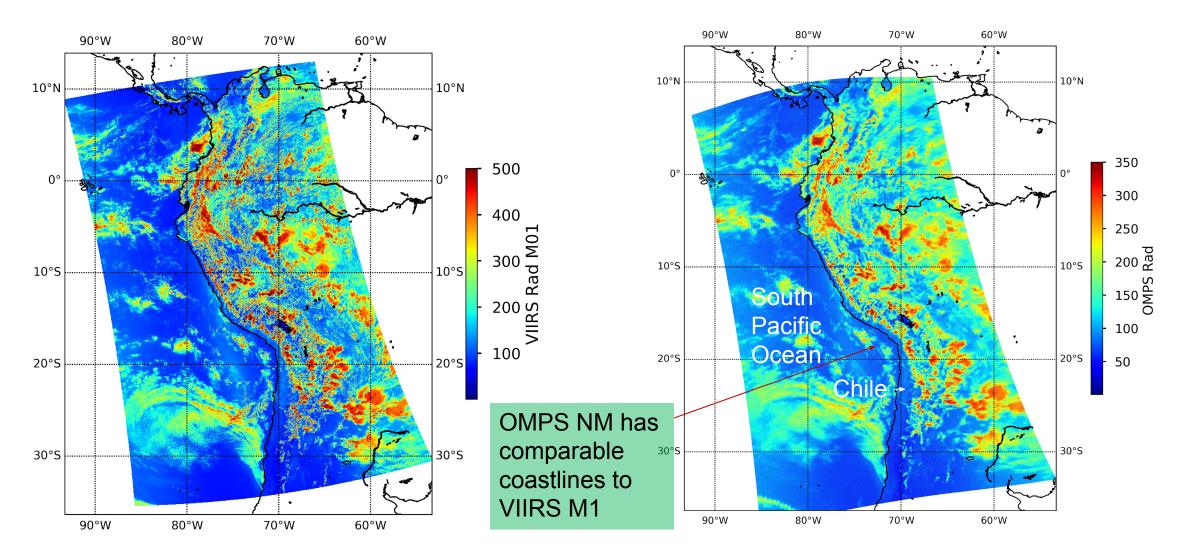





#### Inter-sensor Comparison of NOAA-21 OMPS NM Radiance with SNPP : Preliminary Analysis



NOAA-21 OMPS Radiance from 305 to 380 nm with about 3-pixel-wavelength shift is more comparable to SNPP (further analysis is needed to confirm this conclusion)

