

# JPSS/GOES-R Data Product Validation Maturity Stages - COMMON DEFINITIONS (Nominal Mission)

#### 1. Beta

- o Product is minimally validated, and may still contain significant identified and unidentified errors.
- Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-forpurpose.
- Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

#### 2. Provisional

- Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative)
   number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- o Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- o Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.

#### 3. Validated

- o Product performance has been demonstrated over a large and wide range of representative conditions (i.e., global, seasonal).
- Comprehensive documentation of product performance exists that includes all known product anomalies and their recommended remediation strategies for a full range of retrieval conditions and severity level.
- o Product analyses are sufficient for full qualitative and quantitative determination of product fitness-for-purpose.
- o Product is ready for operational use based on documented validation findings and user feedback.
- o Product validation, quality assurance, and algorithm stewardship continue through the lifetime of the instrument.

# JP S

#### **Outline**

- Algorithm Cal/Val Team Members
- Product Overview/Requirements
- Evaluation of algorithm performance to specification requirements
  - Algorithm version, processing environment
  - Evaluation of the effect of required algorithm inputs
  - Quality flag analysis/validation
  - Error Budget
- User Feedback
- Downstream Product Feedback
- Risks, Actions, and Mitigations
- Documentation (Science Maturity Checklist)
- Conclusion
- Path Forward



### **NOAA-21 VIIRS Ice Product Cal/Val Team**

# Algorithm Cal/Val Team Members

| Name           | Organization     | Major Task                                                                                                                                            |
|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Richard Dworak | CIMSS/UW-Madison | CIMSS project lead. Sea ice product analysis and validation, data processing, and project management.                                                 |
| Hong Zhang     | CIMSS/UW-Madison | Sea ice product analysis and validation of NOAA-21 Sea Ice products                                                                                   |
| Xuanji Wang    | CIMSS/UW-Madison | Sea ice thickness and age algorithm development, analysis ,and validation.                                                                            |
| Mark Tschudi   | CCAR/UC-Boulder  | Sea ice product analysis and validation                                                                                                               |
| Yinghui Liu    | NOAA/NESDIS      | NOAA project lead. Sea ice temperate/concentration algorithm development, analysis, and validation, overall NOAA snow and sea ice project management. |
| Jeff Key       | NOAA/NESDIS      | Overall NOAA snow and sea ice project management, assistance on analysis and validation                                                               |



#### **Ice Product Overview**

VIIRS ice products include Ice Surface Temperature, Ice Concentration, Ice Thickness and Age over water surface under clear-sky conditions for both day and night. Concentration and IST were declared Provisional in October 2023. This review is for thickness/age.

- Sea Ice Concentration (SIC)
  - Fraction of each pixel covered by ice
- Ice Surface Temperature (IST)
  - Radiating or "skin" temperature of the ice or snow on the ice
- Sea Ice Age and Thickness
  - lce age is, strictly speaking, the time that has elapsed since the formation of ice on the surface of sea water. For JPSS it is an age category: no ice, new/young ice (0~0.30 m), or other ice (> 0.30 m). Ice age is therefore related to ice thickness.



# **Product Overview/Requirements: Sea Ice Age**

| Attribute            | DPS | Requirement/Threshold                                  | Performance                                                 |
|----------------------|-----|--------------------------------------------------------|-------------------------------------------------------------|
| Geographic coverage  | 239 | All ice-covered regions of the global ocean and lakes. | All ice-covered regions of<br>the global ocean and<br>lakes |
| Vertical Coverage    |     | Ice surface                                            | Ice surface                                                 |
| Vertical Cell Size   |     | Ice surface                                            | Ice surface                                                 |
| Horizontal Cell Size |     | 1 km                                                   | 1 km                                                        |
| Mapping Uncertainty  |     | 1 km                                                   | 1 km                                                        |
| Measurement Range    | 902 | Ice free, New/Young ice, all Other ice                 | Ice free, New/Young ice, all other ice, and ice thickness   |
| Accuracy             | 241 | 70% probability of correct typing                      | 90 to Near 100% vs<br>NOAA-20                               |
| Precision            |     | n/a (see GOES-R definition for 2-category variables)   | less than one category comp to NOAA-20                      |
| Uncertainty          |     | 70% for ice age probability of correct typing          | 0.1 m when comp. to NOAA-20                                 |



## **Requirements: Sea and Lake Ice <u>Thickness</u>**

Product performance requirements from JERD Vol. II and L1RD versus observed/validated. *There is no JPSS requirement for ice thickness.* 

| Attribute             | Threshold | Observed/validated vs Cryosat |
|-----------------------|-----------|-------------------------------|
| Measurement Range     | none      | 0-6 m                         |
| Measurement Accuracy  | none      | 0.16 m                        |
| Measurement Precision | none      | 0.24 m ~>80% matching         |



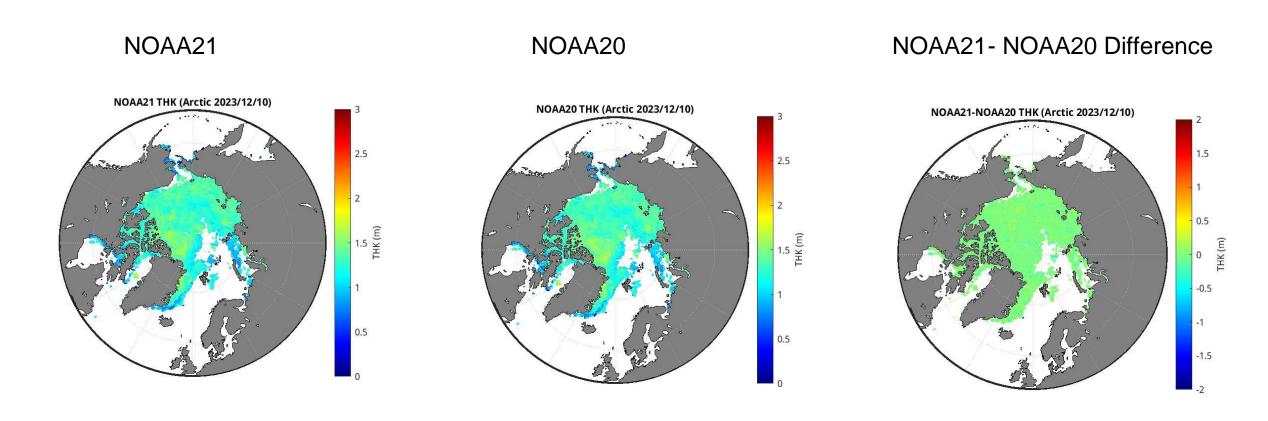
## **Processing Environment and Algorithms**

