Beta Maturity Science Review For NOAA-21 VIIRS LST Algorithm

> Prepared by Yuling Liu and Yunyue Yu Date:08/02/2023

JPSS/GOES-R Data Product Validation Maturity Stages – COMMON DEFINITIONS (Nominal Mission)

1.<u>Beta</u>

Product is minimally validated, and may still contain significant identified and unidentified errors.
 Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-for-purpose.
 Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.

BETA MATURITY REVIEW MATERIAL

- Algorithm Cal/Val Team Members
- Product Overview/Requirements
- Evaluation of algorithm performance to specification requirements
 - Algorithm version, processing environment
 - Evaluation of the effect of required algorithm inputs
 - Quality flag analysis/validation
 - Error Budget
- User Feedback
- Downstream Product Feedback
- Risks, Actions, and Mitigations
- Documentation (Science Maturity Check List)
- Conclusion
- Path Forward

	Name	Organization	Major Task
JSTAR Science	Land Lead: Ivan Csiszar	NOAA/NESDIS/STAR	Project Management
	EDR Lead: Yunyue Yu	NOAA/NESDIS/STAR	Team management, algorithm development, validation advises
	Yuling Liu	NOAA Affiliate, UMD/CISESS	product monitoring and validation ; algorithm development/improvement
	Heshun Wang	NOAA Affiliate, UMD/CISESS	algorithm improvement, product calibration/validation
	Peng Yu	NOAA Affiliate, UMD/CISESS	product validation tool, monitoring, applications
JSTAR ASSIST	Michael Butler	NOAA/NESDIS/STAR	STAR ASSIST Lead
	Mingming Yao	NOAA Affiliate, ProTech/IMSG	STAR ASSIST, Algorithm System integration
	Eric Buzan	NOAA Affiliate, ProTech/IMSG	STAR ASSIST, Algorithm System integration
	Wilson, Michael	NOAA Affiliate, ProTech/IMSG	STAR ASSIST, Framework DAP delivery
NOAA/EMC	Michael Barlage	NOAA/EMC/NCEP	user readiness
	Fanglin Yang	NOAA/EMC/NCEP	user readiness
	Weizhong Zheng	NOAA Affiliate	user readiness
	Helin Wei	NOAA Affiliate	user readiness
NOAA/OSPO	Hanjun Ding	NOAA/NESDIS/OSPO	NDE operational Land Lead
	Yufeng Zhu	NOAA Affiliate	NDE operational

VIIRS LST Requirements

Product Requirements from JPSS L1RD

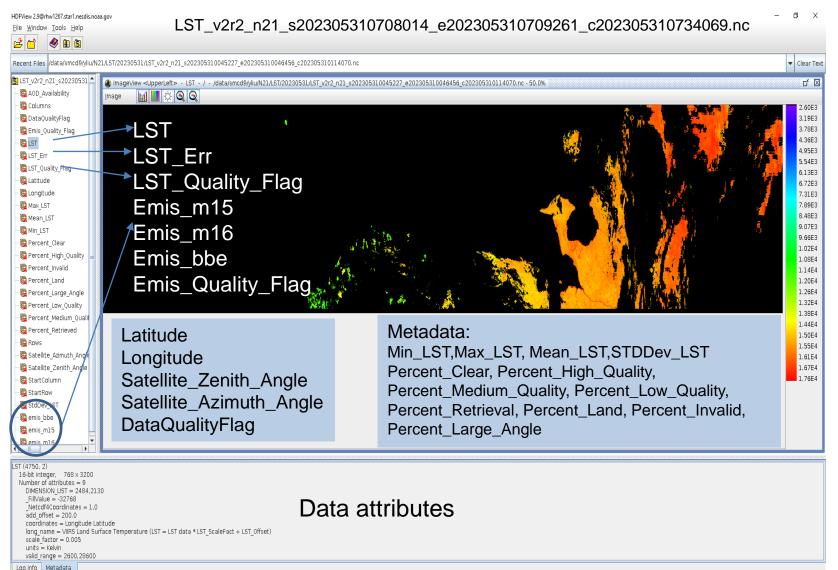
Attribute	L2 Granule LST	L3 Gridded LST
Geographic coverage Daily global Gridded Product required recently	At least 90% coverage of the globe every 24 hours (monthly average)	Global coverage
Vertical Coverage		
Vertical Cell Size		
Horizontal Cell Size	0.8 km	0.009 degree
Mapping Uncertainty, 3 Sigma	1 Km at Nadir	
Measurement Range	213 – 343 K	213 – 343 K
Measurement Accuracy(bias)	1.4 K	1.4 K
Measurement Precision(1 sigma)	2.5 K	2.5 K
Refresh rate	Granule	Daily
Latency	96 minutes	30 hours

No JSTAR DPS Recommended Update

- Processing environment and algorithms used to achieve the maturity stage
 - Both L2 and L3 NOAA-21 VIIRS LST is included in the beta review.
 - The Enterprise Algorithm version:
 - L2 LST ---- version # v2r2
 - L3 LST ---- version # v1r1.
 - The algorithm LUT is developed based on the NOAA-21 spectral response function released in 2019.
 - Effective date:
 - L2 LST data stream started from May 29th, 2023
 - L3 LST data stream started from June 8, 2023

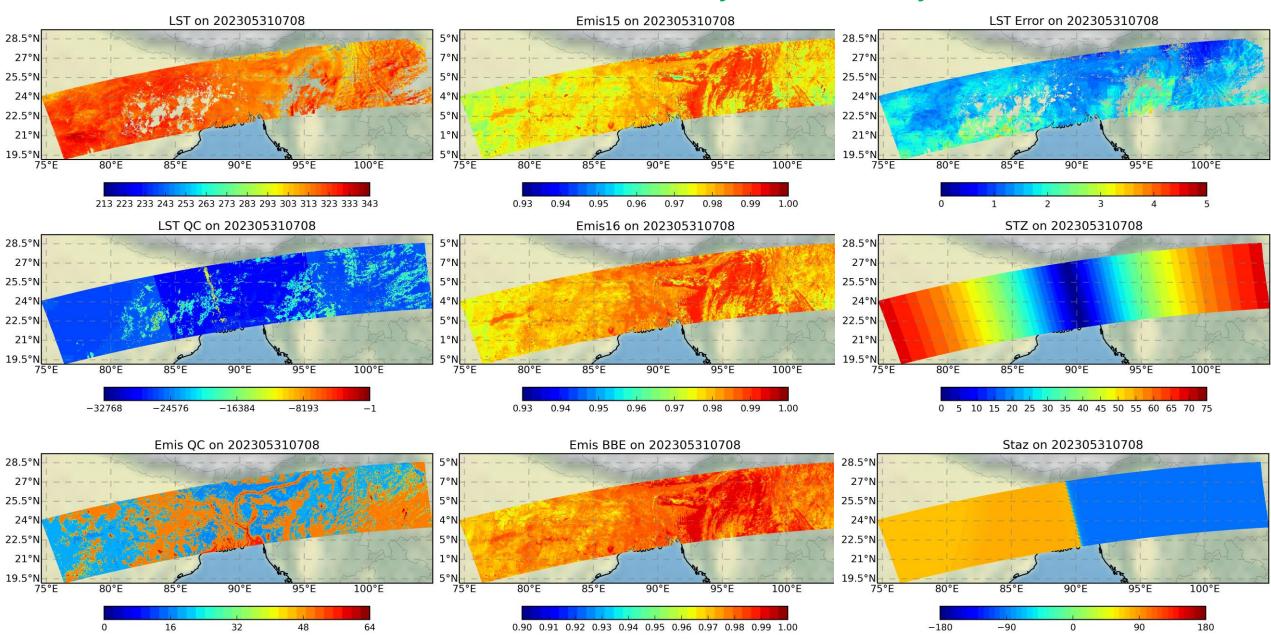
Note: SNPP and NOAA20 still has the old version of v1r4 and v1r0 in its operational run for L2 and L3, respectively, which results in some differences in the inter-comparison.

- Evaluation period: from the beginning of the data stream to present



- Algorithm performance evaluation
 - Visual analysis
 - Temperature based validation through the comparison with ground measurements from SURFRAD and ARM network.
 - It covers a month worth of data since the beginning of the data stream. It has global spatial coverage.
 - Long term monitoring tool is available and ready for the test with the ingest of operational NOAA-21 LST.
- Inter-sensor comparison
 - Compare with S-NPP and NOAA-20 LSTs

Visual analysis


L2 NOAA-21 LST Data Verification

The output layers as shown in the left figure are complete with valid data range and correct data attributes set. Next slide shows the sample image of the L2 dataset. <u>No issues are</u> <u>observed from the visual</u> verification.

- Global metadata shows some updates with the correct information provided
- In the next slide, the granule LST <u>product data layers were</u> <u>inspected with issues found</u>.