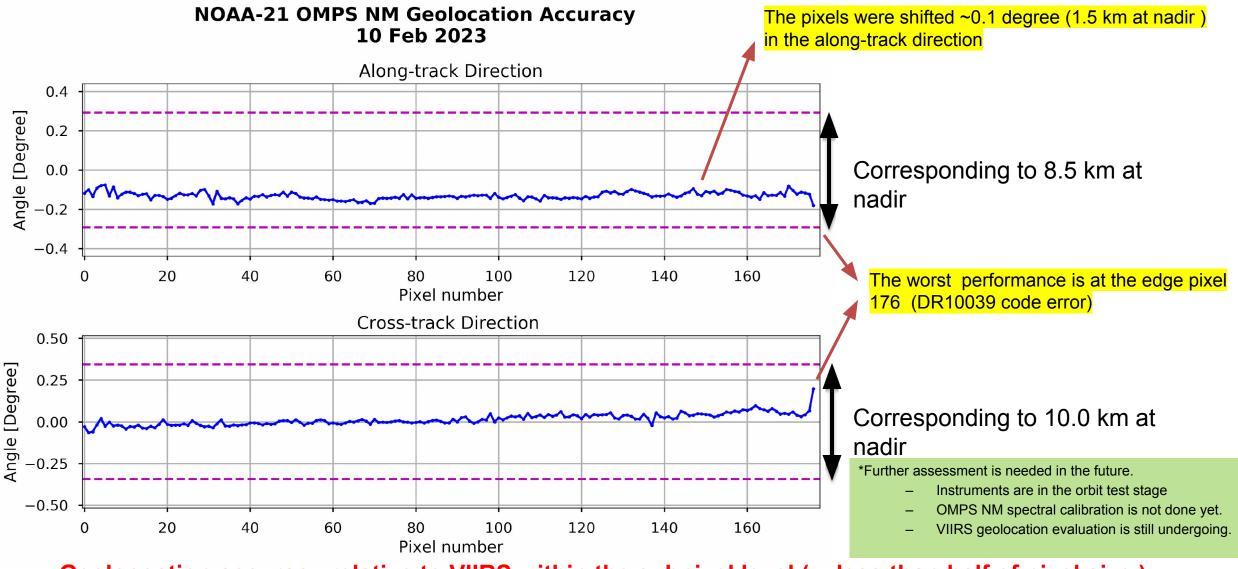



NOAA-21: Orbit 1406



Note: For comparison, NOAA-21 data wavelength is shifted by 3 pixels (further analysis is needed to confirm this conclusion)

## **MPS** Geolocation Assessment (1/2): Visual Comparison with VIIRS




#### NOAA-21 VIIRS M1 Band

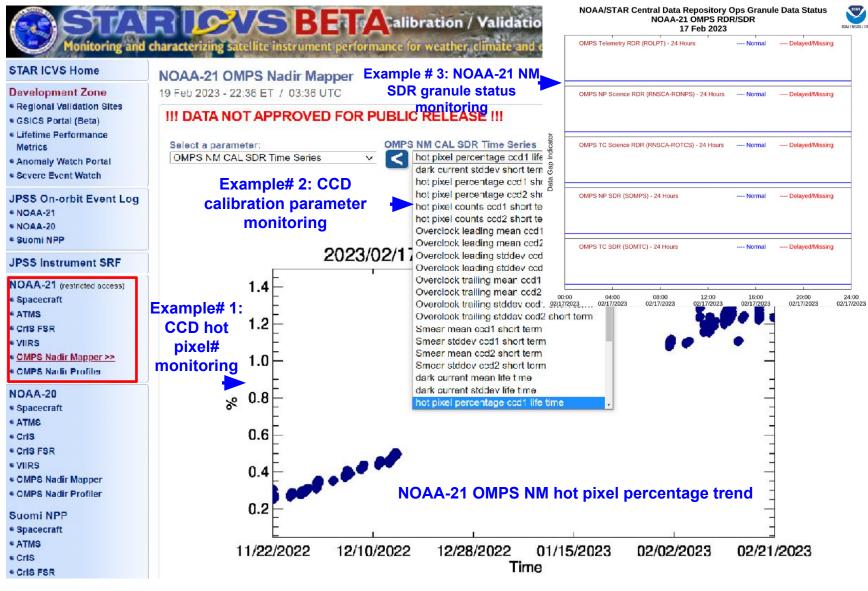
#### NOAA-21 OMPS NM 380nm



### NOAA-21 OMPS Geolocation Assessment (2/2): Geolocation Accuracy Relative to VIIRS\*



Geolocoation accuracy relative to VIIRS within the subpixel level ( ~ less than half of pixel size )


## Long-Term Monitoring of NOAA-21 OMPS NM and NP Data

 The ICVS has developed a beta version of the monitoring tool for NOAA-21 OMPS NM/NP instrument,

calibration/telemetry RDR and SDR data quality in a near-real time mode

(https://www.star.nesdis.noaa.gov/icvsbeta/status\_J02\_OMPS\_NM.php).

- The monitoring parameters include the instrument performance (temperature, CCD dark, smear, hot pixel, etc.), EV-radiance, reflectance, data quality flag, and other calibration parameters.
- Examples are given on the right panel for the NOAA-21 OMPS NM CCD hot pixel percentage trend and others.



(Courtesy of ICVS D. Liang)



| Name        | Organization   | Application | <b>User Feedback</b><br>- User readiness dates for ingest of data and bringing data to operations                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Larry Flynn | NOAA/STAR/SMCD |             | <ol> <li>The V8Pro ozone is reasonable but is impacted<br/>by the wavelength scale error as are the error<br/>flags.</li> <li>The aerosol index and effective reflectivity maps<br/>look good at the eyeball level.</li> <li>The SDR empirical wavelength scale has a<br/>cut-off of ±0.1 nm. There may have been a -0.11<br/>nm shift from ground to orbit.</li> <li>The wavelength scale appears to be off by three<br/>pixels relative to the Earth radiance and Solar<br/>Irradiance.</li> </ol> |
|             |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