- Description of processing environment and algorithms used to achieve the maturity stage:
  - Algorithm version: V3R3, update to Landmask that includes Ice Shelf masking. This update was included in validation results starting on October 24, 2023. (Note: operational V3R3 is OTIM V6.1.)
  - Algorithm Theoretical Basis Documents

     https://www.ospo.noaa.gov/Products/Suites/files/atbd/ATBD\_IceSurfaceTemperatureIceConcentration\_v1.0.pdf
     https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD\_EPS\_Cryosphere\_IceThickness\_IceAge\_v4.0.pdf
  - Version of LUTs used (SIC, IST, see documentation above)
  - Processing Environment
     Production site: NCCF (as provided in the product file attributes)
     Production environment: UAT (as provided in the product file attributes)
  - Effective date: May 1, 2023.
  - Starting orbit number: 2436.



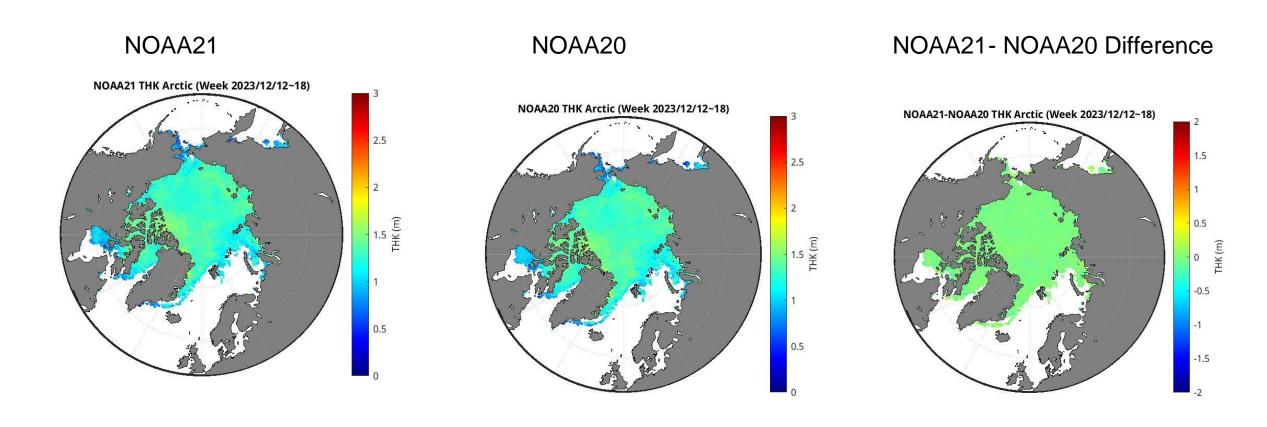
#### Evaluation of algorithm performance to specification requirements


#### Algorithm performance evaluation

Validation strategies / methods: root mean squared error (RMSE, same as uncertainty with bias considered), standard deviation of difference (precision), and bias (accuracy).

- Inter-sensor comparison
  - Compare with S-NPP and NOAA-20: RMSE 0.1m for thickness.
  - Validation results: meets requirements
- Validation with independent products
  - Validation data sets: CryoSat-2/SMOS, October -December 2023, Arctic
  - Case studies with CryoSat-2 and SMOS for THK
  - Validation results: meets requirements
- Long term monitoring readiness: routine comparison to NOAA-20 and CS2SMOS

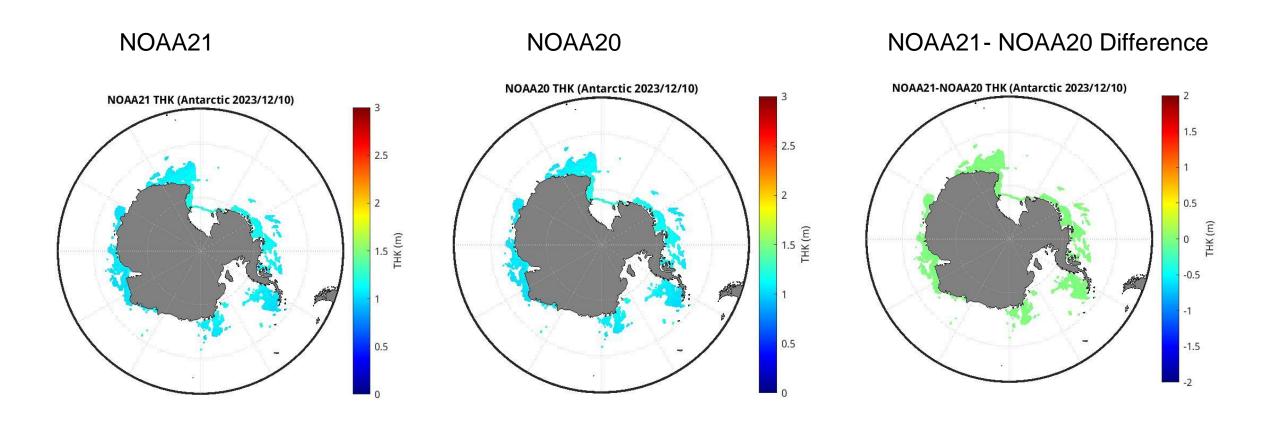



## Sea Ice Thickness/Age v3r3: NOAA 21 vs. NOAA20 Arctic



Daily composites comparison of Dec. 10, 2023, NOAA-21 matches well with NOAA-20 overall.