L2 NOAA-21 LST Granule data layers visual analysis

L3 NOAA-21 LST Data Verification

П

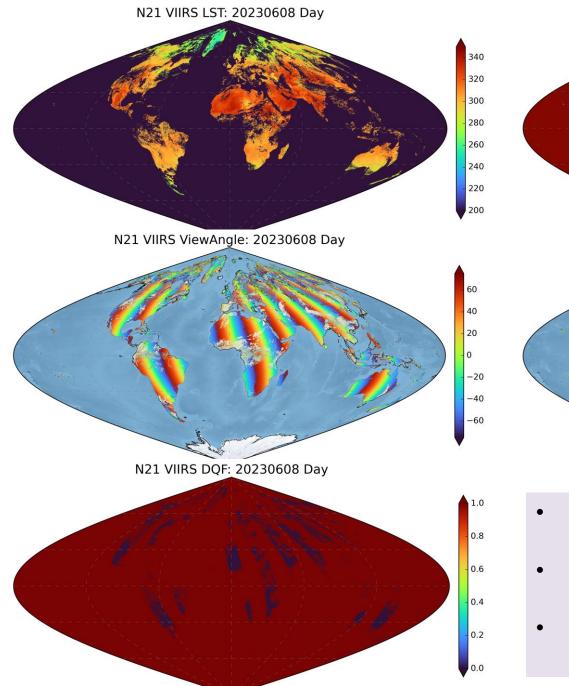
50360.nc

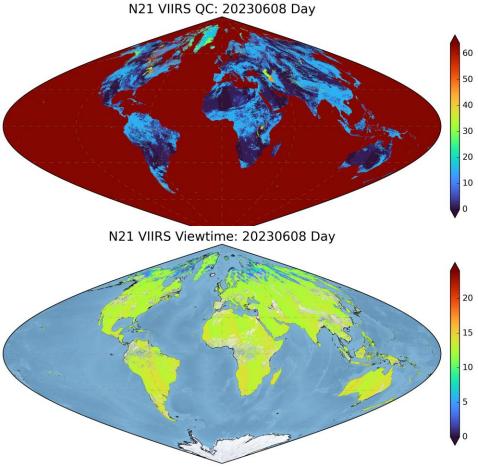
Clear Text

vlrl n21 s202

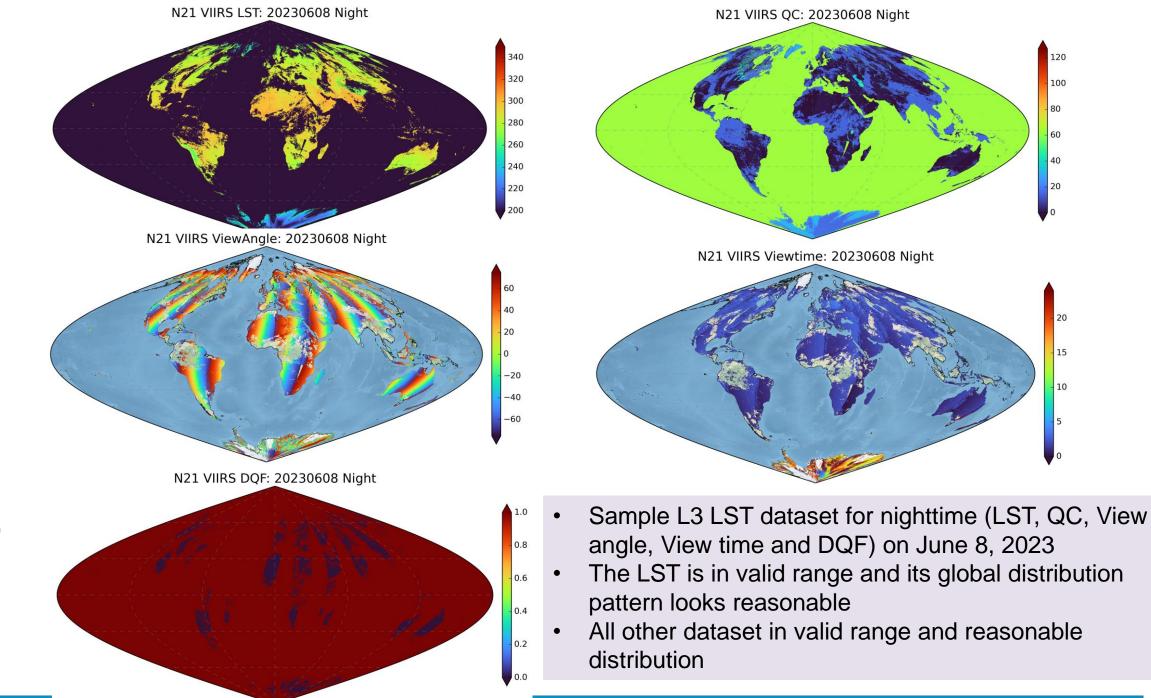
32767 -32767 32767

32767 32767

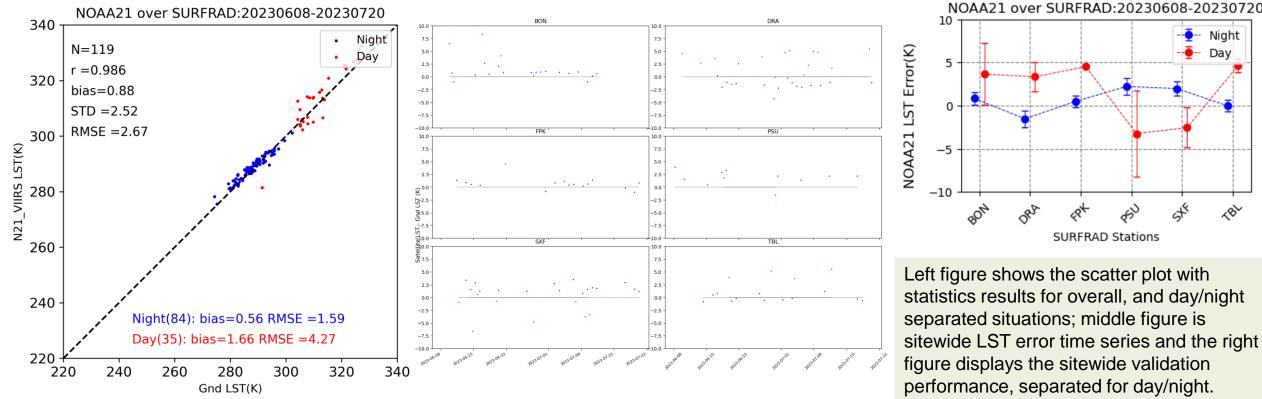

-32767 32767 -32767 -32767


-32767 -32767 32767

-32767 -32767


Interest 2004/mit 251 start includes/analyzed										_				
CRIDED-VIRS-LST-D_vir1_n21_s20230608_c202306090_c20230600.rc Testen film Cellar Test Orbitalization Cellar Test Cellar Test Orbitalization Cellar Test Cellar Test Orbitalization Cellar Test Cellar Test Cellar Test Orbitalization Cellar Test Cellar Test Cellar Test Cellar Test <		.noaa.gov							_		×			
ORDOBLO-VIRS-LST-0_1/1 Ordinal Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.14.2_LST/GMD/DOBLO-VIRS-LST-0_1/12_n21_22.15 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.14.2_LST/GMD/DOBLO-VIRS-LST-0_1/12_n21_22.15 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.14.2_LST/GMD/DOBLO-VIRS-LST-0_2/22) Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.14.2_LST/GMD/DOBLO-VIRS-LST-0_2/22) Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.14.2_LST/GMD/DOBLO-VIRS-LST-N_V1/11_n21_s20230608_c20230609022 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c202306090223069 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c202306090223069 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c202306090223069 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c20230609025036 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c202306090250 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.20230608_c20230609 Source Colored Allower LST_DEPUTY - (/ditalemendely/lux/12.15.11.12/12.2023060		GRIDDI	ED-VIIRS-L	ST-D_v1r1	_n21_s202	230608_	e2023060	8_c20230	60902503	860.nc				
Image: columns Image	Recent Files /data/smcd9/yliu/	/N21/L3_LS	T/GRIDDED-VIIF	RS-LST-D_v1r	1_n21_s202	230608_e	20230608_0	20230609	0250360.nc	Clear	Text			
Columns Columns Columns Columns <td< th=""><th>GRIDDED-VIIRS-LST-D_v1r1</th><th>Table</th><th>view - LST Da</th><th>ay - / - /da</th><th>ta/smcd9/yli</th><th>iu/N21/L3</th><th>LST/GRIDDE</th><th>D-VIIRS-LST</th><th>-D vlrl n2</th><th>1 s2 ঢ്</th><th>M</th><th></th><th></th><th></th></td<>	GRIDDED-VIIRS-LST-D_v1r1	Table	view - LST Da	ay - / - /da	ta/smcd9/yli	iu/N21/L3	LST/GRIDDE	D-VIIRS-LST	-D vlrl n2	1 s2 ঢ്	M			
Image: Construction of the standard of the sta	- 🎇 Columns		_				-							
0 0 1 2	- 🎇 DQF	-												
Image: Day User, Angle, Day User, Angle, Day User, Time, Day Image: Day User, Angle, Day User, Time, Day Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Day User, Time, Night (1039, 2) Image: Day User, Time, Day User, Time, Night (1039, 2) Image: Day User, Time, Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image: Day User, Time, Night (1039, 2) Image:	— 🎇 LST_Day													
Works Automatic 32767 32267	— 🎇 QC_Day										-			
Wow_Angle_Day 2 332267 33267 <td< th=""><th>- 🇱 Rows</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	- 🇱 Rows	1												
implementation implementatints implementation imp	- 🎇 View_Angle_Day	2						-32767	7 -3276	7 -3276	31			
Daytime b 32767 b 11 32767 b 32767 b 32767 b 32767 b 32767 b 11 32767 b 32767 b 32767 b 32767 b 32767 b 32767 b 11 52767 b 12 5276	- 🎇 View_Time_Day													
Daytime Bit Window Tools Help Image: Signed State			-32767	ŕ										_
10 32267 14 32267 32267 Recent Files Collumburg							aa.yov							
10 32267 14 32267 32267 Recent Files Collumburg	Davtime			<u>File Windo</u>	W <u>Tools</u> <u>H</u>									
11 32767 13 32767 13 14 32767 13 15 15 15 15 16 15 16 15 16 <td< th=""><th></th><th></th><th></th><th>2 🗂</th><th>🧶 🙆</th><th>🔁 GRI</th><th>DDED-VI</th><th>IRS-LST</th><th>-N_v1r1_</th><th>_n21_s2(</th><th>)230608<u>-</u></th><th>_e202306</th><th>608_c202</th><th>30609025</th></td<>				2 🗂	🧶 🙆	🔁 GRI	DDED-VI	IRS-LST	-N_v1r1_	_n21_s2()230608 <u>-</u>	_e202306	608_c202	30609025
13 -32767 327297 GRUDDED-VIIRS-LST-N VILT_0 GRUDDED-VIIRS-LST-N VILT_0 15 -327297 15 -327297 15 -327297 15 -327297 15 -327297 15 -327297 15 -327297 15 -327297 16 -1000 17 -1000 18 -1000 18 -1000 19 -1000 10 -1000 10 -27297 10 -27297 10 -27297 10 -27297 10 -27297 11 -27297 12 -27297 12 -27297 12 -27297 12 -27297 13 -27297 14 -27297 15 -27297 15 -27297 16 -27297 17 -27297 18 -27297 19 <														