## NOAA-21 OMPS NM and NP SDR Data User Feedback:

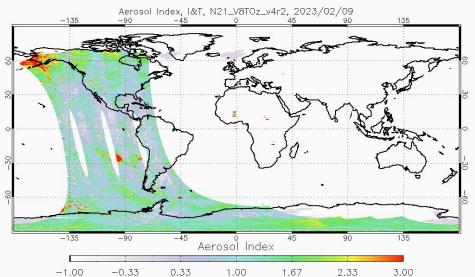
# OMPS NOAA21 EDR from I&T V8TOz-v4r2 and V8PRO-v4r2 (Presenter: Larry Flynn)

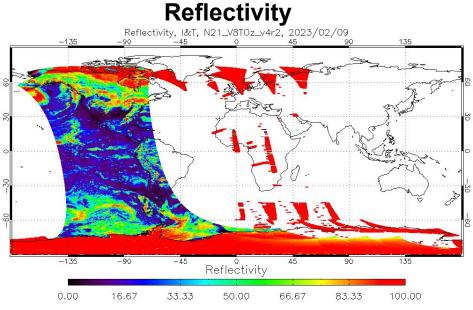
Contributors: L. Flynn and Z. Zhang with some ICVS materials



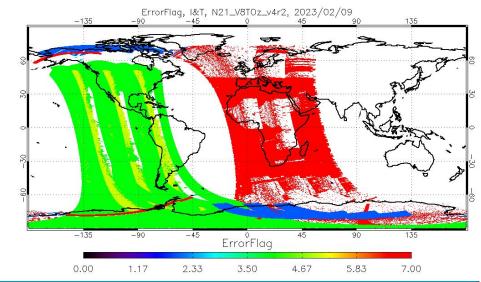
## Summary of NOAA-21 OMPS NM findings

- Noise levels for the smaller FOVs look good.
- The SDR empirical wavelength scale has a cut-off of ±0.1 nm. There may have been a -0.11 nm shift from ground to orbit. Note: the SDR is not designed to perform such large shifts as the effective FWHM is increased in the interpolation.
- The wavelength scale appears to be off by three pixels relative to the Earth radiance and Solar Irradiance.
- The Rad/Irradiance values have structure that may be related to the solar irradiance wavelength scale shift or bandpass choices. A measured solar and wavelength scale should clear this up. There is a deviation below 303 nm which could be related to stray light correction tuning, or the 3-pixel shift or a -0.1 nm shift.
- The night side measurements show that the dark correction is pretty good and confirm the noise levels.
- The V8TOz ozone is reasonable but is impacted by the wavelength scale error as are the error flags.
- The aerosol index and effective reflectivity maps look good at the eyeball level.





## **V8TOz Retrievals, 2023/02/09**

#### Total Ozone

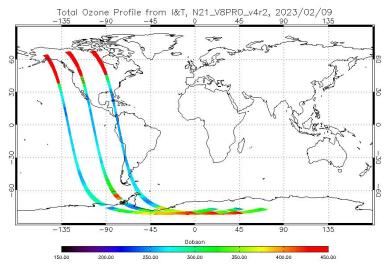



#### Aerosol Index

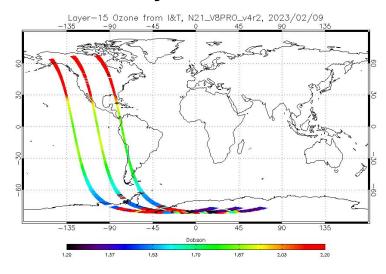




**Error Flag** 




dation Maturity Review


## Summary of NOAA-21 OMPS NP findings from 02/09 SDR Data

- The ICVS Mg II Index suggest a shift of -0.07 nm between the prelaunch used for the solar the in-flight wavelength scale.
- The V8Pro ozone is reasonable but is impacted by the wavelength scale error as are the error flags.
- We have just started checking for stray light (both in-band and out-of-band).

