## Beta/Provisional Maturity Science Review For NOAA-21 VIIRS Polar Winds (VPW)

### STAR Winds Science Team:

Jaime Daniels<sup>1</sup>, Wayne Bresky<sup>2</sup>, Andy Bailey<sup>2</sup>, Rico Allegrino<sup>2</sup>, Steve Wanzong<sup>3</sup>, Dave Santek<sup>3</sup>, Rich Dworak<sup>3</sup>, Jeff Key<sup>1</sup>

<sup>1</sup>NESDIS Center for Satellite Applications and Research (STAR) <sup>2</sup>IMSG <sup>3</sup>University of Wisconsin/CIMSS

1/25/2024



#### 1. <u>Beta</u>

- Product is minimally validated, and may still contain significant identified and unidentified errors.
- Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-forpurpose.
- o Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

#### 2. Provisional

- Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- o Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.

#### 3. Validated

- Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).
- Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.
- Product analyses are sufficient for full qualitative and quantitative determination of product fitness-for-purpose.
- Product is ready for operational use based on documented validation findings and user feedback.
- o Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument.



# BETA/PROVISIONAL MATURITY REVIEW MATERIAL



- Algorithm Cal/Val Team Members
- Product Overview/Requirements
- Evaluation of algorithm performance to specification requirements
  - Algorithm version, processing environment
  - Evaluation of the effect of required algorithm inputs
  - Quality flag analysis/validation
  - Error Budget
- User Feedback
- Downstream Product Feedback
- Risks, Actions, and Mitigations
- Documentation (Science Maturity Check List)
- Conclusion
- Path Forward



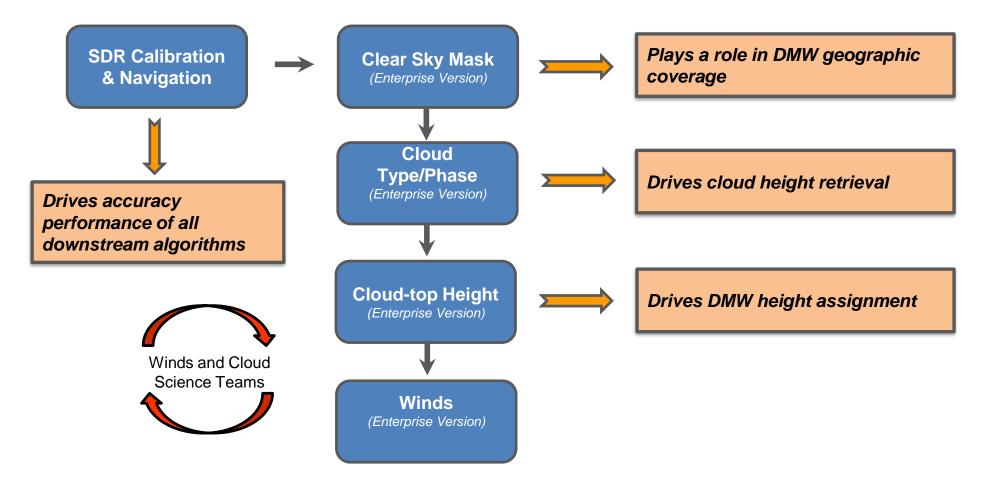
### Algorithm Cal/Val Team Members

| Name          | Organization                         | Major Task                                                                   |
|---------------|--------------------------------------|------------------------------------------------------------------------------|
| Jaime Daniels | NOAA-NESDIS-STAR-SMCD                | Winds Science Team Lead                                                      |
| Jeff Key      | NOAA-NESDIS-STAR-SMCD<br>@ U/W-CIMSS | Winds Science Team Advisor                                                   |
| Dave Santek   | UW-Madison/CIMSS                     | Winds Algorithm Development/Validation                                       |
| Rich Dworak   | UW-Madison/CIMSS                     | Winds Algorithm Development/Validation                                       |
| Steve Wanzong | UW-Madison/CIMSS                     | Cloud Algorithm Development/Maintenance; Cloud/Winds Science<br>Team Liaison |
| Wayne Bresky  | IMSG                                 | Winds Algorithm Development/Validation/Maintenance                           |
| Andy Bailey   | IMSG                                 | Winds Algorithm Development/Validation/Maintenance                           |
| Hongming Qi   | NOAA-NESDIS-OSPO                     | Winds Product Area Lead                                                      |



• The Enterprise Winds Algorithm uses the following VIIRS channel

• M15


- The winds team assumes that all sensor input is valid given the full maturity status of the VIIRS SDRs
- Note The SRF for NPP/N20 and N21 for the 11µm (M15) and 12µm (M16) channels are noticeably different. This can lead to some differences when comparing the same algorithm among the three satellites.

|                  |         |      |                        | Spectral        | Horiz Sample   | Interval (km) |  |
|------------------|---------|------|------------------------|-----------------|----------------|---------------|--|
|                  | Bar     |      | Driving EDR(s)         |                 | (track x Scan) |               |  |
|                  |         | 140. |                        | (um )           | Nadir          | End of Scan   |  |
|                  | Γ       | M1   | Ocean Color            |                 | 0.742 x 0.259  | 1.60 x 1.58   |  |
|                  |         | MIT  | Aerosol<br>Ocean Color |                 |                |               |  |
|                  |         | M2   | Aerosol                | 0.436 - 0.454   | 0.742 x 0.259  | 1.60 x 1.58   |  |
|                  |         |      | Ocean Color            | 0.470 0.400     | 0.740 0.050    |               |  |
|                  |         | M3   | Aerosol                | 0.478 - 0.498   | 0.742 x 0.259  | 1.60 x 1.58   |  |
|                  | VisNIR  | M4   | Ocean Color<br>Aerosol | 0.545 - 0.565   | 0.742 x 0.259  | 1.60 x 1.58   |  |
| g                | /is     | 11   | Imagery EDR            | 0.600 - 0.680   | 0.371 x 0.387  | 0.80 x 0.789  |  |
| Bal              | ٢       |      | Ocean Color            |                 |                |               |  |
| ę                |         | M6   | Aerosol                | 0.662 - 0.682   | 0.742 x 0.259  | 1.60 x 1.58   |  |
| Reflective Bands |         | M6   | Atmosph. Correct.      | 0.739 - 0.754   | 0.742 x 0.776  | 1.60 x 1.58   |  |
| Яe               |         | 12   | NDVI                   | 0.846 - 0.885   | 0.371 x 0.387  | 0.80 x 0.789  |  |
| ž                |         |      | Ocean Color            | 0.846 - 0.885   | 0.742 x 0.259  | 1.60 x 1.58   |  |
|                  |         | M7   | Aerosol                | 0.040 - 0.000   | 0.742 X 0.208  | 1.00 X 1.00   |  |
|                  |         | M 8  | Cloud Particle Size    | 1.230 - 1.250   | 0.742 x 0.776  | 1.60 x 1.58   |  |
|                  |         | M9   | Cirrius/Cloud Cover    | 1.371 - 1.386   | 0.742 x 0.776  | 1.60 x 1.58   |  |
|                  |         | 13   | Binary Snow Map        | 1.580 - 1.640   | 0.371 x 0.387  | 0.80 x 0.789  |  |
|                  | Ľ       | M 10 | Snow Fraction          | 1.580 - 1.640   | 0.742 x 0.776  | 1.60 x 1.58   |  |
|                  | S/WM    | M11  | Clouds                 | 2.225 - 2.275   | 0.742 x 0.776  | 1.60 x 1.58   |  |
|                  | ŝ       | 14   | Im age ry Clouds       | 3.550 - 3.930   | 0.371 x 0.387  | 0.80 x 0.789  |  |
| ds               |         | M 12 | SST                    | 3.660 - 3.840   | 0.742 x 0.776  | 1.60 x 1.58   |  |
| E                | e Bands |      | SST                    | 3.973 - 4.128   | 0.742 x 0.259  | 1.60 x 1.58   |  |
|                  |         | M 13 | Fires                  | 3.873 - 4.126   | 0.742 X 0.238  | 1.00 x 1.00   |  |
| Emissive         |         | M14  | Cloud Top Properties   | 8.400 - 8.700   | 0.742 x 0.776  | 1.60 x 1.68   |  |
| nis              | Ľ       | M15  | Winds                  | 10.263 - 11.263 | 0.742 x 0.776  | 1.60 x 1.58   |  |
| Ē                | 2       | 15   | Cloud Imagery          | 10.500 - 12.400 | 0.371 x 0.387  | 0.80 x 0.789  |  |
|                  |         | M16  | SST                    | 11.538 - 12.488 | 0.742 x 0.776  | 1.60 x 1.68   |  |



### **VPW Product Overview**

Polar (tropospheric) winds are derived by tracking cloud features in infrared channel imagery. Wind speed, direction, and height are measured throughout the troposphere, poleward of approximately 70 degrees latitude, in cloudy areas only. Vertical and horizontal coverage is not uniform. For quality control, winds are derived using three consecutive orbits. Wind vectors are assigned the time of the middle image of the orbit triplet.





• JPSS Ground Segment Data Product Specification (Rev H); February 22, 2023

| Attribute | DPS     | <b>Requirement/Threshold</b>                                                                                                                                                                                             | Performance |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Coverage  | DPS-104 | The Polar Winds product shall provide polar wind vectors, at cloud tops, globally day and night, in cloudy areas, between the surface and the tropopause                                                                 |             |
| Precision | DPS-107 | The Polar Winds product shall provide polar wind vectors with a measurement precision of 3.8 meters/sec, expressed as <i>the standard deviation about the</i> mean vector difference. <i>(should be 4.2 meters/sec!)</i> |             |
| Accuracy  | DPS-108 | The Polar Winds product shall provide polar wind vectors with a measurement accuracy of 7.5 meters/sec, expressed as a mean vector difference.                                                                           |             |

**Note:** Cloud Mask, Cloud-top Phase, Cloud-top Pressure are used as input for the VPW product. VPW product performance is impacted by the quality of these upstream cloud products.