15 -32767 GRIDDED-VIIRS-LST-N_V1r1_n 15 -22767 -32767 -327				Recent File	s /data/smc	:d9/yliu/L3	LST/N21/20:	23/06/GRIDE	DED-VIIRS-LS	T-N_vlrl_n2	1_s202306	08_e202306	08_c202306	609025036(·
16 32767 2 2 13 32767 2 3 14 32767 2 3 15 15 15 15 16 15 17 16 18 15 18 15 19 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 18 16 19 16 10 16 10 16 11 16 <					VIDE LET N	11 m m								
Lots			-32767			_viu_iu			light - / - /	data/smcd9	/yliu/L3_LST,	/N21/2023/0	6/GRIDDED-\	/IIRS-LST-N_V
Ist-Ditinger, 21800 x 43200 Number of attributes = 9 DIMENSION_LIST = 685.331 FillValue = 32768 Netcdf4Coordinates = 1.0 add_offset = 200.0 long rame = Daily Deptime Land Surface Tempers scale_factor = 0.005 type = int16 units = K valid_inarge = 2600.28800 Netcdf4Cordinates = 1.0 add_offset = 2200; 22767 Junts = K units = K Using info Metadata NigDhttime Jaction Addition Ad			•		nns	1000	<u>T</u> able	M						
Lobit integer. 2160 × 43200 Number of attributes = 9 DMENSION_LIST = 685,331 _FillValue = -32766	LET Dev (1020 - 2)			- 🙀 DQF		100	· · · · ·							
DIMENSION_LIST = 685.331 _FillValue = -32768 _Netcdf4Coordinates = 1.0 add_offset = 200.0 long_name = Daily Daytime Land Surface Tempers cacle factor = 0.005 type = int16 units = K valid_range = 2600,28600		200		- 🎇 LST_N	light									
FillValue = -32768				- 🙀 QC_N	ight									
add_offset = 200.0 long_name = Daily Daytime Land Surface Tempers 2 32767	_FillValue = -32768			- 🗰 Rows		1000	0							
Iong_name = Not0 332767 32767 </th <th></th> <th>0</th> <th></th> <th>- M View</th> <th>Anale Niaht</th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		0		- M View	Anale Niaht		2							
state init 5 0.2007		ne Land Sur	rface Tempera			1000		-32767	-32767	-32767	-32767	-32767	-32767	-32767
units = K valid_range = 2600,28600 Nighttime Log info Metadata Nighttime 6 32767<				- Mar View_	nme_nignu									
valid_range = 2600,28600 Nighttime Log info Metadata Nighttime 7 32767 <				1		1000								
9 32767 327	valid_range = 2600,2860	0		Nia	httim		7	-32767	-32767	-32767	-32767	-32767	-32767	-32767
10 -32767	Log Info Metadata				mun									
11 -32767						100								
13 -32767						1000	11	-32767	-32767	-32767	-32767	-32767	-32767	-32767
Image: Second secon						1000								
LST_Night (1039, 2) 16-bit integer, 21600 x 43200 Number of attributes = 9 DIMENSION_LIST = 685,331 _FillValue = -32768 _Netcdf4Coordinates = 1,0 add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600				•										
16-bit integer, 21600 x 43200 Number of attributes = 9 DIMENSION_LIST = 685,331 _FillValue = -32768 _Netcdf4Coordinates = 1,0 add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600														
Number of attributes = 9 DIMENSION_LIST = 685,331 _FillValue = -32768 _Netcdf4Coordinates = 1.0 add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600						00 - 4000								
_FillValue = -32768 _Netcdf4Coordinates = 1,0 add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600							0							
_Netcdf4Coordinates = 1,0 add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600														
add_offset = 200.0 long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600														
long_name = Daily Nighttime Land Surface Temperature scale_factor = 0.005 type = int16 units = K valid_range = 2600,28600														
type = int16 units = K valid_range = 2600,28600				long_r	ame = Daily	Nighttime	e Land Surfa	ce Tempera	ature					
units = K valid_range = 2600,28600						05								
valid_range = 2600,28600														
Log Info Metadata						0,28600								
				Log Info	Metadata									

- The data stream began on • June 8th, 2023.
- The L3 LST product consists of two LST datasets for daytime and nighttime, respectively, with one file each in v1r1 version while the current operational SNPP and NOAA20 LST are in v1r0 version.
- The data layers include LST, QC, View time, DQF, and View Angle, all with correct data attributes and valid ranges.
- Product specific metadata is provided together with the global metadata. No issues were observed.

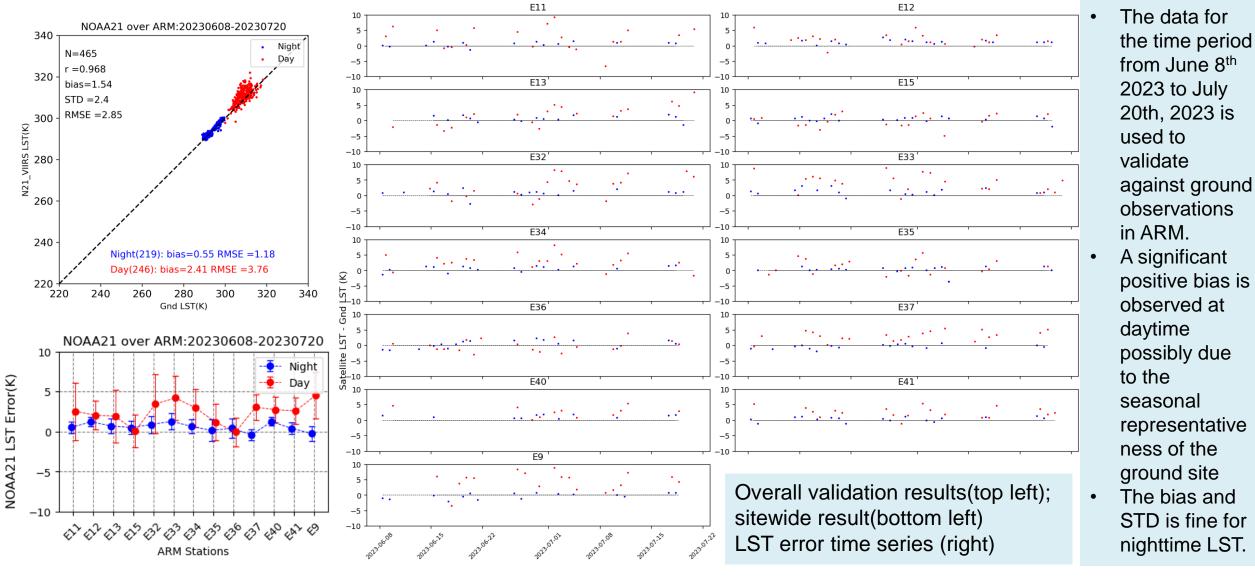


- Sample L3 LST dataset for daytime (LST, QC, View angle, View time and DQF) on June 8, 2023
- The LST is in valid range and its global distribution pattern looks reasonable
- <u>All other dataset in valid range and reasonable</u> <u>distribution</u>