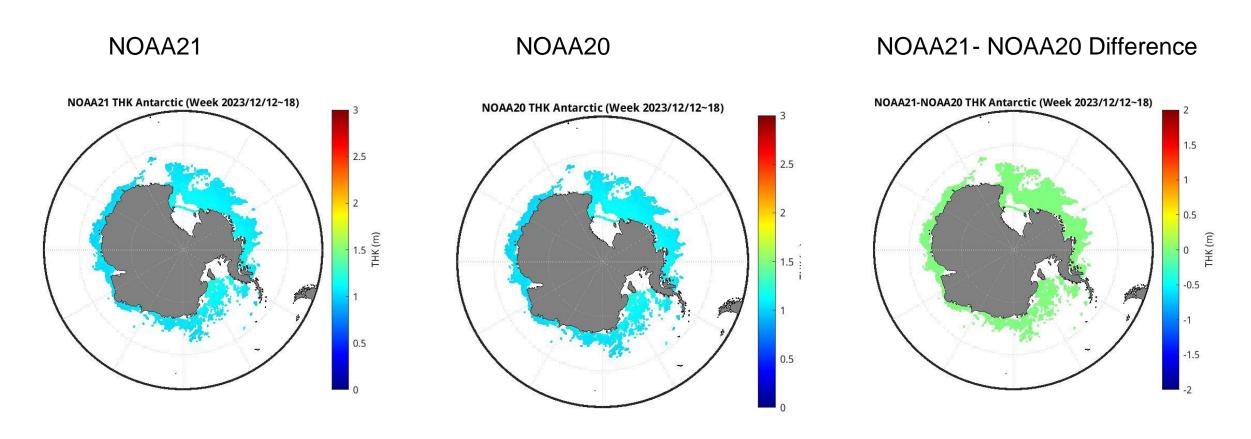



## Sea Ice Thickness/Age v3r3: NOAA 21 vs. NOAA20 Arctic



Weekly composites comparison of Dec. 12-18, 2023, NOAA-21 matches well with NOAA-20 overall.



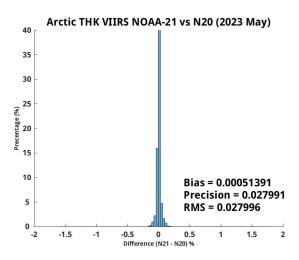

## Sea Ice Thickness/Age v3r3: NOAA 21 vs. NOAA20 Antarctic

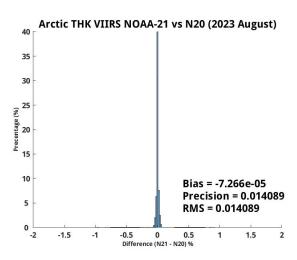


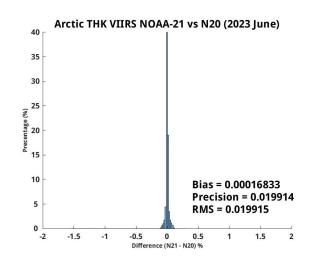
Daily composites comparison of Dec. 10, 2023, NOAA-21 matches well with NOAA-20 overall.

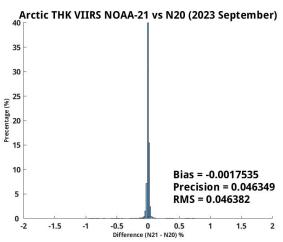


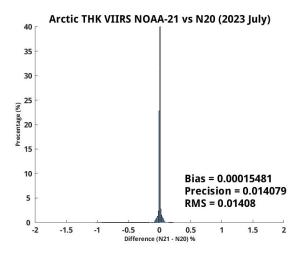
# Sea Ice Thickness/Age v3r3: NOAA 21 vs. NOAA20 Antarctic

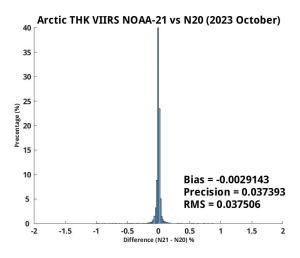




Weekly composites comparison of Dec. 12-18, 2023, NOAA-21 matches well with NOAA-20 overall.