- Description of processing environment and algorithms used to achieve the maturity stage:
  - Algorithm version: V3R2
    - This version of the enterprise winds software is now consistent with the enterprise winds software implemented in the GOES-R ground system. Planned operational implementation date in the GOES-R ground system is January 30, 2024
    - Algorithm updates (applicable to VIIRS\*)
      - Check on the satellite zenith angle (70 deg threshold) associated with the target scene
      - Fail retrieved winds from target scenes dominated by:
        - o Ice clouds where wind height assignments are at/below 500mb
        - o Liquid clouds where wind height assignments are above 500mb
        - $\circ \quad \text{Mixed phase clouds} \quad$
      - \*Threshold changes to DMW and GFS wind quality control check
        - $\circ$  Band 8 DMW (CTWV) From 10 m/s to 8.5 m/s
        - Band 14 DMW From 10 m/s to 8 m/s
      - \*Replaced a test that checks cloud height retrieval quality flag with a check to ensure a valid cloud top pressure exist
        - Meant as a *temporary fix* to a late discovered bug in the framework software that incorrectly points a variable used in the winds code to the incorrect cloud height retrieval quality flag.
        - Required to recover a large number of good quality low level winds that were being tossed out
        - The winds team will deliver an updated version of the winds algorithm software to ASSISTT for implementation into operations at a TBD date.



#### Algorithm Theoretical Basis Documents

https://www.star.nesdis.noaa.gov/goesr/documentation\_ATBDs.php

#### - Processing Environment

Production site: NCCF (as provided in the product file attributes) Production environment: UAT (as provided in the product file attributes)

### - Effective date: November 16, 2023.

VPW data from November 16 – December 31, 2023 used in the analyses



| Data Quality<br>Flag (DQF)                            | Definition                                                                                                                                                                                                 |  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| -3                                                    | Good wind, but an alternative channel (band 13) used for feature tracking and an alternative set of channels used for the determination of cloud-top height/AMV height                                     |  |  |  |  |  |
| -2                                                    | Good wind, but an alternative set of channels used for the determination of cloud-top height/AMV height assignment                                                                                         |  |  |  |  |  |
| -1                                                    | Good wind, but an alternative channel used for feature tracking                                                                                                                                            |  |  |  |  |  |
| 0                                                     | Good wind                                                                                                                                                                                                  |  |  |  |  |  |
| Internal Quality                                      |                                                                                                                                                                                                            |  |  |  |  |  |
| Flag Failure<br>Codes                                 | Definition                                                                                                                                                                                                 |  |  |  |  |  |
| 1                                                     | Maximum gradient below acceptable threshold                                                                                                                                                                |  |  |  |  |  |
| 2                                                     | Target located on earth edge or Satellite Zenith Angle greater than 62°                                                                                                                                    |  |  |  |  |  |
| 3                                                     | Cloud amount failure (less than 10% cloud cover for cloud track winds or greater than 0% cloud cover for water vapor clear-sky winds)                                                                      |  |  |  |  |  |
| 4                                                     | Median pressure failure                                                                                                                                                                                    |  |  |  |  |  |
| 5                                                     | Bad or missing brightness temperature in target scene                                                                                                                                                      |  |  |  |  |  |
| 6                                                     | Multiple cloud layers present                                                                                                                                                                              |  |  |  |  |  |
| 7                                                     | Target scene too coherent (not enough structure for reliable tracking)                                                                                                                                     |  |  |  |  |  |
| 8                                                     | Tracking correlation below 0.6 (not used for nested tracking)                                                                                                                                              |  |  |  |  |  |
| 9                                                     | u-component acceleration greater than 10 m/s (5 m/s for visible)                                                                                                                                           |  |  |  |  |  |
| 10                                                    | v-component acceleration greater than 10 m/s (5 m/s for visible)                                                                                                                                           |  |  |  |  |  |
| 11                                                    | u- and v- component accelerations greater than 10 m/s (5 m/s for visible)                                                                                                                                  |  |  |  |  |  |
| 12                                                    | Derived wind slower than 3 m/s                                                                                                                                                                             |  |  |  |  |  |
| 13                                                    | Target scene too close to day/night terminator (visible and SWIR only)                                                                                                                                     |  |  |  |  |  |
| 14                                                    | Median pressure used for height assignment outside acceptable pressure range<br>(channel dependent)                                                                                                        |  |  |  |  |  |
| 15                                                    | Match found on boundary of search region                                                                                                                                                                   |  |  |  |  |  |
| 16                                                    | Gross difference from forecast wind (channel dependent)                                                                                                                                                    |  |  |  |  |  |
| 17                                                    | Median pressure (used for height assignment) of largest cluster for first image pair is<br>too different from median pressure of largest cluster for second image pair – only<br>valid for nested tracking |  |  |  |  |  |
| 18                                                    | Search region extends beyond domain of data buffer                                                                                                                                                         |  |  |  |  |  |
| 19                                                    | Expected Error (EE) too high                                                                                                                                                                               |  |  |  |  |  |
| 20                                                    | Missing data in search region                                                                                                                                                                              |  |  |  |  |  |
| 21                                                    | No winds are available for the clustering algorithm                                                                                                                                                        |  |  |  |  |  |
| 22                                                    | No clusters were found                                                                                                                                                                                     |  |  |  |  |  |
| Catastrophic Failures                                 |                                                                                                                                                                                                            |  |  |  |  |  |
| Invalid time interval                                 |                                                                                                                                                                                                            |  |  |  |  |  |
| Temporal data not available                           |                                                                                                                                                                                                            |  |  |  |  |  |
| Line segment swath<br>the Winds Configur              | n too small (must contain at least the same number of lines as target box size specified in<br>ration File.                                                                                                |  |  |  |  |  |
| Search region size is less than the target scene size |                                                                                                                                                                                                            |  |  |  |  |  |

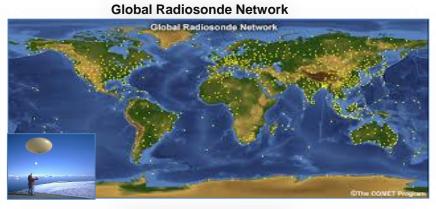
# Quality checks are done on the:

- Pixel level channel data in the target scene to be tracked (Target scene suitablilty)
- Derived wind (Validity)
- Assigned pressure height (Validity)
- Missing data

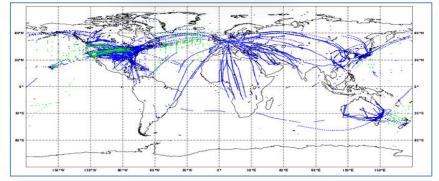
# No issues with the quality flags

## Evaluation of algorithm performance to specification requirements

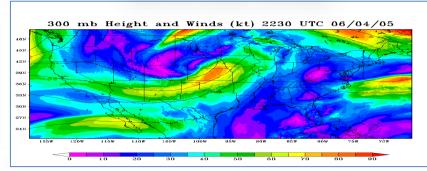
### Validation Strategies


#### **Visual Inspection of Derived Winds**

#### **Comparisons to Reference Wind Data**

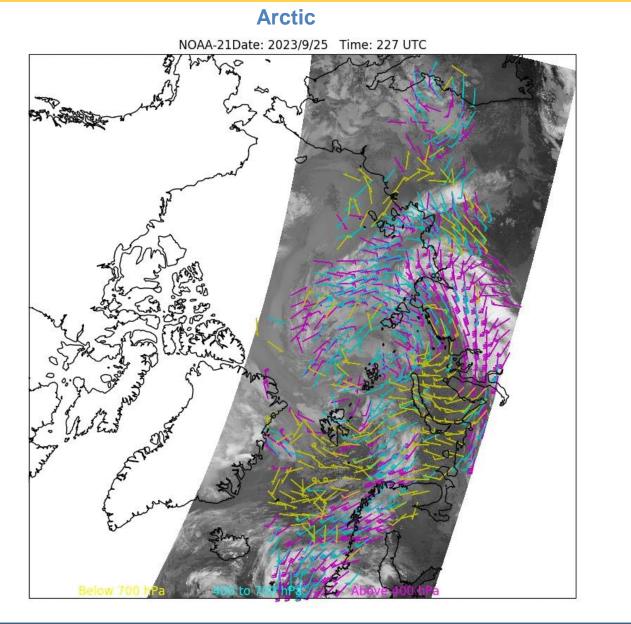

- Radiosonde wind observations
  - 00 UTC and 12 UTC, predominantly
  - Primarily land based
  - Used by all operational satellite processing centers that generate satellite winds
- Commercial Aircraft Wind Observations
  - Continuous temporal observations
  - Land and ocean based
  - Ascent/descent, flight level (predominantly)
- NCEP GFS Analysis Winds
  - 00, 06, 12, and 18 UTC
  - Land and ocean based
  - Get a comparison for every satellite wind