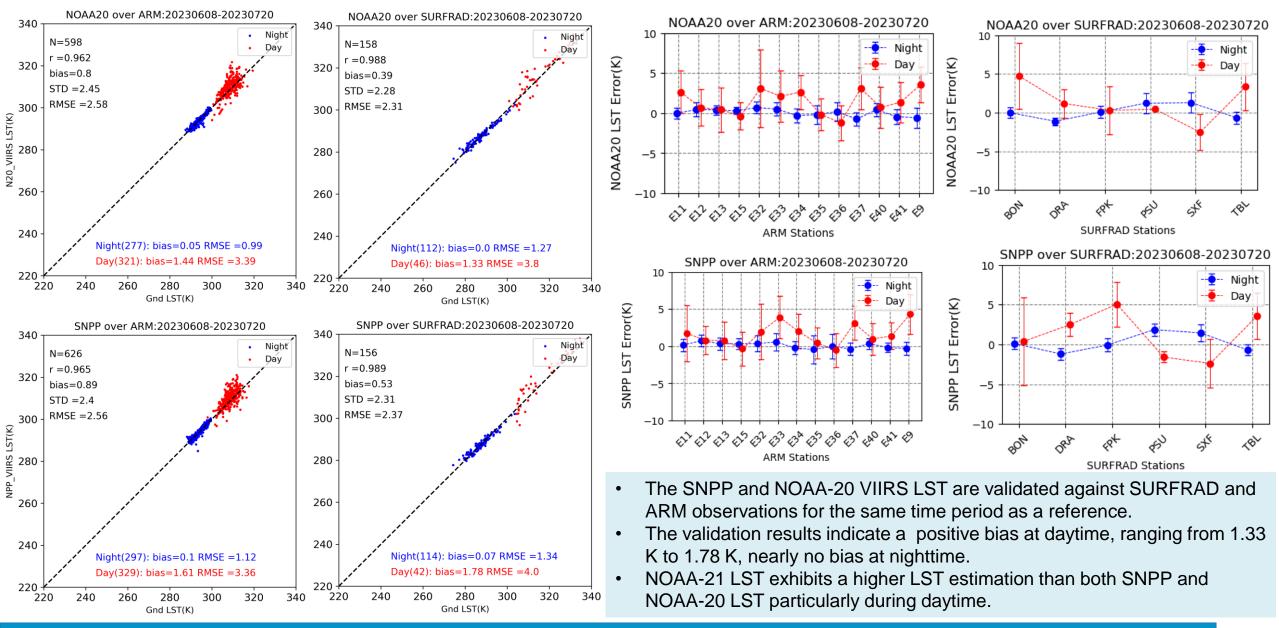
LST Validation with ground observations

L3 NOAA-21 LST validation-SURFRAD

Left figure shows the scatter plot with statistics results for overall, and day/night separated situations; middle figure is sitewide LST error time series and the right figure displays the sitewide validation performance, separated for day/night.

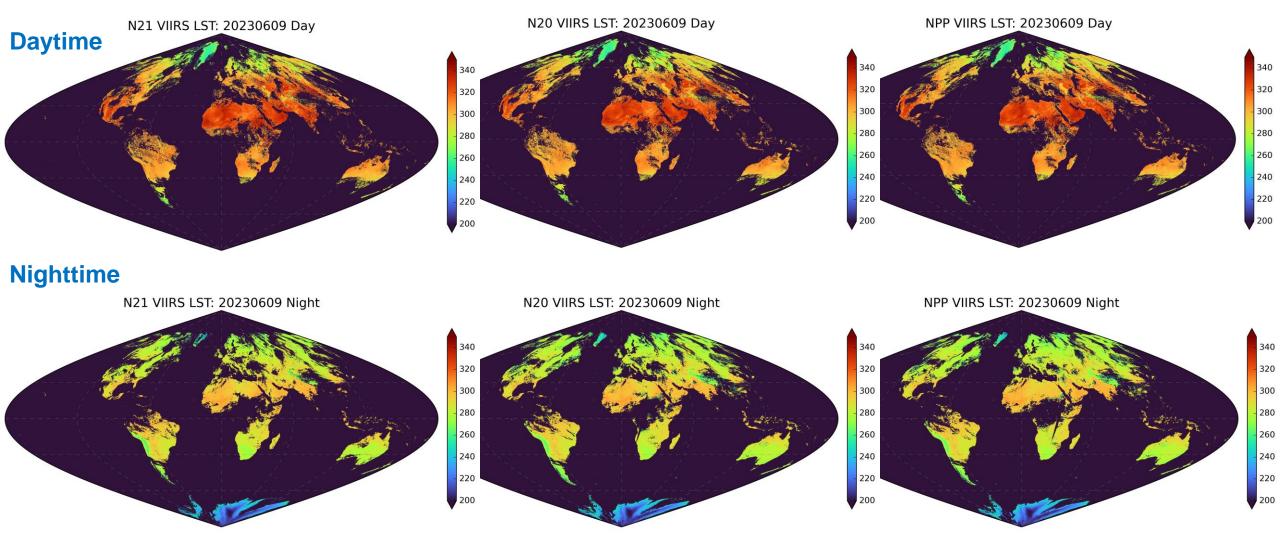

SURFRAD Stations

- The data for the time period from June 8th 2023 to July 20th, 2023 is used to validate against ground observations in SURFRAD.
- A significant positive bias is observed at daytime possibly due to the seasonal representativeness of the ground site. The ٠ sitewide performance varies significantly over site with positive bias over BON, DRA, FPK and TBL, and negative bias over PSU and SXF station.
- The bias and STD is fine for nighttime LST. ٠