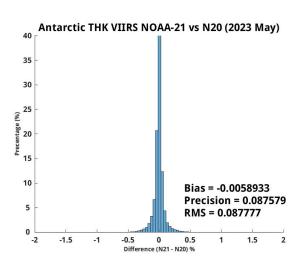


## Sea Ice Thickness v3r2: NOAA-21 vs. NOAA-20, Arctic


#### Histogram by month from May to October 2023



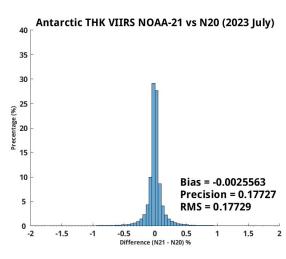


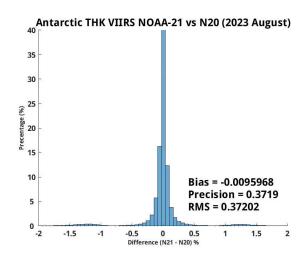


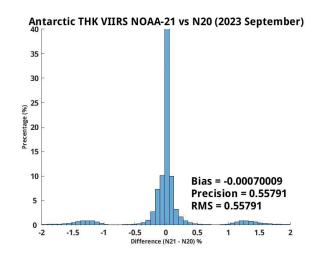



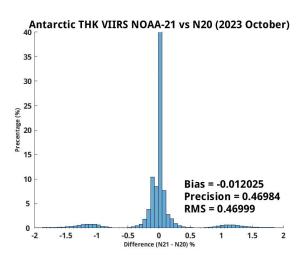


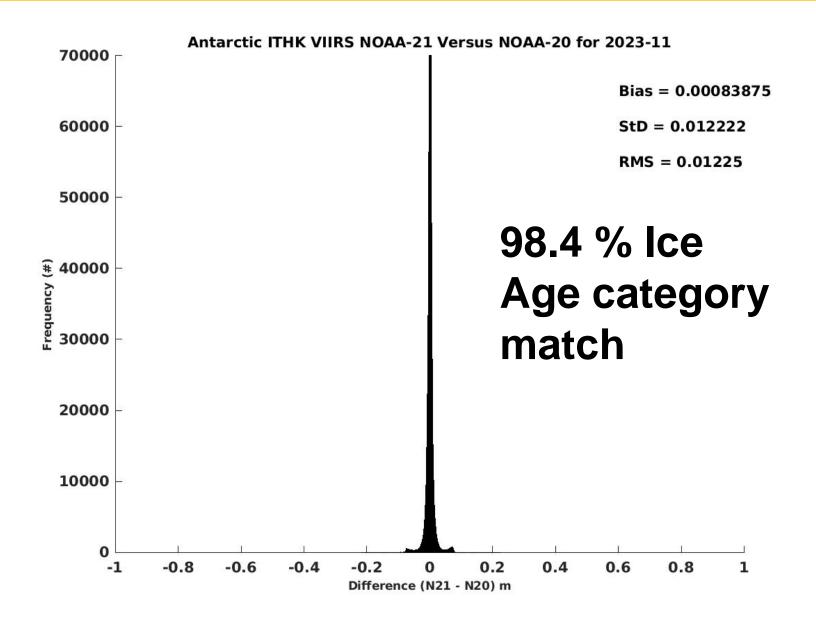




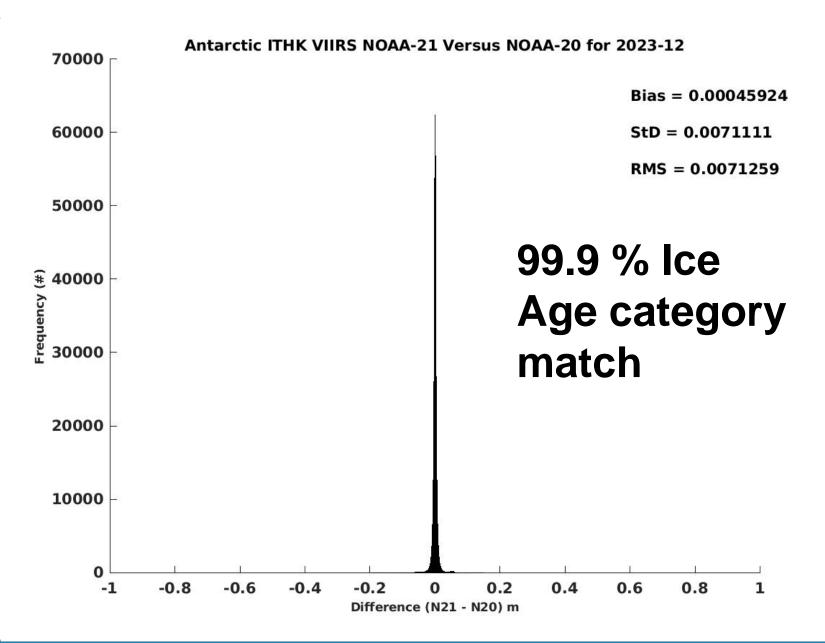


## Sea Ice Thickness v3r2: NOAA-21 vs. NOAA-20, Antarctic


#### Histogram by month from May to October 2023



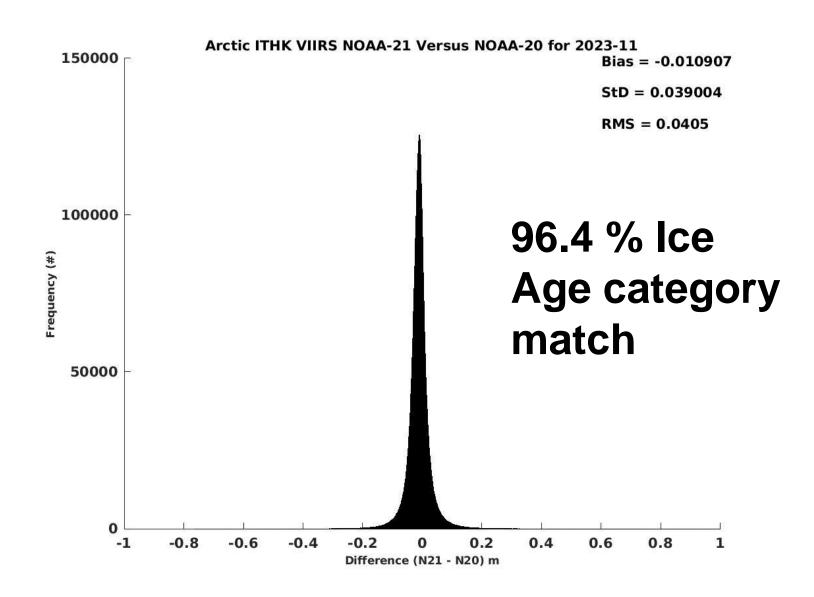





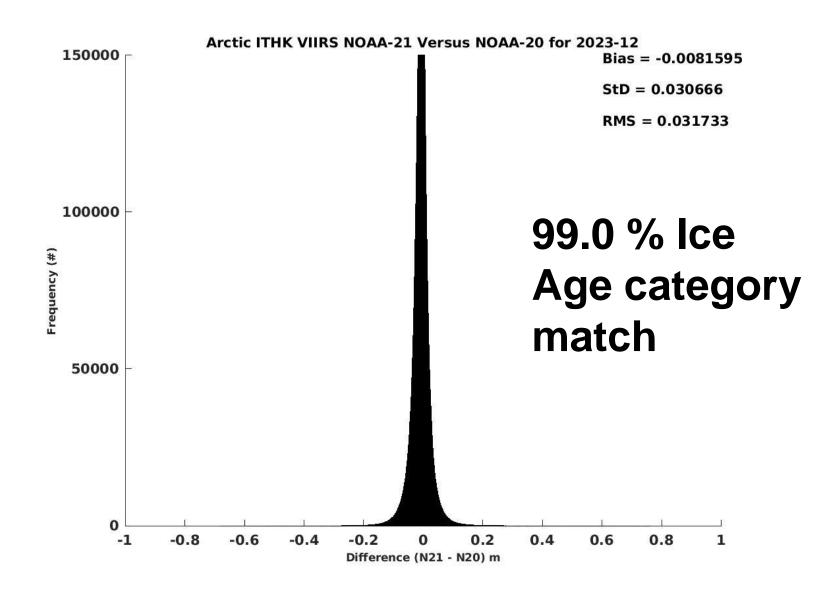




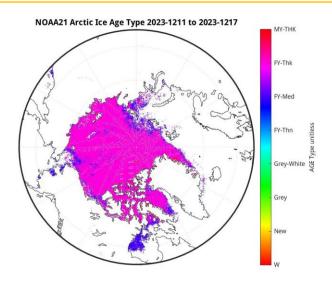


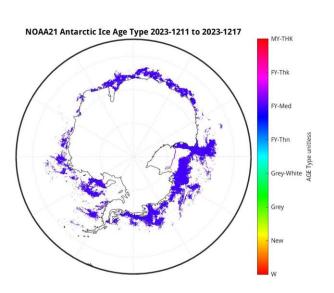


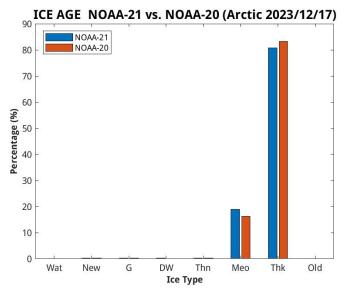



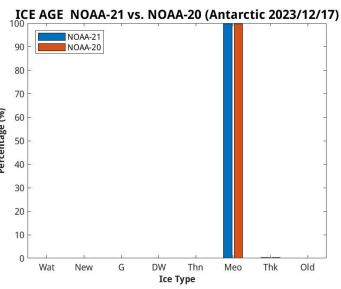

## Sea Ice Thickness v3r3: NOAA-21 vs. NOAA-20, Arctic, November 2023







### Sea Ice Thickness v3r3: NOAA-21 vs. NOAA-20, Arctic, December 2023




## Sea Ice Age v3r3 Comparison NOAA-21 versus NOAA-20









- NDE NOAA-21 Ice Age types agrees well with NOAA-20.
- >95% of correct typing for NOAA-21 in terms of NOAA-20 ice age.



#### Sea Ice Age: NOAA-21 vs CS2SMOS, Arctic (OTIM v6.1=OPSv3r3)

#### October 2023 November 2023 December 2023

| Date           | TMP   | СТ         | Р         | PCT  | Date           |
|----------------|-------|------------|-----------|------|----------------|
| (Oct. 2023)    | IIVIF | 0 ~ 0.30 m | >= 0.30 m | PCI  | (Nov. 2023)    |