#### **Inter-sensor Comparisons**


Comparisons of NOAA-21, S-NPP, and NOAA-20 winds

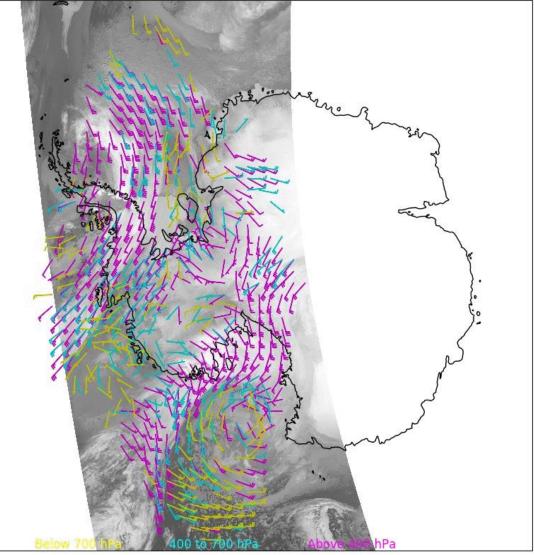


#### **Commercial Aircraft Winds**




#### NCEP GFS Analysis Wind Fields

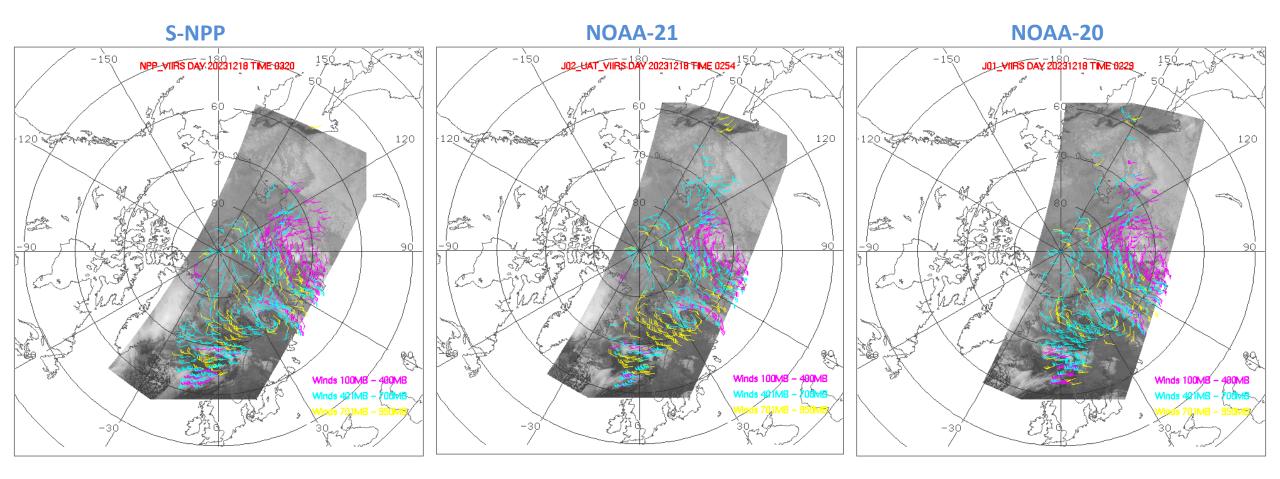



### **NOAA-21 VPW Product**



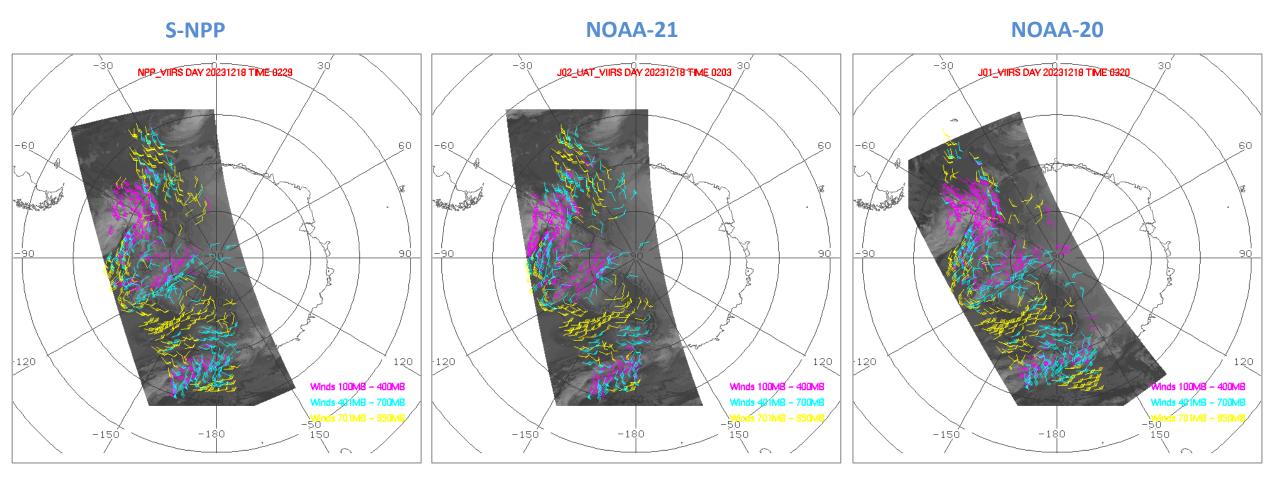






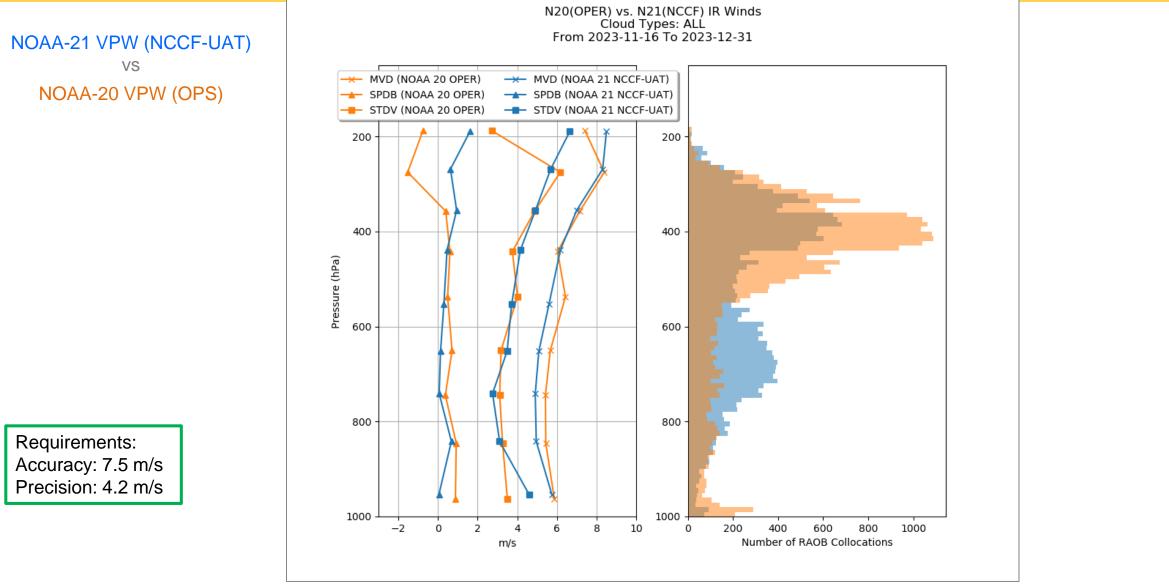



### S-NPP, NOAA-21, NOAA-20 VPW Winds (Arctic)

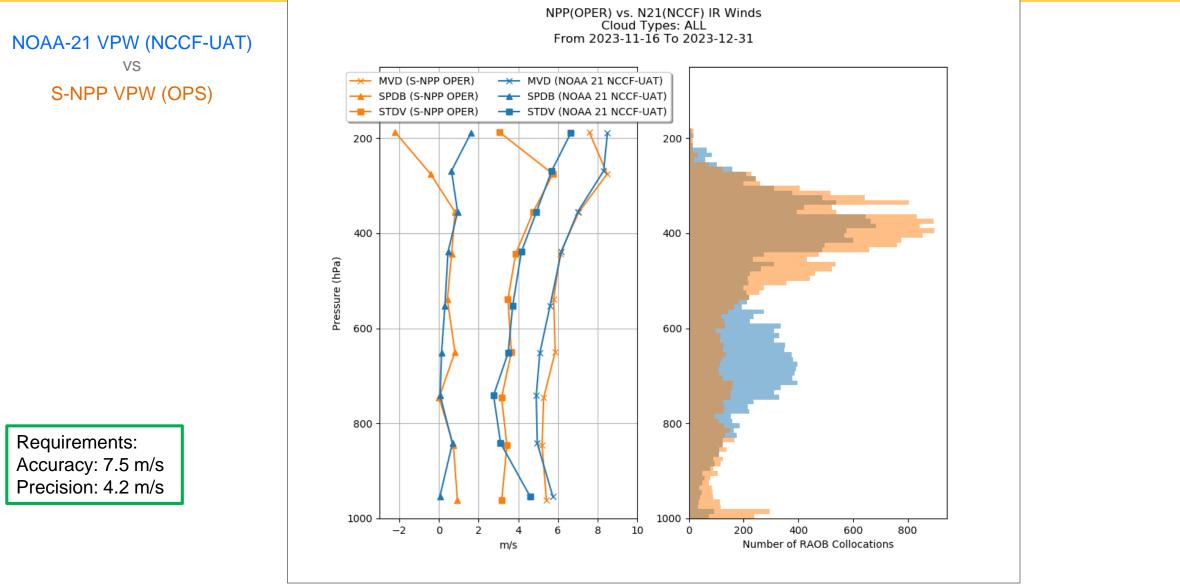

#### December 18, 2023



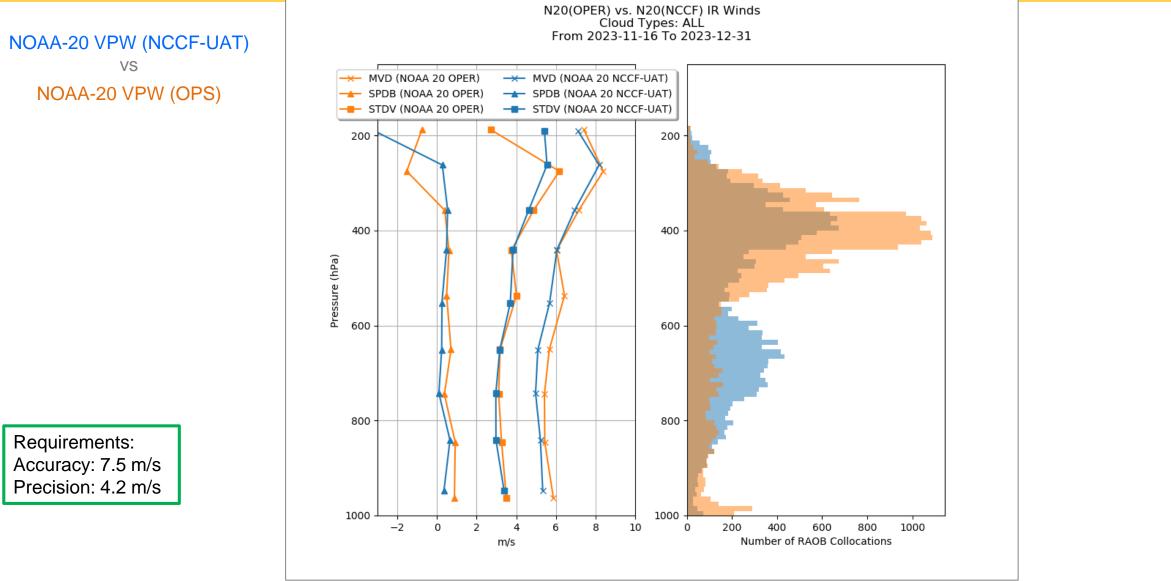



### S-NPP, NOAA-21, NOAA-20 VPW Winds (Antarctic)

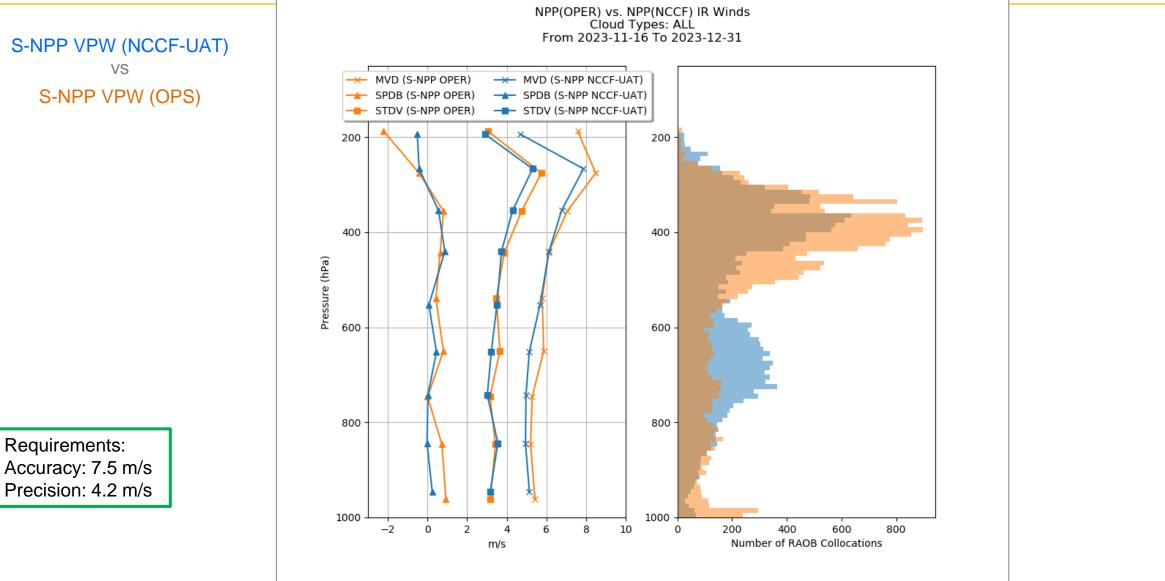
#### December 18, 2023

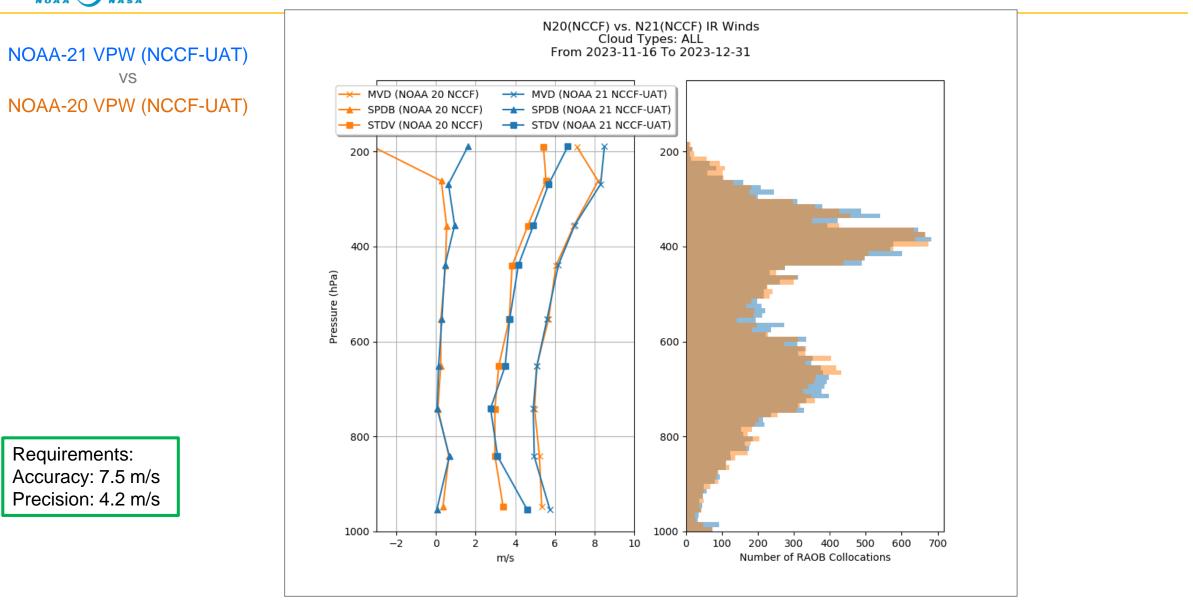




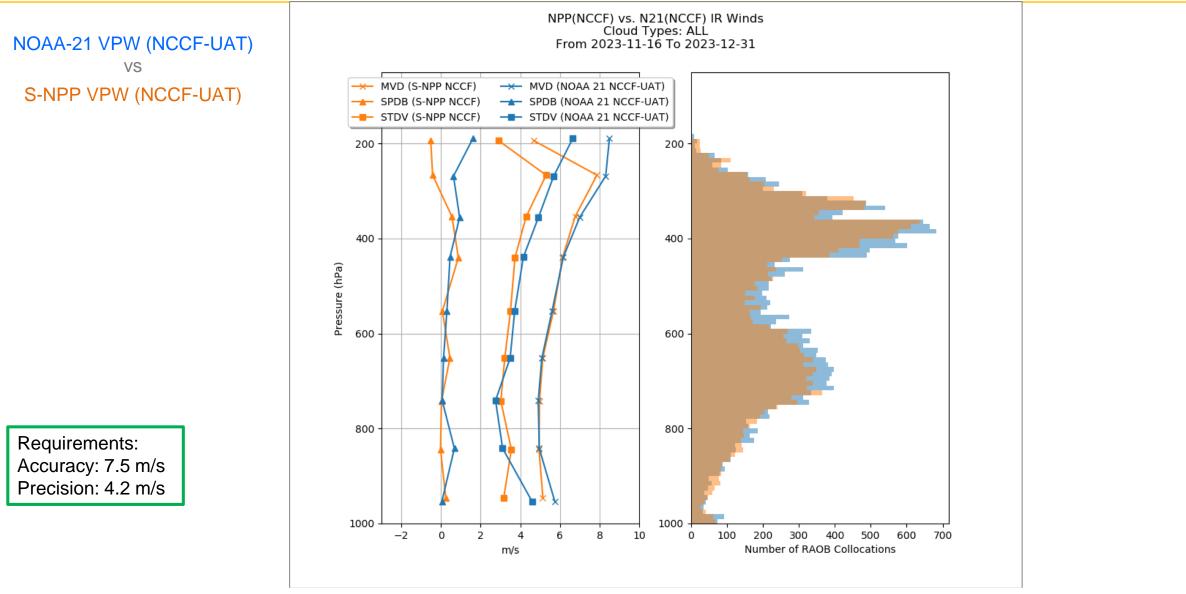




















### **Comparisons to Commercial Aircraft Winds**



### **VPW Comparisons to Commercial Aircraft Winds**

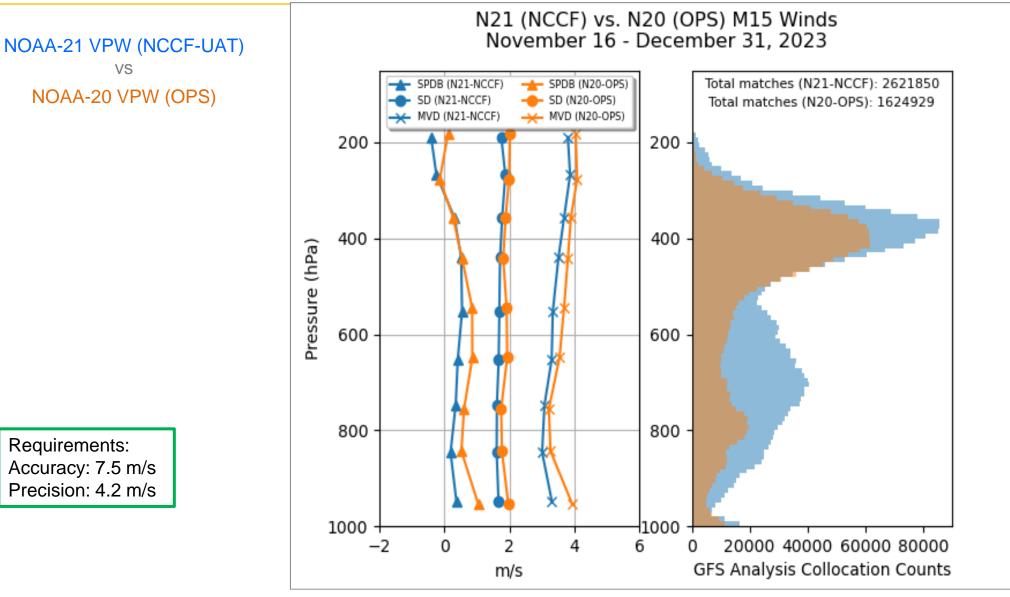
November 16 – December 31, 2023