#### **Total Ozone Profile**



Layer-15 Ozone



### Reflectivity331 from I&T, N21\_V8PR0\_v4r2, 2023/02/09 -135 -90 -45 0 135 -0 -45 0 -45 00 135 -0 -45 0 45 00 135 Reflectivity -135 -90 -45 0 45 00 135 Reflectivity

Error Flag



 Provide updates for the status of the risks/actions identified during the previous maturity review(s); add new ones as needed

| Identified<br>Risk/Issue | Description                                  | Impact                                         | Action/Mitigation and Schedule                                                                                                             |
|--------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Issue # 1                | Wavelength scale registration change         | Big impact on NM<br>and NP SDR data<br>quality | A new DR to update the NOAA-21 NM/NP<br>wavelength and osol LUTs (4 tables):<br>TC_OSOL-LUT; TC_WAVELENGTH;<br>NP_OSOL-LUT; NP_WAVELENGTH; |
| Issue # 2                | NOAA-21 OMPS NM wavelength pixel-shift error | NOAA-21 OMPS<br>NM data quality                | A new DR is to be open to update the following four<br>tables in combination with Issue # 1:<br>TC_OSOL-LUT; TC_WAVELENGTH                 |
|                          |                                              |                                                |                                                                                                                                            |
|                          |                                              |                                                |                                                                                                                                            |



| Science Maturity Check List                                                                             | Yes ?                                                                                          |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| ReadMe for Data Product Users                                                                           | Draft is done (internal review)                                                                |
| Algorithm Theoretical Basis Document (ATBD)                                                             | The OMPS (SDR&EDR) ATBD exits but it<br>needs to be updated: in progress<br>(Target: by March) |
| Algorithm Calibration/Validation Plan                                                                   | Yes                                                                                            |
| (External/Internal) Users Manual                                                                        | N/A                                                                                            |
| System Maintenance Manual (for ESPC products)                                                           | N/A                                                                                            |
| Peer Reviewed Publications<br>(Demonstrates algorithm is independently reviewed)                        | In plan                                                                                        |
| Regular Validation Reports (at least annually)<br>(Demonstrates long-term performance of the algorithm) | Yes                                                                                            |



| Beta Maturity End State                                                                                                                                                    | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Product is minimally validated, and may still contain significant identified and unidentified errors                                                                       | <ul> <li>(1) The NOAA-21 OMPS NM and NP SDR data shows a good quality. The images are visually comparable with SNPP and NOAA-20. The data have no obvious geolocation errors.</li> <li>(2) The NOAA-21 OMPS NM SDR has about 7 (20) times spatial resolution as the NOAA-20 (SNPP), thus being capable of capturing fine clouds and ozone features</li> <li>(3) Product performance has been demonstrated through the analysis of about nine non-global data sets.</li> <li>(4) A preliminary comparison of NOAA-21 OMPS NM at 380 nm has been conducted with VIIRS M1 band for geolocation error assessment .</li> <li>(5) Two issues related to the instrument and SDR data quality have been identified (six calibration tables are to be updated soon).</li> </ul> |  |
| Information/data from validation efforts can only be used<br>to make initial qualitative or very limited quantitative<br>assessments regarding product fitness-for-purpose | Yes<br>(The NOAA-21 OMPS NM/NP SDR data are being tested in the<br>OMPS EDR retrievals, showing a fine comparison with the<br>SNPP/NOAA-20 products.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Documentation of product performance and identified<br>product performance anomalies, including recommended<br>remediation strategies, exists                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |



### Conclusion

- Cal/Val results summary:
  - NOAA-21 OMPS NM and NP instrument performs stably, and the SDR data show a reasonable quality
    - NM (305 ~ 380nm) and NP SDR data meet the SNR requirements
    - NM SDR data meets geolocation requirement (geolocation error less than 0.5 pixel size)
    - OMPS NM and NP SDR data show a reasonable global distribution. Particularly, NM demonstrates a strong capability in visually capturing cyclone fine structure including storm eye due to its high resolution
    - Ozone products from NOAA-21 OMPS SDR data show a reasonable feature
  - Team recommends algorithm Beta maturity
    - Address pre-launch concerns/waivers: yes.
    - Caveats: six LUTs are to be delivered
      - #1: There is about -0.14nm ground-to-orbit wavelength shift for NOAA-21 OMPS NM and -0.09nm for NOAA-21 NP (4 LUTs are to be updated)
      - #2: There is a 3-pixel-wavelength-offset error in the NOAA-21 OMPS NM (2 LUTs are to be updated)
      - (A new DR is to be opened to solve #1 and #2)
      - #3: There is an albedo calibration discrepancy between the NOAA-21 OMPS NM and NP in the wavelength range from 300 to 310nm (one calibration table about NM radiance calibration coefficient is to be updated) (DR#9960)
      - #4: The solar flux calibration coefficients in the three extra wavelengths are missed (solar calibration table is to be updated) (DR#9959)