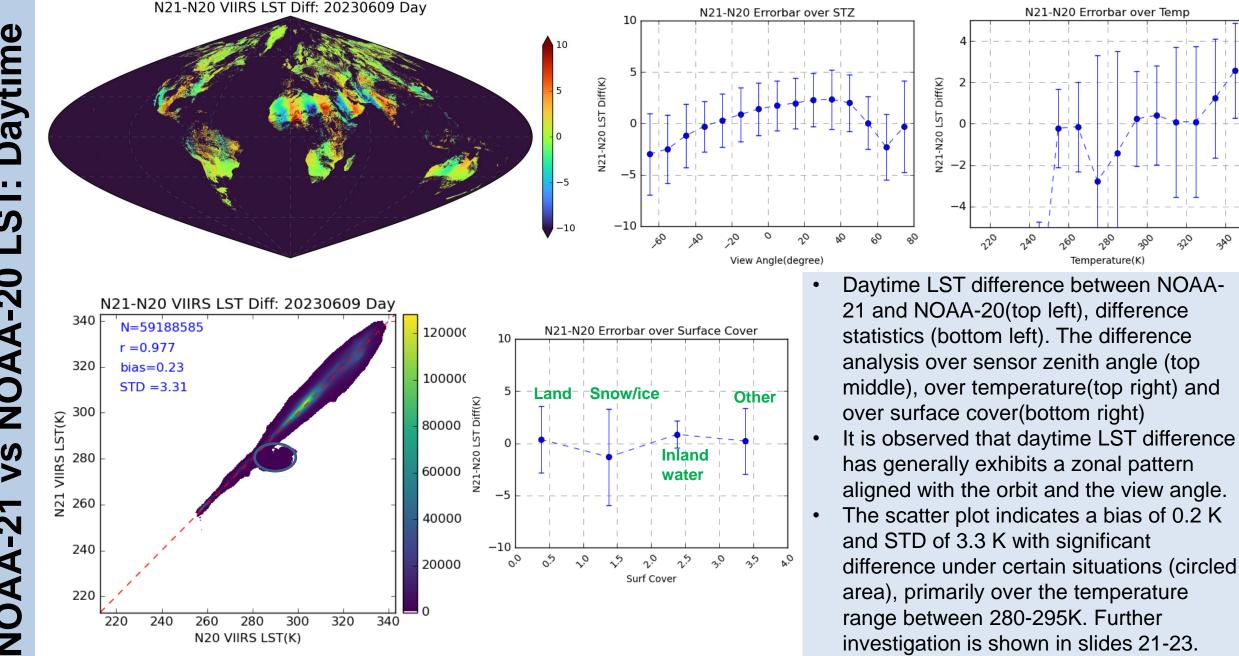

Night

Dav

L3 NOAA-21 LST validation-ARM



Validation comparison –SNPP and NOAA20



Inter-sensor comparison

Inter-sensor comparison with SNPP and NOAA-20

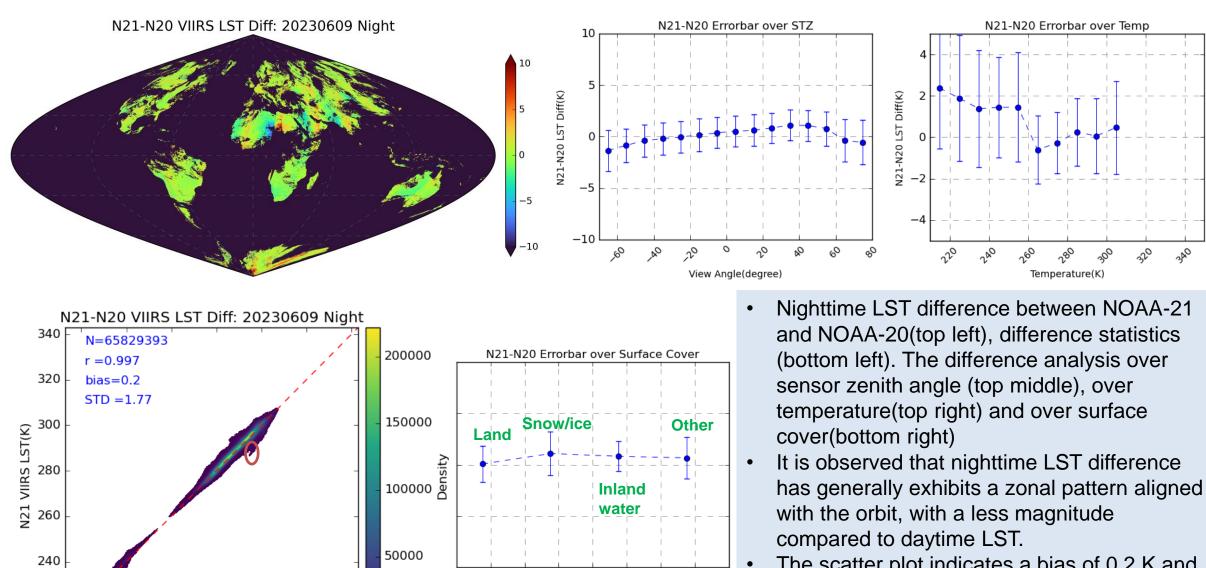
- NOAA-21 LST (left), NOAA-20 LST (middle) and SNPP LST(right) for daytime(top) and nighttime bottom)
- No obvious difference is observed from the visual observation

220

220

240

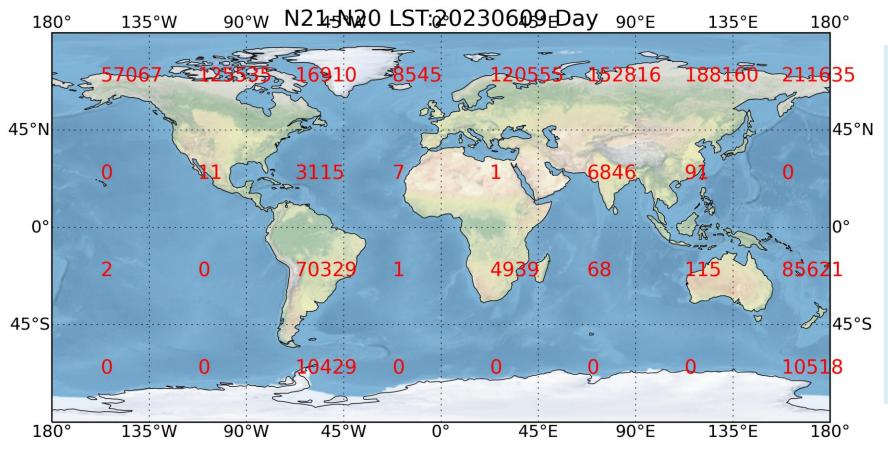
260


280

N20 VIIRS LST(K)