| All Levels,<br>All Latitudes              | Operational and Test (NCCF-UAT) VPW Winds |                |                  |                       |                     |  |  |
|-------------------------------------------|-------------------------------------------|----------------|------------------|-----------------------|---------------------|--|--|
|                                           | NOAA-21<br>(NCCF-UAT)                     | S-NPP<br>(OPS) | NOAA-20<br>(OPS) | NOAA-20<br>(NCCF-UAT) | S-NPP<br>(NCCF-UAT) |  |  |
| Accuracy (m/s)                            | 5.44                                      | 5.90           | 5.71             | 5.57                  | 5.65                |  |  |
| Precision (m/s)                           | 3.48                                      | 3.40           | 3.61             | 3.83                  | 3.28                |  |  |
| <b>Speed Bias (m/s)</b><br>(Sat-Aircraft) | 0.48                                      | 0.86           | 0.71             | 0.45                  | 0.82                |  |  |
| Speed (m/s)                               | 18.52                                     | 18.83          | 18.18            | 18.61                 | 19.45               |  |  |
| Sample Size                               | 2854                                      | 3357           | 3033             | 3288                  | 3321                |  |  |

Mean Vector Difference (MVD) = Accuracy; Standard Deviation (STDV) = Precision

Requirements: Accuracy: 7.5 m/s Precision: 4.2 m/s




### **Comparisons to GFS Analysis Winds**

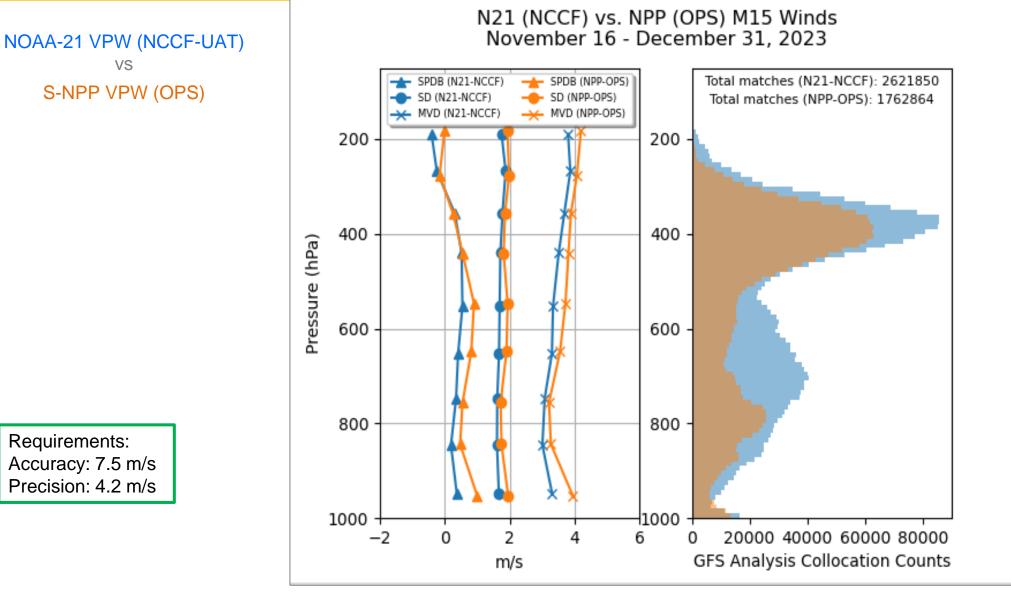


**Requirements:** 

VS

### **VPW Comparisons to GFS Analysis Winds**

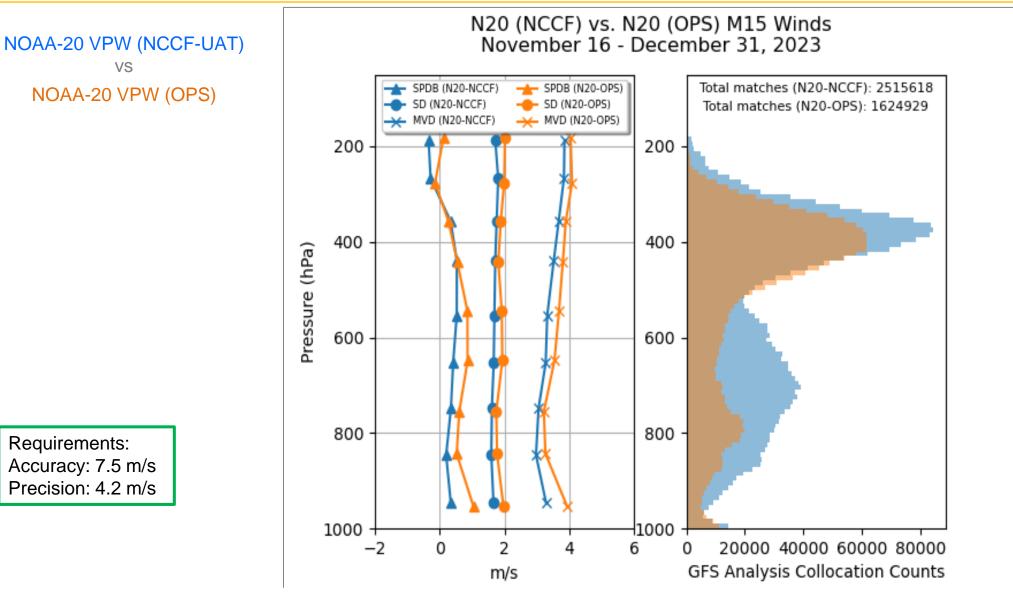





**Requirements:** 

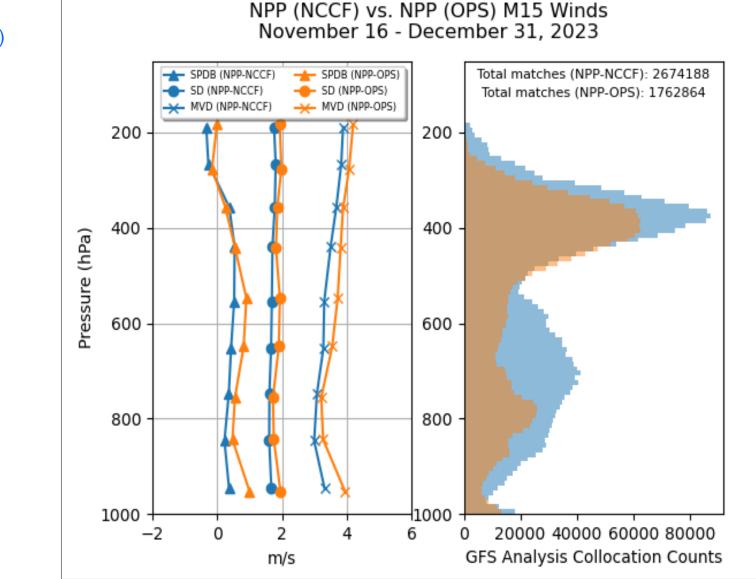
Accuracy: 7.5 m/s Precision: 4.2 m/s

VS


### **VPW Comparisons to GFS Analysis Winds**



Speed Bias (Sat-Raob); Standard Deviation (STDV) = Precision, Mean Vector Difference (MVD) = Accuracy Vertical Profiles (from left to right):