- Lessons learned for NOAA-21 Cal/Val
  - Update OMPS NM and NP dark LUT ASAP to ensure a reasonable feature in observed earth view radiance
  - Prepare offline ADL OMPS SDR processing with different sample table and resolutions to reprocess SDR data in support of new calibrations
  - Establish the solar irradiance radiometric calibration algorithm to speed up the OMPS SDR calibration/validation analyses
- Planned recent improvements (prior to the Provisional Review)
  - #1: Complete two approved DRs (9959 and 9960) along with a new DR (see #2)
  - #2: Open a new DR: simultaneously test and deliver 6 LUTs (OSOL solar, wavelength and radiance calibration coefficient tables for each of OMPS NM and NP)



### Plan Future Cal/Val Activities towards Provisional Review

- Planned Detailed Cal/Val Activities towards Provisional review
  - Simultaneously test and deliver 6 LUTs (OSOL solar, wavelength and radiance calibration coefficient tables for each of OMPS NM and NP) (DR. # 9959, 9960 and a new DR)
  - Deliver the 1<sup>st</sup> wavelength and OSOL calibration tables (a new DR is needed?)
  - Investigate potential solar intrusion for NOAA-21 OMPS NP and develop a correction algorithm based on the existing NOAA-20 algorithm
  - Further improve the NOAA-21 OMPS NM and NP wavelength registration accuracy towards requirement
  - Continue evaluating the geolocation accuracy of NOAA-21 OMPS NM/NP data
  - Evaluate the performance of the current stray light correction table and improve it as needed.
  - Continue assessing the NOAA-21 instrument and data performance
  - Conduct the inter-sensor comparison of NOAA-21 OMPS NM with Tropomi and GEMS
  - Understand the solar calibration algorithm
  - Validate the NOAA-21 OMPS NM/NP SDR data quality using RTM such as TomRad, CRTM and Line-by-line RTM
- Future Cal/Val activities / milestones
  - Provisional review: April 2023



• backup



- Potential values and benefits to keep three JPSS satellites in conducting the following studies:
  - Conduct impact analysis of OMPS nadir instrument spectral (e.g., BPS) characterization differences on radiometric calibration accuracy (a sensitivity analysis is given in the figure)
  - Improve/develop the UV radiometric calibration methodology with different spatial resolutions
  - Identify uncertainty sources due to differences in instrument spectral features, resolution
  - Establish long-term climate OMPS NM and NP SDR data sets



#### **OMPS SDR Tables/LUTs for Calibration Activities**<sup>1,2,3</sup>

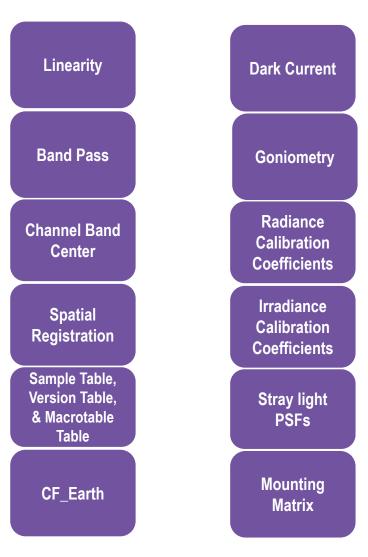
SDR Tables/LUTs for NM OMPS-TC-EV-SAMPLE-GND-PI OMPS-TC-MACROTABLE-GND-PI OMPS-TC-DARKS-GND-PI OMPS-TC-SAA-DARKS-GND-PI **OMPS-TC-LINFARITY OMPS-TC-BRDFGRIDS** OMPS-TC-CF-EARTH-GND-PI **OMPS-TC-SIRR-I UT OMPS-TC-FAM-LUT** OMPS-TC-STRAYLIGHT-LUT OMPS-OMPS-TC-WAVELENGTH OMPS-TC-TIMING-PATTERN-GND-PI **OMPS-TC-CALCONST-LUT** OMPS-TC-OSOL-LUT

SDR Tables/LUTs for NP OMPS-NP-EV-SAMPLE-GND-PI OMPS-NP-MACROTABLE-GND-PI OMPS-NP-DARKS-GND-PI OMPS-NP-SAA-DARKS-GND-PI OMPS-NP-I INFARITY OMPS-NP-BRDFGRIDS **OMPS-NP-CF-EARTH-GND-PI OMPS-NP-SIRR-I UT** OMPS-NP-FAM-LUT OMPS-NP-STRAYLIGHT-LUT OMPS-OMPS-NP-WAVELENGTH OMPS-NP-TIMING-PATTERN-GND-PI OMPS-NP-CALCONST-LUT OMPS-NP-OSOL-LUT