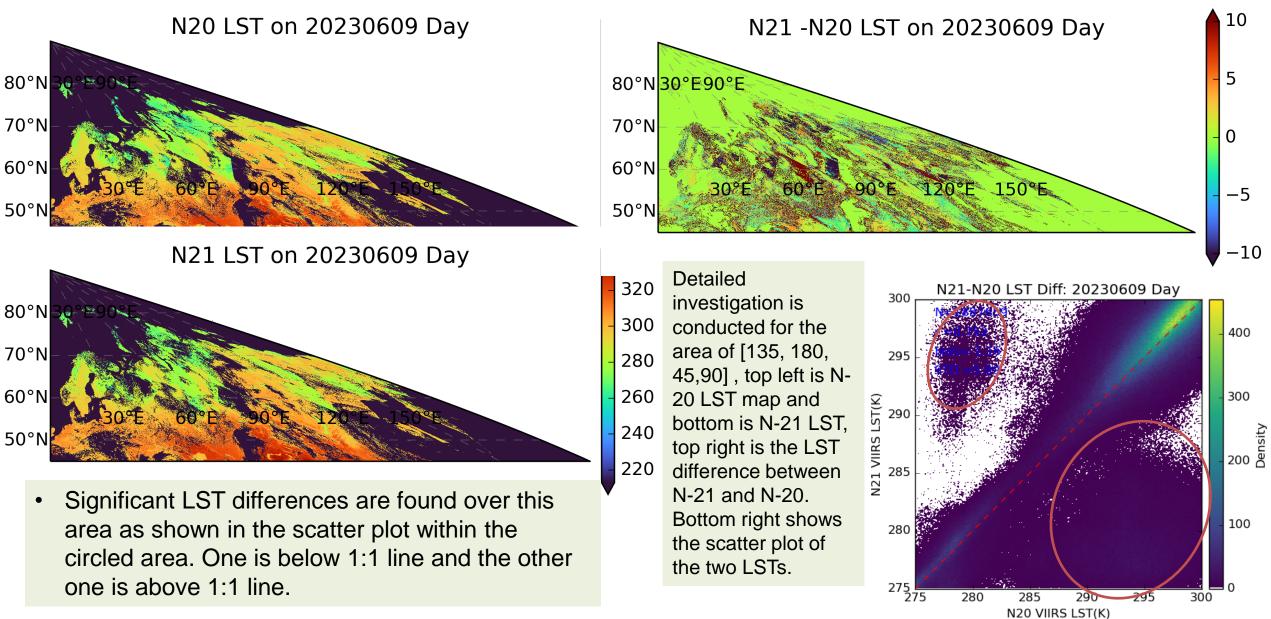
300

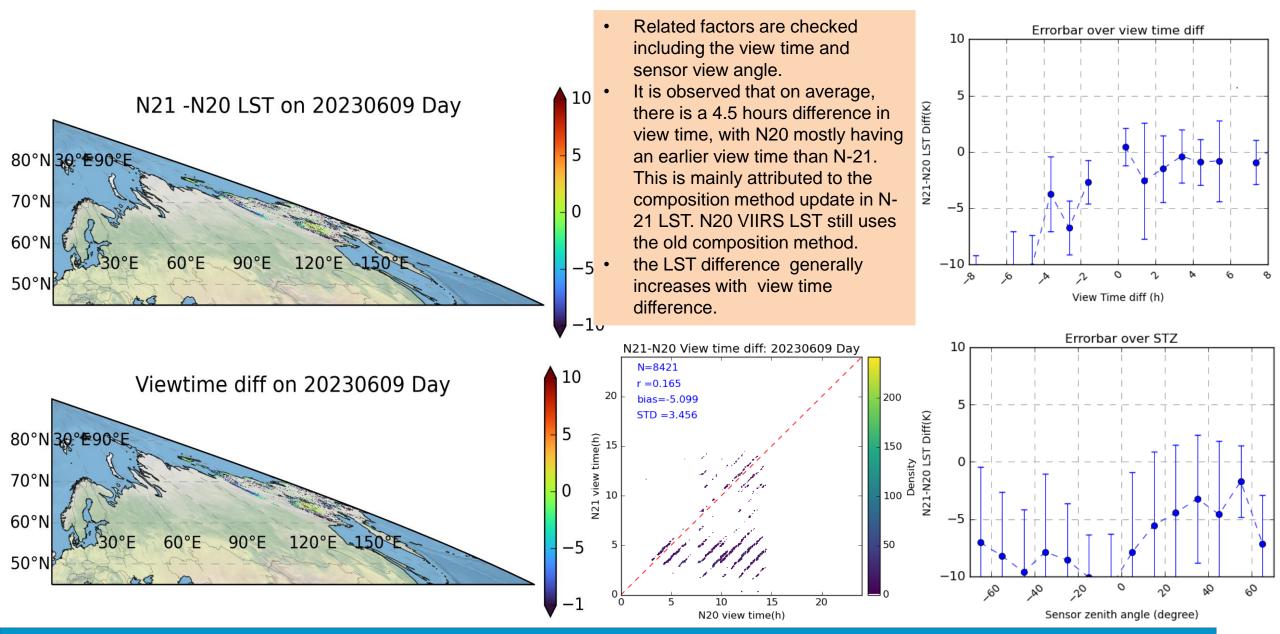
320


340

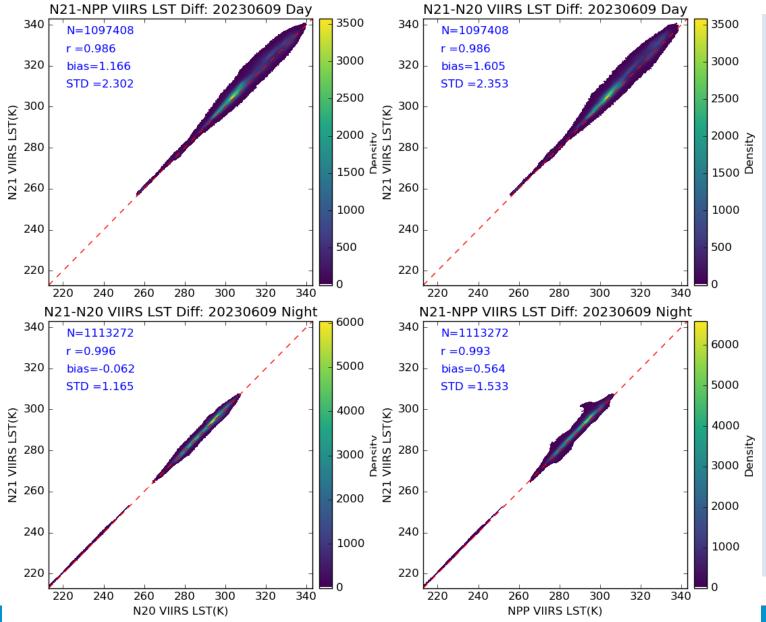
The scatter plot indicates a bias of 0.2 K and a STD of 1.77 K with a positive bias at temperature below 260 K. There is a relatively large difference under certain situations (as shown in the circled area)

Surf Cover


Significant inter-sensor LST Difference Investigation

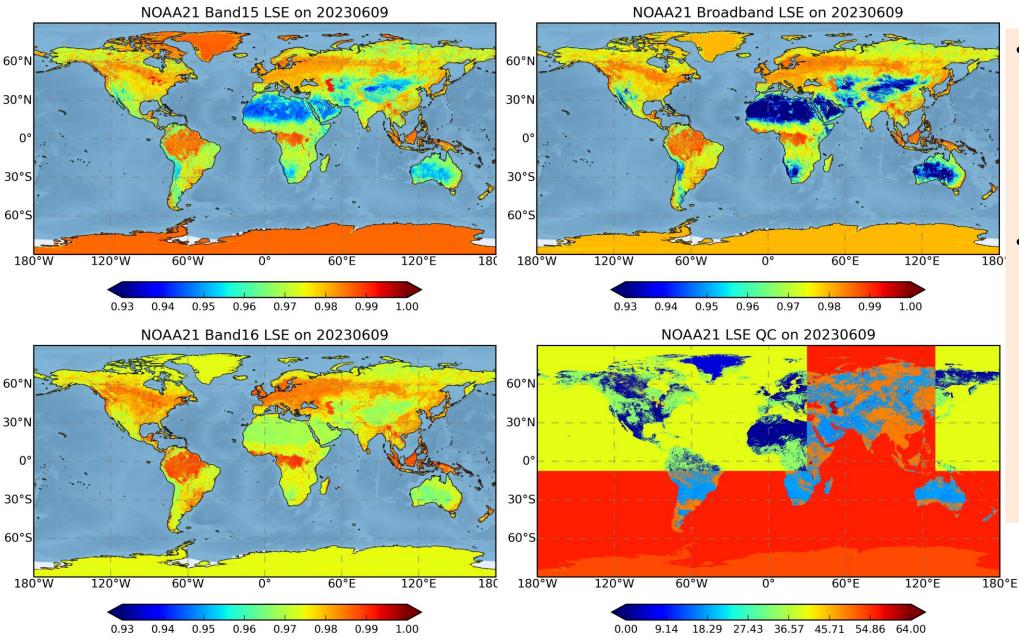

- LST Difference for subarea statistics under following conditions:
 - Both LST not fill
 - Both under cloud clear condition
 - NOAA-20 LST within
 [280,298] and NOAA-21
 LST within [275,285]
- Numbers in red color indicate the total pixels meet above conditions.

- It is found that more pixels are found in higher latitude areas above 45 degree, particularly in the eastern hemisphere
- The area within latitude range of [45,90] and longitude range of [135,180] with the most pixels is selected for further investigation


LST difference investigation

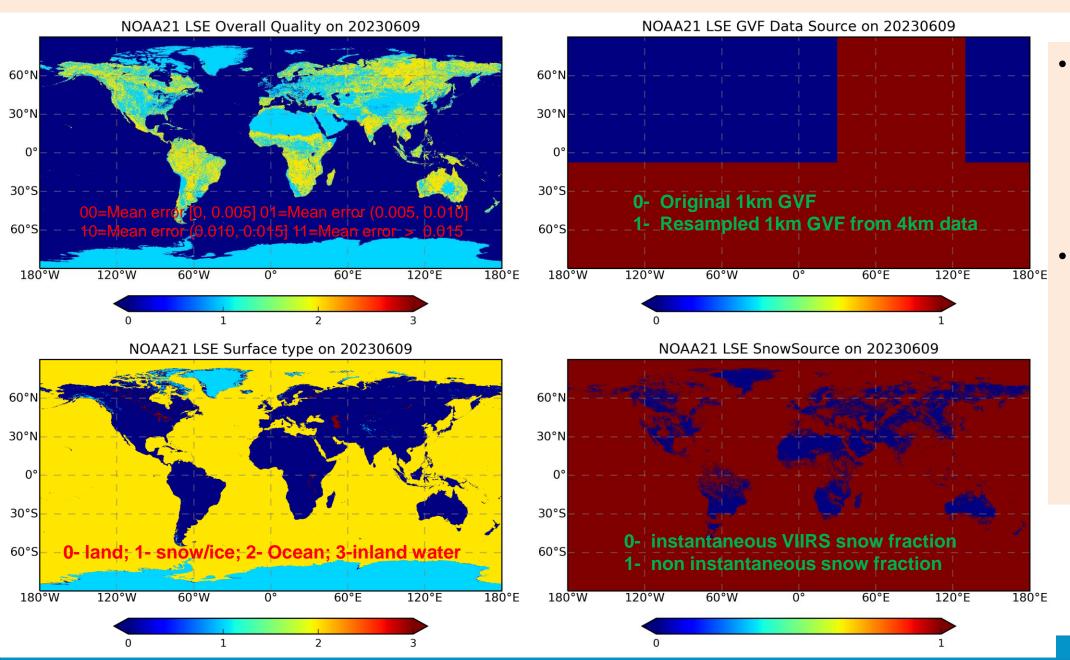
LST difference investigation: related Factors