### **VPW Comparisons to GFS Analysis Winds**

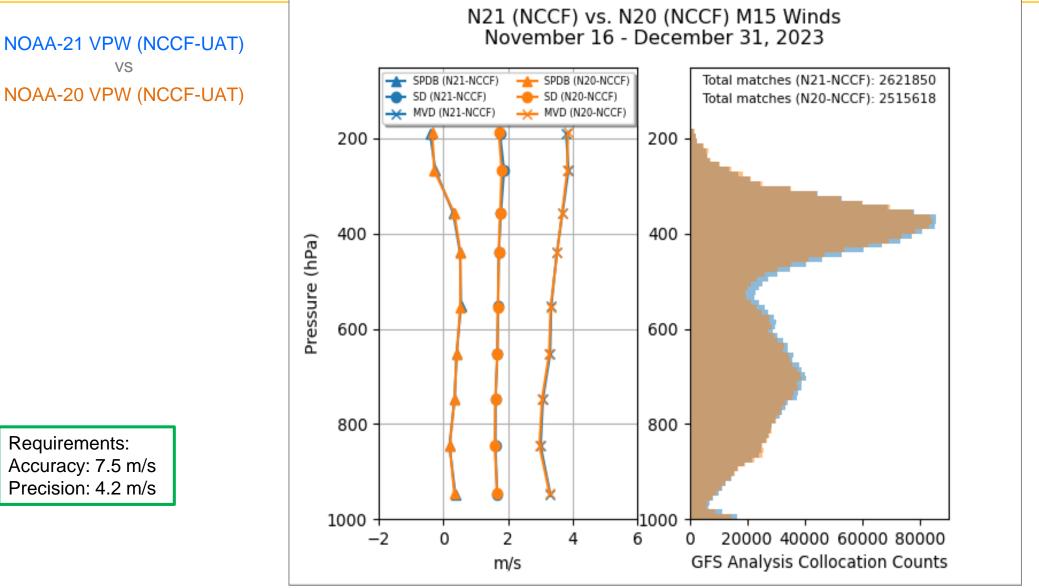




### **VPW Comparisons to GFS Analysis Winds**



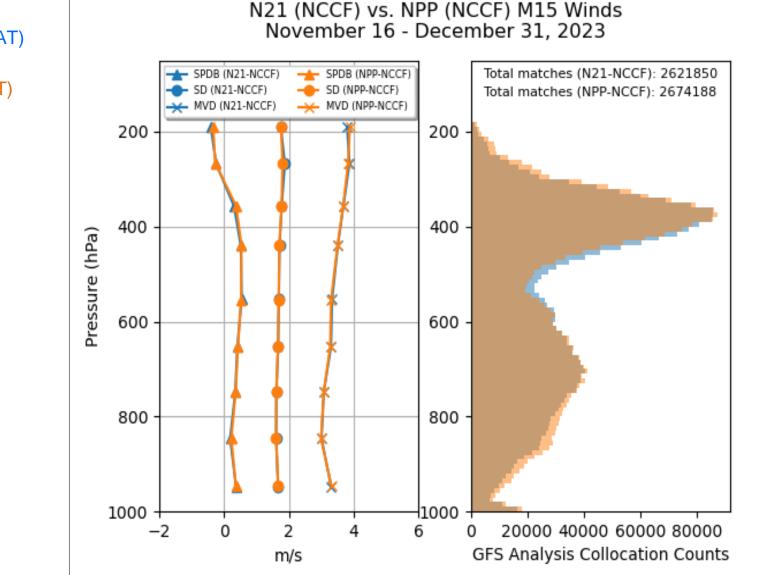
S-NPP VPW (NCCF-UAT) VS S-NPP VPW (OPS)


Requirements: Accuracy: 7.5 m/s Precision: 4.2 m/s



**Requirements:** 

VS


### **VPW Comparisons to GFS Analysis Winds**



Speed Bias (Sat-Raob); Standard Deviation (STDV) = Precision, Mean Vector Difference (MVD) = Accuracy Vertical Profiles (from left to right):



### **VPW Comparisons to GFS Analysis Winds**



NOAA-21 VPW (NCCF-UAT) VS S-NPP VPW (NCCF-UAT)

Requirements: Accuracy: 7.5 m/s Precision: 4.2 m/s



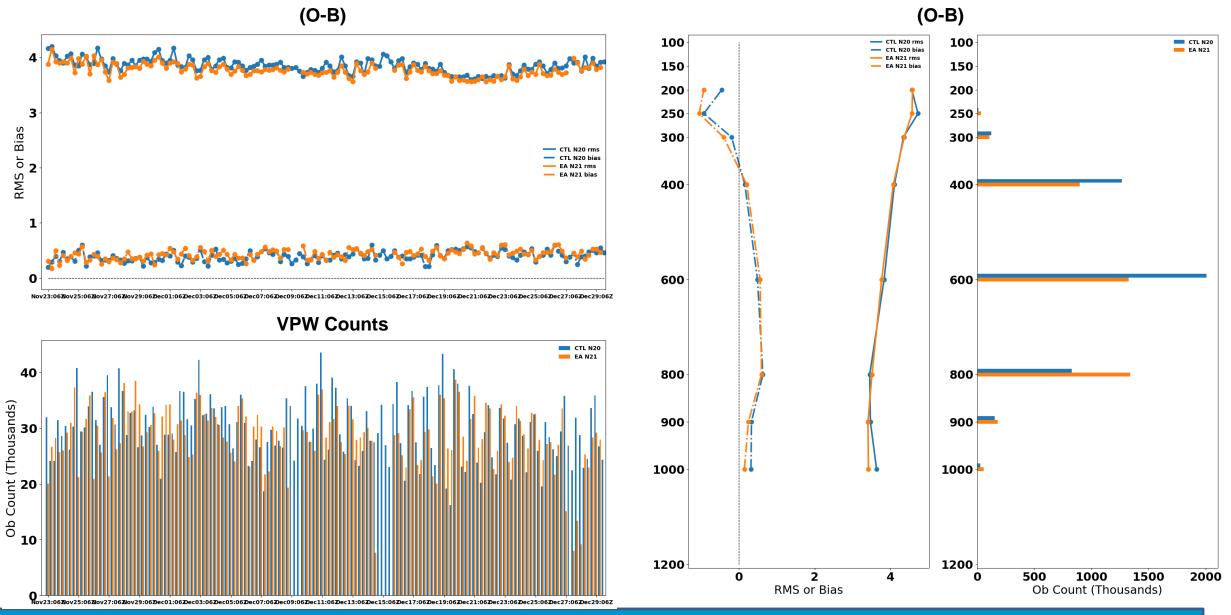
### **Error Budget**

| Attribute |     | Requirement/ | Pre-Launch  | <b>On-orbit Performance</b> |         |        | Meet                | Additional       |
|-----------|-----|--------------|-------------|-----------------------------|---------|--------|---------------------|------------------|
| Analyzed  | DPS | Threshold    | Performance | NOAA-21                     | NOAA-20 | S-NPP  | <b>Requirement?</b> | Comments         |
| Accuracy  | 108 | 7.5 m/s      |             | ~6 m/s                      | ~6 m/s  | ~6 m/s | yes                 | Comparison to    |
| Precision | 107 | 4.2 m/s      |             | ~4 m/s                      | ~4 m/s  | ~4 m/s | yes                 | radiosonde winds |

| Attribute   |     | Requirement/ | Pre-Launch  | <b>On-orbit Performance</b> |         |       | Meet                | Additional     |
|-------------|-----|--------------|-------------|-----------------------------|---------|-------|---------------------|----------------|
| AnalyzedDPS | DPS | Threshold    | Performance | NOAA-21                     | NOAA-20 | S-NPP | <b>Requirement?</b> | Comments       |
| Accuracy    | 108 | 7.5 m/s      |             | 5.44                        | 5.57    | 5.65  | yes                 | Comparison to  |
| Precision   | 107 | 4.2 m/s      |             | 3.48                        | 3.83    | 3.28  | yes                 | aircraft winds |

- On-orbit performance metrics are for VPWs generated with the enterprise winds algorithm
- The "Meet Requirement" response applies to all VPW data (e.g., all levels, Arctic, Antarctica)
- Accuracy and precision metrics are based on comparisons to Radiosonde and Aircraft winds since these are independent reference wind observations

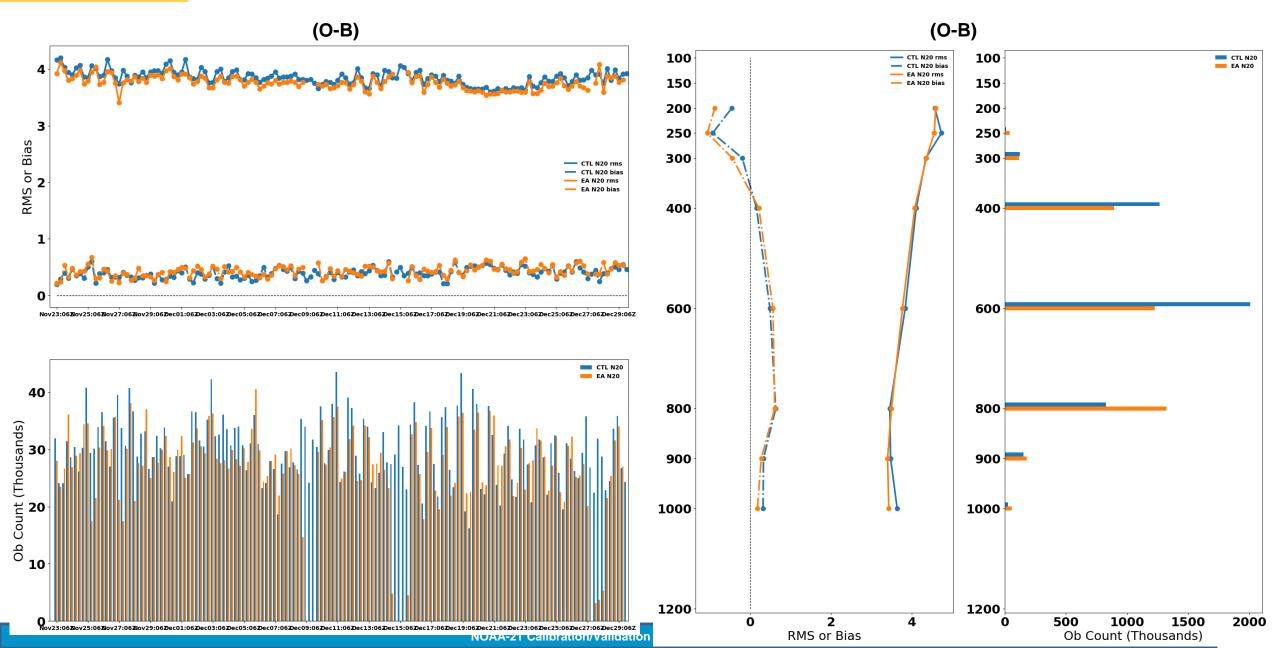



Brett Hoover @ NCEP/EMC is performing the testing with NCEP's Global Forecast System (GFS). Results reported here are from him.