| 10/15-21/23    | 4685  | 0          | 4199      | 90%  | 11/01-07/23    |
| 10/16-22/23    | 3669  | 0          | 3366      | 92%  | 11/02-08/23    |
| 10/17-23/23    | 2529  | 0          | 2383      | 94%  | 11/03-09/23    |
| 10/18-24/23    | 1033  | 0          | 992       | 96%  | 11/04-10/23    |
| 10/19-25/23    | 1617  | 0          | 1272      | 79%  | 11/06-12/23    |
| 10/20-26/23    | 3225  | 0          | 2632      | 82%  | 11/07-13/23    |
| 10/21-27/23    | 4352  | 0          | 3485      | 80%  | 11/08-14/23    |
| 10/22-28/23    | 5404  | 0          | 4150      | 77%  | 11/09-15/23    |
| 10/23-29/23    | 6593  | 0          | 5122      | 78%  | 11/10-16/23    |
| 10/24-30/23    | 7857  | 0          | 6114      | 78%  | 11/11-17/23    |
| 10/25-31/23    | 8826  | 0          | 6814      | 77%  | 11/12-18/23    |
| 10/26-11/01/23 | 9657  | 0          | 7432      | 77%  | 11/13-19/23    |
| 10/27-11/02/23 | 10272 | 0          | 7775      | 76%  | 11/14-20/23    |
| 10/28-11/03/23 | 10479 | 0          | 7975      | 76%  | 11/15-21/23    |
| 10/29-11/04/23 | 10477 | 0          | 8220      | 79%  | 11/16-22/23    |
| 10/31-11/06/23 | 11391 | 0          | 8987      | 79%  | 11/17-23/23    |
| Average        | A     |            |           | 020/ | 11/18-24/23    |
| Average        |       |            |           | 82%  | 11/19-25/23    |
| OTD: 0 41-     | T     |            | 04: (     | - 6  | 11/27 12/02/22 |