Inter-sensor LST Comparison update

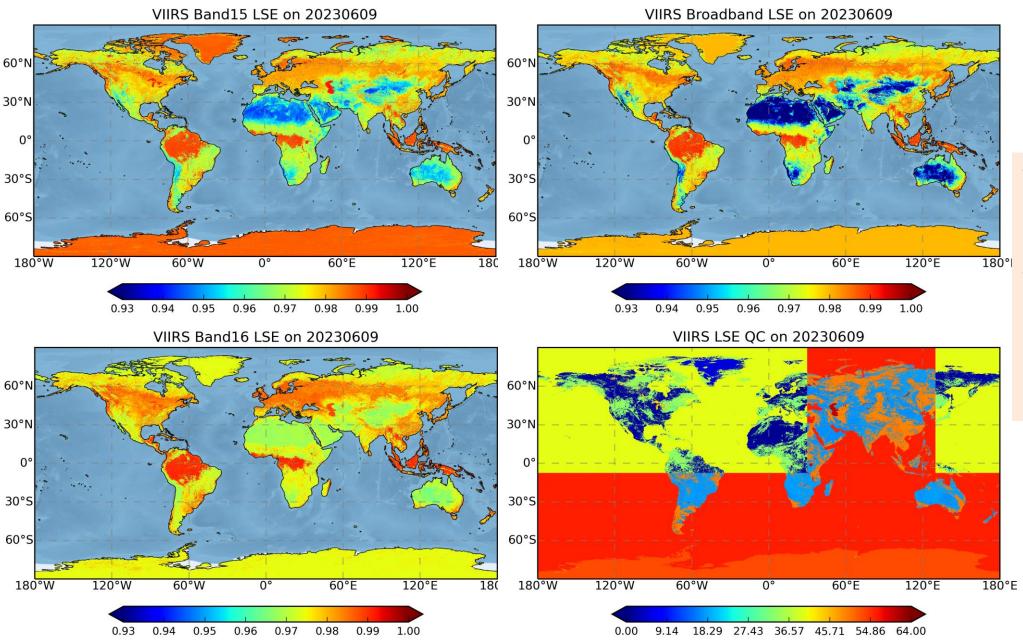


- The global LST comparisons were made under the following conditions: all cloud clear; LST not fill; and a temporal difference less than 60 minutes(a newly added criteria to mitigate the impact of the observation time difference)
- The statistical analysis was performed for the difference between NOAA-21 and SNPP/NOAA-20 LST for both daytime(top) and nighttime(bottom)
- The results indicate no significant LST difference observed. During the daytime, NOAA-21 LST is statistically higher than NOAA-20 LST and SNPP LST with a bias of 1.6 K and 1.1 K, respectively. At nighttime, NOAA-21 LST is close to NOAA-20 LST with a bias close to zero, but it is 0.5 K higher than SNPP LST.

Evaluation of the effect of required algorithm inputs

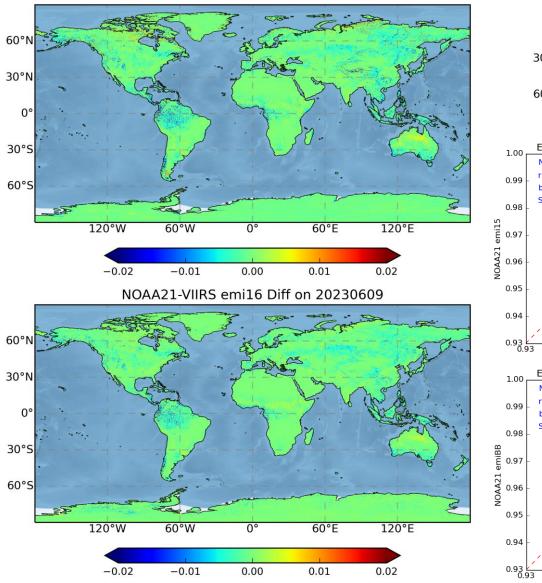

- Required Algorithm Inputs
 - Primary Sensor Data
 - VIIRS M-band SDR(M15 and M16 brightness temperature), geometry and geolocation
 - Ancillary Data
 - Land/sea mask
 - Upstream algorithms
 - LSE, AOD, Cloud mask, snow mask, GFS forecast (total precipitable water vapor)
 - LUTs / PCTs
 - LST LUT, configuration parameters
- Evaluation of the effect of required algorithm inputs
 - NOAA-21 LSE data evaluation
 - Visual analysis
 - Inter-sensor comparison with SNPP LSE data
 - LSE issue due to problematic GVF observed in SNPP and NOAA-20 run

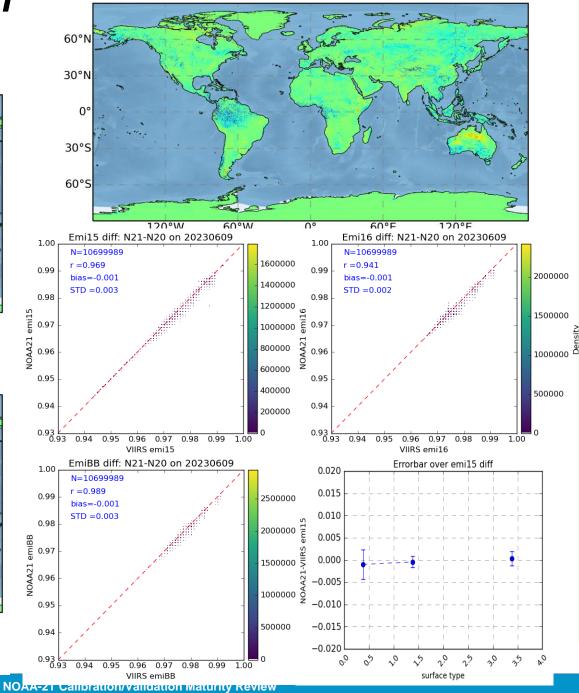
NOAA-21 Emissivity data investigation


- The NOAA-21 LSE data set is verified using data on June 09, 2023 as an example.
- Band M15, M16 broadband LSE, and LSE quality flag data value and its global distribution looks reasonable.

NOAA-21 Emissivity QC

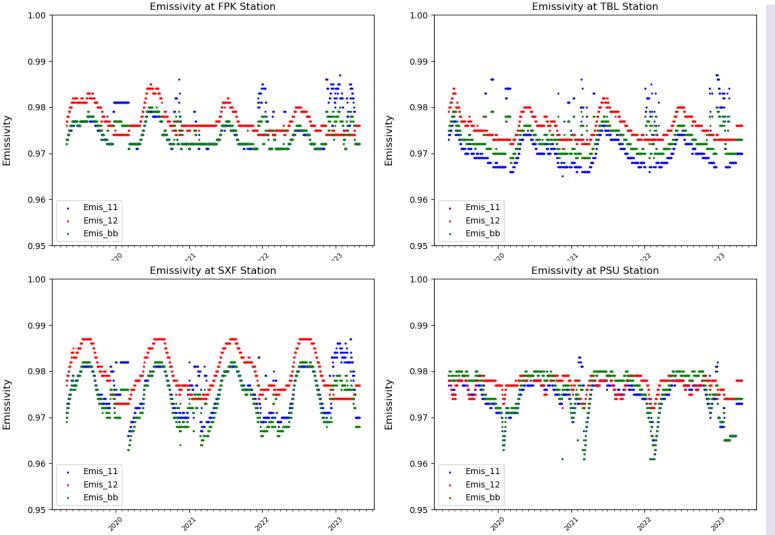
- The NOAA-21 LSE data quality flag and extracted bits are verified. The data
- The data value range and its global distribution looks reasonable.


SNPP Emissivity Data


- Figures show the LSE from SNPP VIIRS on the same day 20230609.
- It is observed that SNPP LSE is higher over the vegetated area than NOAA-21 LSE.

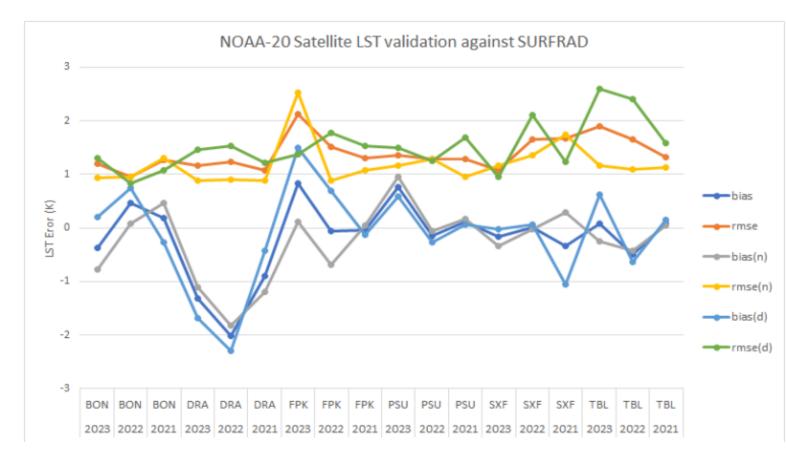
NOAA-21 LSE comparison with SNPP LSE

NOAA21-VIIRS emi15 Diff on 20230609



- NOAA21 LSE is compared with the emissivity for SNPP VIIRS
- N21 LSE is statistically lower than SNPP
 VIIRS LSE for both spectral bands and broadband with a bias of -0.001 and STD of
 0.003 for emi15 and BBE and
 0.002 for emi16.
- The statistical difference is smaller for snow/ice and inland water surface.

LSE data evaluation summary


- All data layers have been verified, and their value ranges and global distributions appear reasonable.
- The inter-comparison shows a close estimation of Land Surface Emissivity (LSE) between NOAA-21 and SNPP LSE.
- NOAA-21 LSE is statistically lower than SNPP VIIRS LSE in both spectral bands and broadband, with a bias of -0.001 for all and a standard deviation of 0.003 for emi15 and BBE, and 0.002 for emi16.
- The statistical difference is smaller for snow/ice and inland water surfaces but relatively prominent over vegetated areas.