OMPS-VERSIONID-GND-PI for both NM and NP

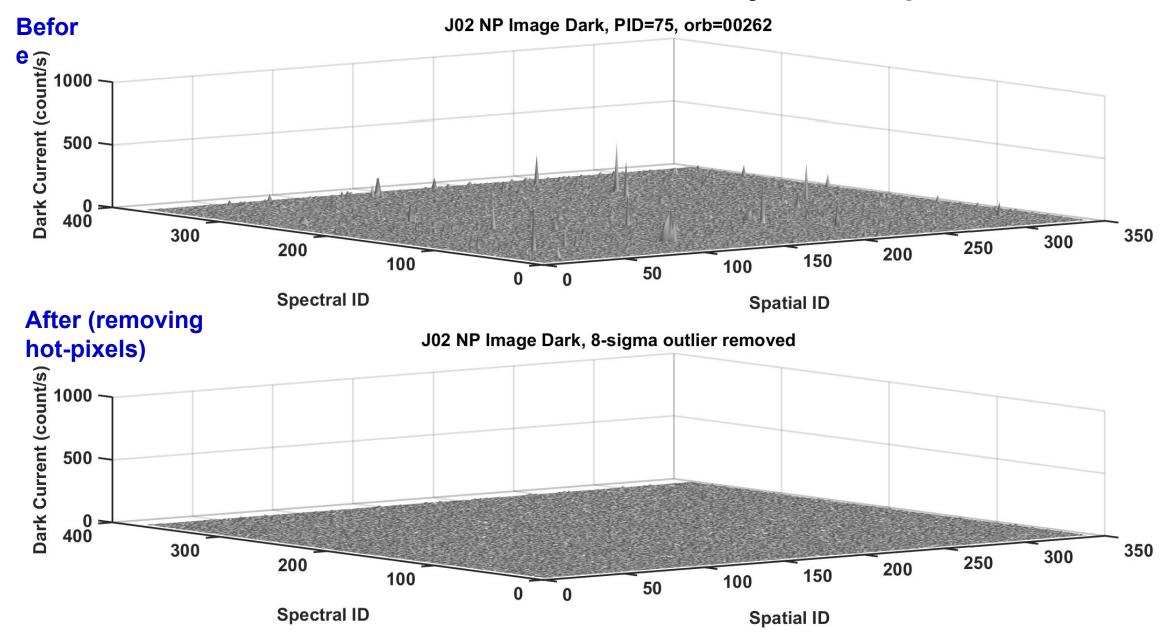
<sup>1.</sup> Gain table uploaded to flight software is not listed;

<sup>2</sup>. Tables marked in blue should be updated upon calibration after the launch;


<sup>3.</sup> Mounting Matrix is not included.