- NOAA-21, NOAA-20, and S-NPP Enterprise VPW data pulled from the NESDIS PDA (UAT)
- **Experiment 1** (Completed)
  - November 23 December 29, 2023
  - Testing the difference between the Operational S-NPP and NOAA-20 VPW data (control) and the S-NPP and NOAA-20 Enterprise (v3r2) VPW data (Test) with no changes to the operational configuration
  - NOAA-21 VPW data are only monitored in this experiment
  - Impacts can be viewed here: <u>https://www.emc.ncep.noaa.gov/users/Brett.Hoover/v16.3.10\_VIIRSEA/</u>
  - "Overall, test results are good"
- **Experiment 2** (In progress; 18 days in)
  - November 23 December 29, 2023
  - Testing the impact of assimilating NOAA-21 Enterprise (v3r2) VPW data on top of the Experiment 1 Test



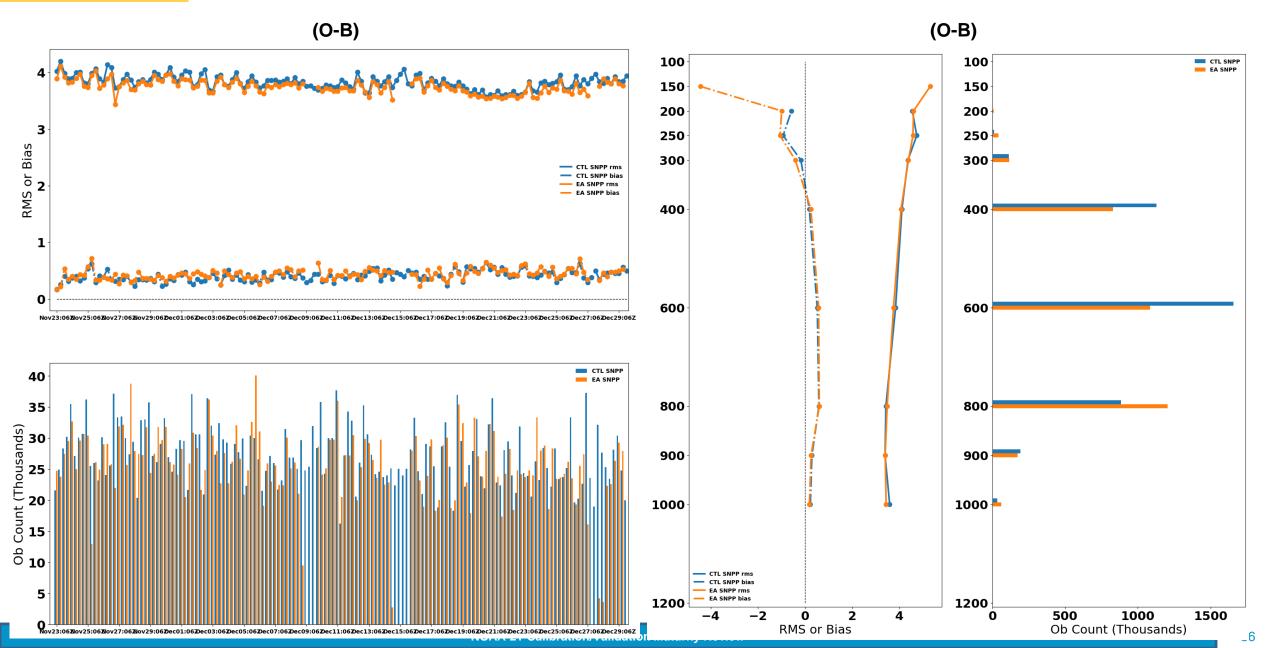
### **Experiment 1**


Control (Opr <u>NOAA-20</u> VPW) vs Test (v3r2 <u>NOAA-21</u> VPW)





### **Experiment 1**

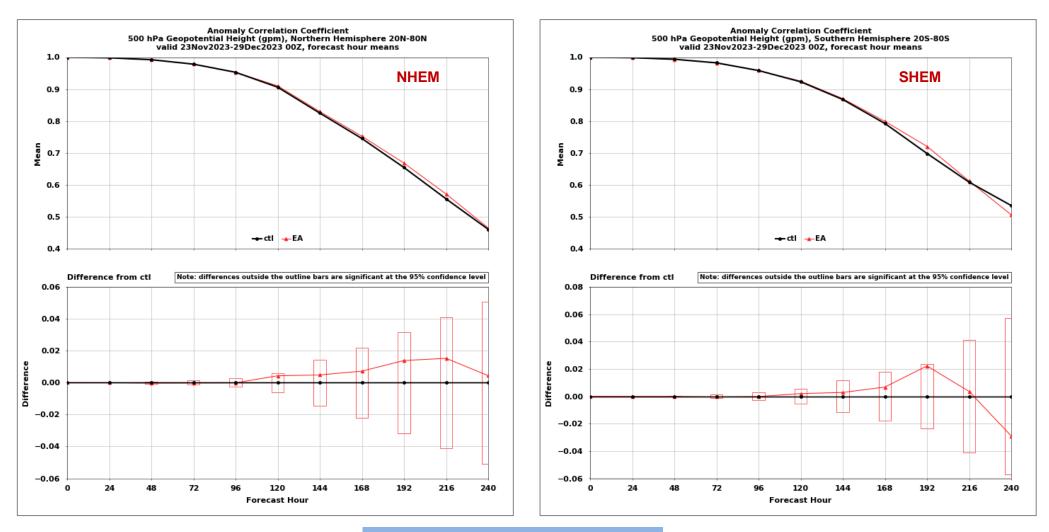

Control (Opr <u>NOAA-20</u> VPW) vs Test (v3r2 <u>NOAA-20</u> VPW)





### Experiment 1

Control (Opr <u>S-NPP</u> VPW) vs Test (v3r2 <u>S-NPP</u> VPW)






## **Experiment 1**

Anomaly Correlation (ACC) Scores – 500 hPa Geopotential Heights

Control vs Test (v3r2 Enterprise winds – NOAA-20, S-NPP)



Forecast Impact: Neutral



# **Overall Impact Scorecard - Assimilation of v3r2 NOAA-20 & S-NPP VPWs**

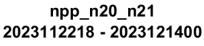
|                    |                                       |                  |           |          |          |         |         | S         | CO       | ore      | ca       | rd    |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|--------------------|---------------------------------------|------------------|-----------|----------|----------|---------|---------|-----------|----------|----------|----------|-------|----------|-----------|----------|----------|----------|--------|----------|-----------|----------|----------|-----|----------|----------|-----------|
|                    |                                       |                  |           | I        | N. An    | neric   | a       |           |          | N.       | Hen      | ıisph | ere      |           |          | S.       | Hem      | ıisph  | ere      |           |          |          | Tro | pics     |          |           |
|                    |                                       |                  | Day<br>1  |          |          |         |         | Day<br>10 |          |          | Day      | Day   |          | Day<br>10 |          | Day<br>3 |          |        |          | Day<br>10 | Day<br>1 | Day<br>3 |     |          |          | Day<br>10 |
|                    |                                       | 250hPa           | 1         | 5        | 5        | 0       | 0       | 10        | 1        | 5        | 5        | 0     | 0        | 10        | 1        | 5        | 5        |        | 0        | 10        | 1        | 5        | 5   | 0        | 0        | 10        |
|                    | Heights                               | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           | •        |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 700hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 1000hPa          |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | Vector<br>Wind                        | 250hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        | -        |           |          |          |     |          |          |           |
| nomaly Correlation |                                       | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
| Coefficient        |                                       | 850hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | Temp                                  | 250hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 850hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | MSLP                                  | MSL              |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | Heights                               | 10hPa            |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 20hPa            |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 50hPa            |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     | •        |          |           |
|                    |                                       | 100hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     | •        |          |           |
|                    |                                       | 200hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 700hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 850hPa           |           |          |          |         |         |           |          |          |          | -     |          |           |          | <u> </u> | -        |        |          | -         |          |          |     |          | -        |           |
|                    |                                       | 1000hPa          |           |          |          |         |         |           | -        |          |          | -     |          |           |          |          | -        |        |          | -         |          |          | -   |          | -        |           |
|                    |                                       | 1000m a<br>10hPa |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          | L_  |          |          |           |
|                    |                                       | 20hPa            |           |          |          |         |         |           |          |          |          |       |          |           | <u> </u> | -        |          |        |          |           |          |          |     |          | •        |           |
|                    |                                       |                  |           |          | <u> </u> |         |         |           | -        | <u> </u> | -        |       | <u> </u> |           |          | -        |          |        | -        | <u> </u>  | <u> </u> |          |     | <u> </u> | <b>_</b> |           |
|                    | Vector<br>Wind                        | 50hPa<br>100hPa  |           |          | <u> </u> |         |         |           | -        |          | _        |       |          |           |          | -        |          |        | -        | <u> </u>  |          |          |     | -        |          |           |
| RMSE               |                                       | 200hPa           |           |          |          |         |         |           | _        |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 700hPa           |           |          | <u> </u> |         |         | -         | <u> </u> |          |          | -     | <u> </u> |           |          | <u> </u> | <u> </u> |        |          | -         | <u> </u> | -        | -   |          | <u> </u> |           |
|                    |                                       | 850hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          | <u> </u> |        |          |           |          |          |     |          | -        |           |
|                    |                                       | 1000hPa          |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 10hPa            |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           | •        |          | •   |          |          |           |
|                    |                                       | 20hPa            |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           | •        |          | · · |          |          |           |
|                    |                                       | 50hPa            |           |          |          |         |         |           | -        | -        | -        |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 100hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | Temp                                  | 200hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    | remp                                  | 500hPa           |           |          |          |         |         |           |          |          |          |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
|                    |                                       | 500m d           |           | _        |          |         |         |           | -        |          | -        | -     |          |           |          |          | -        | -      |          | -         |          | -        | -   | -        | -        |           |
|                    |                                       |                  |           |          | 1        | Score   | card    | l Syn     | ıbol     | Lege     | nd       |       |          |           |          |          |          |        |          |           |          |          |     |          |          |           |
| ▲ v16.3.10_V       | IIRSEA is bette                       | r than v16.3.10  | _ctl at t | the 99.9 | 9% sig   | nifican | ce leve | el        | V        | 16.3.1   | 0_VIIR   | SEA i | s worse  | than v    | v16.3.1  | 10_ctl a | at the 9 | 9.9% s | signific | ance le   | evel     |          |     |          |          |           |
| ▲ v16.3.10_V       | IIRSEA is bette                       | r than v16.3.10  | _ctl at t | the 99%  | 6 signi  | ficance | level   |           | • v      | 16.3.1   | _VIIR    | SEA i | s worse  | than •    | v16.3.1  | 10_ctl a | at the 9 | 9% sig | nificar  | nce lev   | el       |          |     |          |          |           |
| v16.3.10_V         | IIRSEA is bette                       | r than v16.3.10  | ctl at t  | the 95%  | 6 signi  | ficance | e level |           |          | 16.3.1   | 0_VIIR   | SEA i | s worse  | than •    | v16.3.1  | 10_ctl a | at the 9 | 5% sig | nificar  | ice lev   | el       |          |     |          |          |           |
|                    | IIRSEA is bette<br>ally significant o |                  |           |          | VIIRSI   |         | l v16.3 | -         |          | lot stat | isticall |       |          | uian '    | 10.3.1   |          | n uie 9  |        | unicar   | ice lev   |          |          |     |          |          |           |