CTP: Correctly Typed Pixels for NOAA-21 in terms of

CS2SMOS

**TMP: Total Matched Pixels** 

**PCT: Probability of Correct Typing** 

| Date           | TMP   | С          | TP        | PCT |  |
|----------------|-------|------------|-----------|-----|--|
| (Nov. 2023)    | IIVIP | 0 ~ 0.30 m | >= 0.30 m | 101 |  |
| 11/01-07/23    | 11511 | 0          | 9278      | 81% |  |
| 11/02-08/23    | 11843 | 0          | 9653      | 82% |  |
| 11/03-09/23    | 12301 | 0          | 10093     | 82% |  |
| 11/04-10/23    | 12564 | 0          | 10393     | 83% |  |
| 11/06-12/23    | 13004 | 0          | 10888     | 84% |  |
| 11/07-13/23    | 13099 | 0          | 11071     | 85% |  |
| 11/08-14/23    | 13214 | 0          | 11239     | 85% |  |
| 11/09-15/23    | 13422 | 3          | 11536     | 85% |  |
| 11/10-16/23    | 13575 | 3          | 11695     | 86% |  |
| 11/11-17/23    | 13667 | 3          | 11855     | 87% |  |
| 11/12-18/23    | 13778 | 3          | 11923     | 87% |  |
| 11/13-19/23    | 13785 | 3          | 11983     | 87% |  |
| 11/14-20/23    | 13777 | 0          | 11899     | 86% |  |
| 11/15-21/23    | 13599 | 4          | 11921     | 88% |  |
| 11/16-22/23    | 13865 | 0          | 12098     | 87% |  |
| 11/17-23/23    | 14011 | 2          | 12175     | 87% |  |
| 11/18-24/23    | 14036 | 3          | 12216     | 87% |  |
| 11/19-25/23    | 14017 | 4          | 12183     | 87% |  |
| 11/27-12/03/23 | 14138 | 8          | 12295     | 87% |  |
| 11/28-12/04/23 | 13804 | 4          | 12215     | 89% |  |
| 11/29-12/05/23 | 13905 | 5          | 12221     | 88% |  |
| 11/30-12/06/23 | 13853 | 7          | 12208     | 88% |  |
| Average        |       |            |           | 86% |  |

|   | Date        |       | C          | ГР        |     |
|---|-------------|-------|------------|-----------|-----|
| ı | (Dec. 2023) | TMP   | 0 ~ 0.30 m | >= 0.30 m | PCT |
|   | 12/02-08/23 | 14749 | 10         | 12740     | 87% |
|   | 12/03-09/23 | 14732 | 4          | 12867     | 87% |
|   | 12/04-1023  | 14749 | 2          | 13007     | 88% |
|   | 12/05-11/23 | 15133 | 0          | 13263     | 88% |
|   | 12/06-12/23 | 15251 | 0          | 13404     | 88% |
|   | 12/07-13/23 | 15453 | 0          | 13400     | 87% |
|   | 12/08-14/23 | 15725 | 1          | 13521     | 86% |
|   | 12/09-15/23 | 15010 | 1          | 13557     | 86% |
|   | 12/10-16/23 | 15874 | 0          | 13600     | 86% |
|   | 12/11-17/23 | 15881 | 0          | 13795     | 87% |
|   | 12/12-18/23 | 15602 | 0          | 13775     | 88% |
|   | 12/13-19/23 | 15693 | 0          | 13862     | 88% |
|   | 12/14-20/23 | 15793 | 0          | 13961     | 88% |
|   | 12/15-21/23 | 15924 | 0          | 13950     | 88% |
|   | 12/16-22/23 | 16466 | 0          | 14478     | 88% |
|   | 12/17-23/23 | 16798 | 0          | 14791     | 88% |
|   | 12/18-24/23 | 17073 | 0          | 15074     | 88% |
|   | 12/19-25/23 | 17330 | 0          | 15385     | 89% |
|   | 12/20-26/23 | 17528 | 0          | 15529     | 89% |
|   | 12/21-27/23 | 17637 | 0          | 15731     | 89% |
|   | 12/22-28/23 | 17694 | 0          | 15800     | 89% |
|   | 12/23-29/23 | 17804 | 0          | 15852     | 89% |
|   | 12/24-30/23 | 17755 | 0          | 15858     | 89% |
|   | 12/25-31/23 | 17747 | 0          | 15720     | 89% |
|   | 12/26-01/24 | 17708 | 0          | 15693     | 89% |
|   | Average     |       |            |           | 88% |



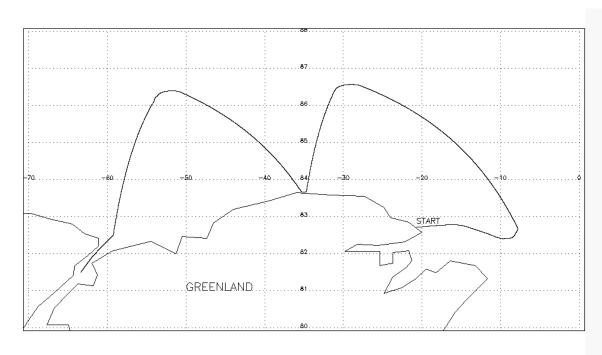
#### Sea Ice Age: NOAA-21 vs CS2SMOS, Arctic (OTIM v6.4 CIMSS)