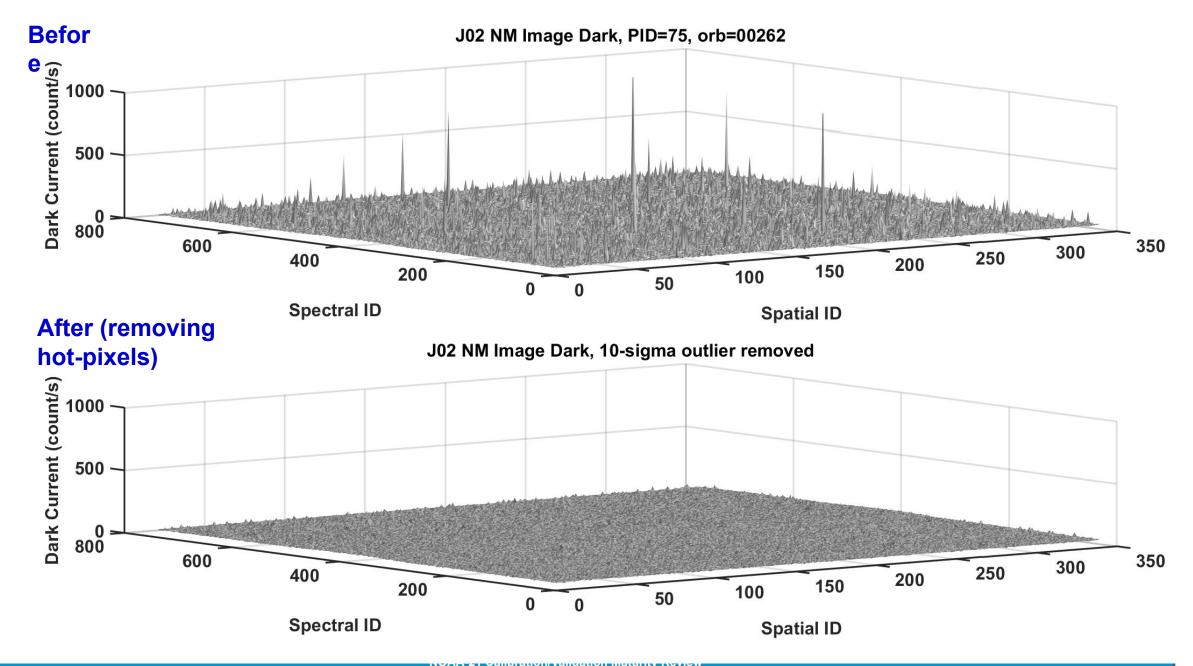
43



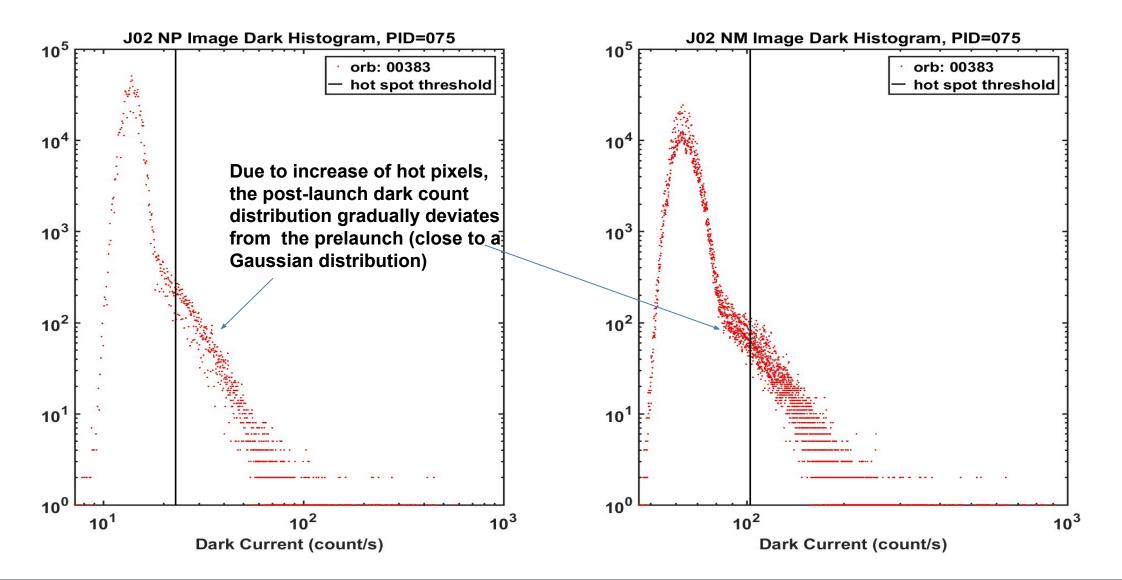

## Example: OMPS NM SDR Algorithm Calibration Table (LookUp Table or LUT) Development

- 14 NOAA-21 NM/NP SDR algorithm LUTs
   (7 LUTs are related to spatial resolution)
  - Measurements from NASA : Version table,
     Sample Table, Macrotable, and Timing Pattern
  - Spectrometric LUTs: Spectral Response,
     Spectral Registration, Wavelengths
  - Radiometric LUTS: Calibration Coefficients, CF-Earth, Darks, Linearity, Stray Light, Solar Irradiance
  - Geolocation LUT: Mounting Matrix and Field Angle Map
  - Version table maps for OMPS NM measurement tables to SDR algorithm




44

**J02 OMPS NP Dark Calibration Analysis Example** 






J02 OMPS NM Dark Calibration Analysis Example



# NOAA-21 OMPS NM Door Closed Dark Preliminary Analysis (PID.=