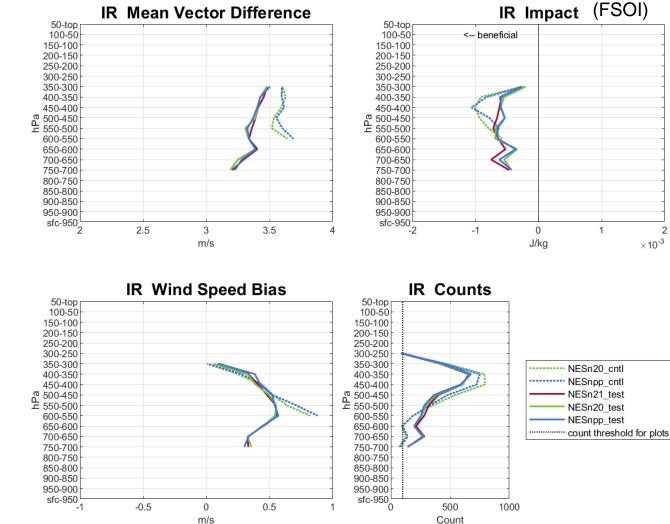
### Overall neutral impact

Dates: 20231123-20231229



Rebecca Stone @ NRL is performing the testing with the Navy's Global NAVGEM Forecast System. Results reported here are from her.


### **Experimental Setup**


- Model: NAVGEM T681
- Statistics period
  - 2023112218 2023121400 (a few small gaps, 72 DTGs)
- Quality Control (QC)
  - As in OPS, 175 hPa top limit, 975 hPa bottom limit
- Results
  - NESn21 compared with NESnpp and NESn20 in test run
  - NESn21 comparable to NESnpp and NESn20
  - NESnpp, NESn20, NESmetop compared in control and test
  - MVD, OmB speed bias improved, counts comparable
  - FSOI beneficial and in proportion
  - NESmetop fit to background improved in test

#### **Caution:**

These results have not been approved yet by NRL for public release, so they cannot be posted online yet. Results can be shared among NRL and NOAA.







- Wind Counts
  - Slight reduction in wind counts between 400-500 hPa for the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds relative to the N20, SNPP control winds
  - Slight increase in wind counts below 500 hPa for the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds relative to the N20, SNPP control winds

#### OmB Statistics

- Mean vector difference and speed bias stats are consistent between the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds
- Reduction in mean vector difference (all levels) for the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds relative to the N20, SNPP control winds
- Wind speed bias above 500 mb about the same for the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds and the N20, SNPP control winds
- Wind speed bias below 500 hPa looks good for the N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds

#### FSOI Statistics

 N21, N20, S-NPP VIIRS test (v3r2 enterprise) winds (all levels) show beneficial impact, with slight reduction in FSOI scores between 400-500 hPa and now reportable beneficial impact 500-700 hPa relative to N20, S-NPP control winds

series\_by\_level\_and\_type\_of\_AMV\_plot\_compare\_runs.m



• No issues with reformatting of netCDF4 VPW product datasets to BUFR.



 Provide updates for the status of the risks/actions identified during the previous maturity review(s); add new ones as needed

| Identified Risk                      | Description                                                                                                                                                                      | Impact | Action/Mitigation and Schedule                                                                                                                                                                                                                                                           |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enterprise Winds Algorithm           | Latest enterprise winds algorithm (v3r2)<br>replaces check that uses cloud height retrieval<br>quality flag with a temporary check to ensure a<br>valid cloud top pressure exist | Low    | <ul> <li>Correction to framework software is<br/>necessary to allow the enterprise winds<br/>software access to the cloud height retrieval<br/>flag</li> <li>Reinstate check that uses cloud height<br/>retrieval quality flag</li> <li>Schedule: Next algorithm update cycle</li> </ul> |
| Enterprise Cloud Height<br>Algorithm | The latest enterprise cloud algorithm has a tendency to generate a lot of cloud-top pressures at 986 mb.                                                                         | Low    | <ul><li>Investigate reasons for and resolve</li><li>Schedule: Next algorithm update cycle</li></ul>                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                  |        |                                                                                                                                                                                                                                                                                          |
|                                      |                                                                                                                                                                                  |        |                                                                                                                                                                                                                                                                                          |



| Science Maturity Check List                                                                             | Yes ?                                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
| ReadMe for Data Product Users                                                                           | Will be provided after review.                              |  |  |  |  |  |  |
| Algorithm Theoretical Basis Document (ATBD)                                                             | Yes                                                         |  |  |  |  |  |  |
| Algorithm Calibration/Validation Plan                                                                   | Yes                                                         |  |  |  |  |  |  |
| (External/Internal) Users Manual                                                                        | Yes                                                         |  |  |  |  |  |  |
| System Maintenance Manual (for ESPC products)                                                           | Yes                                                         |  |  |  |  |  |  |
| Peer Reviewed Publications<br>(Demonstrates algorithm is independently reviewed)                        | Yes                                                         |  |  |  |  |  |  |
| Regular Validation Reports (at least annually)<br>(Demonstrates long-term performance of the algorithm) | Long term monitoring available on STAR web site, on demand. |  |  |  |  |  |  |



| Beta/Provisional Maturity End State                                                                                                                                                                                                                                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts. | Yes |
| Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.                                                                                                                                             | Yes |
| Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.                                                                                               | Yes |
| Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.                                                                                                                       | Yes |



- Visual and quantitative assessments of the NOAA-21 VPW product was conducted and shown to meet product requirements
- NCEP/EMC and NRL assessments show that the quality of the NOAA-21, and S-NPP VPW products are of good quality with slight reductions in OmB statistics and overall neutral impact (relative to control) on forecast skill.
- The Winds and Cloud Science Teams will continue to closely interact on future updates (addressed earlier) to the cloud height and winds algorithms
- The Winds Science Team and the OSPO PAL will continue their close collaborations with the NWP user community
- The Winds Science Team recommends that the NOAA-21 VIIRS polar wind products have reached Beta and Provisional maturity status.



- Further improvements
  - Additional tuning of the cloud height algorithm aimed at further improving the height assignments of the VIIRS polar winds
  - Addition of the VIIRS SWIR 2.25um band to the enterprise winds algorithm enabling generation of VIIRS SWIR winds leading to additional high quality winds in the polar regions (*Plan: FY24 algorithm update*)
  - Tandem (doublet and triplet) VIIRS wind products generated in the overlap region of two different JPPS satellites (*Plan: FY25 algorithm update*)
- For "Full Maturity": continue to collect and perform longer-period product assessment, including regional/seasonal variations



# **Backup Slides**



AMVs (QI>60) are matched and compared against RAOBS or GFS model analysis winds. Accuracy is the mean vector difference (mean VD or MVD). Precision is standard deviation around the MVD.

$$Accuracy = \frac{1}{N} \sum_{i=1}^{N} (VD_i)$$

$$\operatorname{Precision} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ((VD_i) - (MVD))^2}$$

where:

$$(VD)_i = \sqrt{(U_i - U_r)^2 + (V_i - V_r)^2}$$

 $U_i$  and  $V_i$  ---> AMV  $U_r$  and  $V_r$  ---> "Truth"