#### November 2023

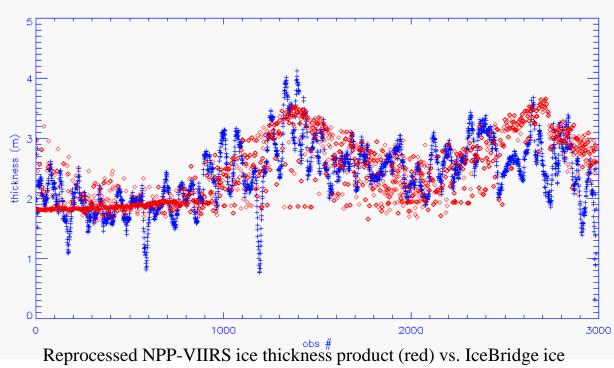
#### December 2023

| Date           | TMD   | С          | рот       |     |
|----------------|-------|------------|-----------|-----|
| (Nov. 2023)    | TMP   | 0 ~ 0.30 m | >= 0.30 m | PCT |
| 11/20-26/23    | 13965 | 614        | 11465     | 86% |
| 11/22-28/23    | 14411 | 714        | 11678     | 86% |
| 11/23-29/23    | 14745 | 733        | 11984     | 86% |
| 11/24-30/23    | 14813 | 654        | 12110     | 86% |
| 11/26-12/02/23 | 14902 | 600        | 12264     | 86% |
| 11/27-12/03/23 | 15060 | 785        | 12109     | 86% |
| 11/28-12/04/23 | 15156 | 761        | 12185     | 85% |
| 11/29-12/05/23 | 15316 | 773        | 12160     | 84% |
| 11/30-12/06/23 | 15246 | 738        | 12189     | 85% |
| Average        |       |            |           | 86% |

CTP: Correctly Typed Pixels for NOAA-21 in terms of CS2SMOS


**TMP: Total Matched Pixels** 

**PCT: Probability of Correct Typing** 


| Date        | TMD   | C-         | DCT       |     |
|-------------|-------|------------|-----------|-----|
| (Dec. 2023) | TMP   | 0 ~ 0.30 m | >= 0.30 m | PCT |
| 12/14-20/23 | 16812 | 1140       | 13117     | 85% |
| 12/15-21/23 | 17320 | 1227       | 13379     | 84% |
| 12/16-22/23 | 17649 | 1182       | 13602     | 84% |
| 12/17-23/23 | 17816 | 1121       | 13937     | 85% |
| 12/18-24/23 | 18026 | 1080       | 14194     | 85% |
| 12/19-25/23 | 18113 | 1006       | 14467     | 85% |
| 12/20-26/23 | 18245 | 939        | 14605     | 85% |
| 12/21-27/23 | 18161 | 827        | 14678     | 85% |
| 12/22-28/23 | 17988 | 783        | 14674     | 86% |
| 12/23-29/23 | 18103 | 781        | 14753     | 86% |
| 12/24-30/23 | 18010 | 646        | 14913     | 86% |
| 12/25-31/23 | 18010 | 638        | 14866     | 86% |
| 12/26-01/24 | 17578 | 576        | 14631     | 87% |
| Average     |       |            |           | 85% |



#### Sea Ice Thickness Validation: NPP-VIIRS vs IceBridge, Arctic (OTIM v6.4 CIMSS)



IceBridge P-3 aircraft flight track on April 6, 2019. General direction of flight is counterclockwise (START indicates beginning of track).



Reprocessed NPP-VIIRS ice thickness product (red) vs. IceBridge ice thickness measurements (blue) along the April 6, 2019 flight track.

Ice thickness results for IceBridge (OIB) and VIIRS products for the 2 OIB flights.

| Flight Date    | Mean OIB      | Mean OIB Mean VIIRS 0 |       | VIIRS Std. Dev. |
|----------------|---------------|-----------------------|-------|-----------------|
|                | thickness (m) | thickness (m)         | (m)   |                 |
| April 6, 2019  | 2.402         | 2.459                 | 0.526 | 0.546           |
| April 20, 2019 | 2.113         | 2.377                 | 0.563 | 0.687           |

Cloud contamination would cause some suspicious sea ice thickness with NPP-VIIRS data.



#### **Evaluation of the effect of required algorithm inputs**

- Required Algorithm Inputs
  - Primary Sensor Data: VIIRS M5, M7, M10, M15 and M16
  - Ancillary Data: VIIRS geolocation, Cloud Mask, Land Mask
  - Atmospheric profile data and snow depth data (Thickness/Age, optional).
  - Upstream algorithms: NDE Cloud Mask v3r2
  - LUTs / PCTs: internal LUT for ice /concentration algorithm
- Evaluation of the effect of required algorithm inputs (mainly cloud mask)
  - Study / test cases: 20 July, 2023 north of Svalbard, Norway (78-80 deg N; 8-25 deg W, northeast of Greenland Sea)
  - The effect of the cloud mask depends on conditions: it will mask false ice due to wrong cloud mask.
  - Low sun conditions (solar zenith angle between 86°~93°) will cause larger uncertainties on ice products due to larger uncertainties for cloud masking and surface albedo. Large uncertainty for any ice product under low sun condition.



## Quality flag analysis/validation

- Defined Quality Flags
  - Ice Mask
  - Description
  - Value: 0: cloud, 1: visible ice, 2: infrared ice, -1: land, -2: water, others
  - No issues were found.
  - Quality Control Flags for All Ice Products:

Value & Meaning: 0 0 Good/Optimal retrieval

Value & Meaning: 1 0 Uncertain/Suboptimal retrieval

Value & Meaning: 1 0 Bad/Missing retrieval

Value & Meaning: 1 1 Non-retrieval



# **Error Budget (Ice Age and and Thickness)**

| Attribute   |     | Requirement    | Pre-Launch               | On-or    | bit Performa | nce   | Meet         | Additional      |
|-------------|-----|----------------|--------------------------|----------|--------------|-------|--------------|-----------------|
| Analyzed    | DPS | /<br>Threshold | Performance<br>(N20vs21) | NOAA-21  | NOAA-20      | S-NPP | Requirement? | Comments        |
| Accuracy    |     | 70%            | 0.14 m                   | <0.006 m | N/A          | NA    | YES; YES     |                 |
| Precision   |     | n/a            | 0.12 m                   | <0.11 m  | N/A          | N/A   | YES; YES     |                 |
| Uncertainty |     | 70%            | 0.18 m ~ <2<br>cat       | <0.11 m  | N/A          | N/A   | YES; YES     |                 |
| Match       |     |                |                          | >90%     |              | >90%  | AGE;THK      | Same as NOAA-20 |



## **User Feedback**

| Name            | Organization                      | Application                  | User Feedback  - User readiness dates for ingest of data and bringing data to operations                                                                                                                                                                                                                                                                                                               |
|-----------------|-----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mike<br>Lawson  | NWS AK Sea Ice<br>Program (ASIP)  | Ice operations around Alaska | Useful in areas of varying thickness, but no way to actually confirm the data (actual ice thickness). Enough of a gradient in the product to make some general assumptions about the analysis in the area of data. Doesn't seem to pick up thicknesses less than 1.2 m, we need to know thickness data much less than that." > Issue with older versions and has been fixed with more recent versions. |
| Various         | US National Ice<br>Center (USNIC) | Ice operations, global       | Training done at the NIC in August; expressed interest in products                                                                                                                                                                                                                                                                                                                                     |
| Bob<br>Grumbine | NCEP/EMC                          | Forecast modeling            | Concentration has been tested with positive results; thickness will be useful in the future.                                                                                                                                                                                                                                                                                                           |
| Walt Clark      | US National Ice<br>Center (USNIC) | Ice operations               | The USNIC uses VIIRS Snow Cover and the VIIRS Sea Ice Extent products. "We use the derived VIIRS snow and ice products from all of the polar orbiters available. With the loss of MODIS, we have beefed up some of our VIIRS based products we make available to our analysts. We hope to continue to pull these VIIRS products off all 3 platforms for our composites: SNPP, NOAA-20, and NOAA-21."   |



#### **Downstream Product Feedback**

# No VIIRS products use ice products as input.

| Algorithm | Product | Downstream Product Feedback - Reports from downstream product teams on the dependencies and impacts |
|-----------|---------|-----------------------------------------------------------------------------------------------------|
|           |         |                                                                                                     |
|           |         |                                                                                                     |
|           |         |                                                                                                     |
|           |         |                                                                                                     |
|           |         |                                                                                                     |



## **Risks, Actions, and Mitigations**

 Provide updates for the status of the risks/actions identified during the previous maturity review(s); add new ones as needed

| Identified<br>Risk        | Description                                                                   | Impact           | Action/Mitigation and Schedule                                                                                                      |
|---------------------------|-------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Cloud mask                | Still some false clear in the Arctic and Antarctic, but improved over v2r0.   | Some false ice   | Continue to work with cloud team (ongoing)                                                                                          |
| Identifying Very Thin Ice | Daytime conditions limit algorithms ability to measure very thin ice < 0.25 m | New/Young<br>Cat | Work with ASSIST to update algorithm with more recent version that improve upon known issue. Most recent version submitted in 2022. |
|                           |                                                                               |                  |                                                                                                                                     |
|                           |                                                                               |                  |                                                                                                                                     |
|                           |                                                                               |                  |                                                                                                                                     |



# **Documentation (Check List)**

| Science Maturity Check List                                                                          | Yes |
|------------------------------------------------------------------------------------------------------|-----|
| ReadMe for Data Product Users                                                                        | Yes |
| Algorithm Theoretical Basis Document (ATBD)                                                          | Yes |
| Algorithm Calibration/Validation Plan                                                                | Yes |
| (External/Internal) Users Manual                                                                     | Yes |
| System Maintenance Manual (for ESPC products)                                                        | Yes |
| Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)                        | Yes |
| Regular Validation Reports (at least annually) (Demonstrates long-term performance of the algorithm) | Yes |



# **Check List - Provisional Maturity-Sea Ice Age and Thickness**

| Provisional Maturity End State                                                                                                                                                                                                                                       | Assessment |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Product performance has been demonstrated through analysis of a large, but still limited (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts. | Yes        |
| Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.                                                                                                                                             | Yes        |
| Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists                                                                                                | Yes        |
| Product is recommended for potential operational use (user decision) and in scientific publications after consulting product status documents.                                                                                                                       | Yes        |



## **Conclusion – Sea Ice Age and Thickness**

- NOAA-21 VIIRS ice age and ice thickness products have been evaluated using a limited set of products from October to December of 2023.
- Calibration/validation with NOAA-20 VIIRS ice age and ice thickness products show all NOAA-21 VIIRS ice age and ice thickness products perform well and meet the product requirements.
- Comparisons to CryoSat-2/SMOS (CS2SMOS) merged ice thickness data show NOAA-21 and CS2SMOS match to each other at 85% or higher rate in terms of ice age classification.
- Only a limited set of data available for evaluation at this time, further comprehensive assessment of the products is needed.
- The Cryosphere Team recommends that NOAA-21 Ice Age and Ice Thickness products be declared Provisional Maturity.



#### **Path Forward**

- More calibration/validation may reveal the causes of a positive bias in Ice Age and Thickness. Possible adjustments/improvements will be carried out accordingly in the algorithm improvement and maintenance.
  - OTIM v6r1 was submitted to ASSISTT in September, 2022 and has been implemented for the operational product as v3r3.
  - Update to OTIM v6r4 for Sea Ice Age and Thickness algorithm; Local runs at UW-CIMSS have shown removal of positive bias in Thickness/Age for more recent versions.
  - Include ice thickness validation results with Cryosat-2/SMOS when available.
- Continue to work with Cloud Team with focus over the Antarctic.
- Continue evaluation/validation of the product with independent data sets.
- Get ready for Validated Maturity Review.