Impact of Problematic GVF on Downstream LSE and LST (1)

- GVF is found problematic in the operational run for both SNPP and NOAA20.
- Abnormal variations in emissivity, particularly emis_11, have been observed compared to previous years. This confirms the impact of the GVF issue on LSE, mainly affecting vegetated stations. However, the LSE measurement over barren surface, shrubland, snow/ice surface and inland water surface are not impacted
- The impact is more significant on Emissivity at 11microns than on emissivity at 12 microns, and it also affects broadband emissivity.
- Both emissivity at 11 micron and broadband emissivity have increased.

Impact of Problematic GVF on Downstream LSE and LST (2)

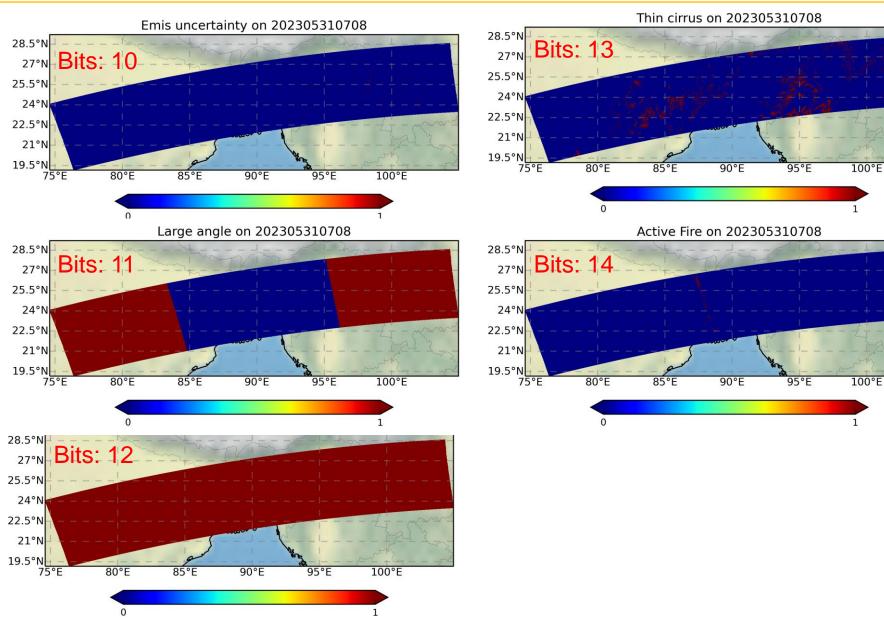
Sitewide LST error comparison

- LST error were compared for the period from January 1st to April 25 over the past three years for six stations in the SURFRAD network.
- The results indicate no clear impact, except for FPK site, which shows a more significant discrepancy, and SXF site, which shows slightly better statistics, as shown in the figure. The colors in the figure represent statistics of bias and RMSE for the combined results (day+night), with "n" representing nighttime and "d" representing daytime.

- Defined Quality Flags
 - Variable
 - Description
 - Value
- Quality flag analysis/validation
 - Test / example / ground truth data sets
 - Analysis / validation results
 - Analysis / validation plan

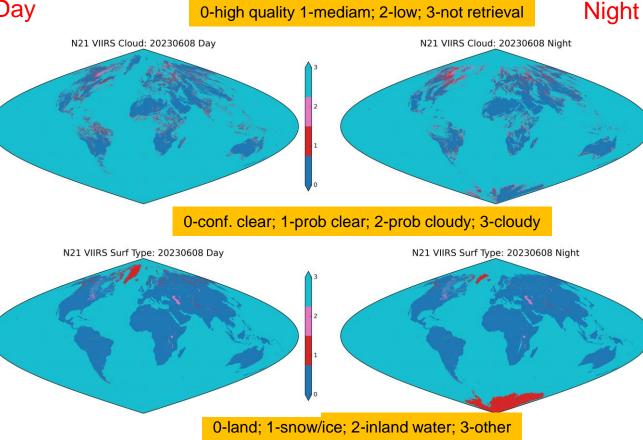
L2 VIIRS LST Quality Flag

bit	Flag	Source	description
1-0	LST quality	LST	00=high, 01=medium, 10=low, 11=no retrieval
3-2	Cloud condition	Cloud mask	00=confidently clear, 01=probably clear,10=probably cloudy,11=confidently cloudy
4	SDR quality	SDR	0=normal, 1=bad data (bad quality or missing or out of space)
5	Aerosol Optical Thickness at 550 nm (slant path)	AOD	0=within range (AOD<=1.0);1=outside range (AOD >1 or AOD missing)
7-6	Land surface cover	land/sea mask snow/ice mask	00=land;01=snow/ice;10=in land water;11=coastal
9-8	Water vapor condition	Tpw input	00=very dry atmosphere(wv<1.5g/cm ²) ; 01= dry [1.5,3); 10=moist atmosphere[3,4.5); 11= very moist[4.5+)
10	Emissivity quality	Emissivity	0=within LSE uncertainty, 1=beyond LSE uncertainty requirement (0.015)
11	Degradation by large viewing angle	SDR	0=no degradation, 1=large view degradation (VIIRS: <=40 degree)
12	Day/night flag	SDR	0=night (solar zenith angle > 85degree), 1=day
13	Thin cirrus	Cloud Mask	0= no thin cirrus, 1= thin cirrus (Only available for daytime)
14	Fire contamination flag	Cloud mask	0= no, 1= yes
15	Reserved		Reserved for future use


L2 VIIRS LST Quality Flag Verification (1)

- The plots show the bits 0 to 9 map extracted from LST quality flag.
- Small blocks were observed in the cloud mask (bits 3-2), which results in small blocks in the data quality (bits 1-0)
- The quality flag bits value and global distribution look reasonable. No other issues were observed.

L2 VIIRS LST Quality Flag Verification (2)



- The plots show the bits 10 to 14 map extracted from LST quality flag.
- The quality flag bits value and global distribution look reasonable.
- No obvious issues were observed.

L3 VIIRS LST Quality Flag

			N21 VIIRS LST Quality: 20230608 Day
Bits	Long Name	Comments	ALL AND
1&0	Data quality flag	00=high quality 01=Medium quality 10=low quality 11=no retrieval	
3&2	Cloud Confidence	00=confidently clear 01=probably clear 10=probably cloudy 11=confidently cloudy	Day O-hig N21 VIIRS Cloud: 20230608 Day
5 & 4	Land/water	00=land 01=snow/ice 10=in land water 11=coastal/sea water	
7&6	Empty	For future use	0-conf.
			N21 VIIRS Surf Type: 20230608 Day

N21 VIIRS LST Quality: 20230608 Night

- Table shows the L3 LST quality flag list; the plots on the right display the corresponding bits extracted from the quality flag for daytime (left) and nighttime LST (right)
- The quality flag value and global distribution look reasonable.

Error Budget

Compare analysis/validation results against requirements, present as a table. Error budget limitations should be explained. Describe prospects for overcoming error budget limitations with future improvements of the algorithm, test data, and error analysis methodology.

Attribute		Requirement/	Pre-Launch	On-o	rbit Perform	ance	Meet	Additional
Analyzed	DPS	Threshold	Performance	NOAA-21	NOAA-20	S-NPP	Requirement?	Comments
Accuracy		1.4 K		0.88/1.54	0.39/0.8	0.53/0.89	Marginally	Based on the ground validation results with SURFRAD and ARM
Precision		2.5 K		2.52/2.4	2.28/2.45	2.31/2.4	Marginally	Significant daytime bias is mostly attributed to the seasonal representativeness issue of ground observations. The statistics is not stable due to small sample number. Long term data validation is necessary.
Uncertainty								

User Feedback

Name	Organization	Application	User Feedback - User readiness dates for ingest of data and bringing data to operations
Jifu Yin	STAR/NESIS	Soil moisture product downscaling from 25 km to 1 km	There is an inherent relationship between soil moisture and land surface temperature, which provides ancillary information on soil moisture distributions and estimations. In addition, microwave soil moisture product has coarse spatial resolution (25 km), the VIIRS LST product with high spatial resolution thus can be used to produce finer resolution satellite soil moisture retrievals. The gridded LST over CONUS and global domain has been routinely ingested in the generation of soil moisture product in high spatial resolution.
Li Fang	STAR/NESIS	Global ET product generation based on VIIRS LST product at 1 km spatial resolution	VIIRS day/night LST product has been routinely collected as a key input in the global ET/drought system.

Risks, Actions, and Mitigations

 Provide updates for the status of the risks/actions identified during the previous maturity review(s); add new ones as needed

Identified Risk	Description	Impact	Action/Mitigation and Schedule
Land Surface Emissivity	The GVF issue was observed for NPP and NOAA20 and there is a possibility of it occurring on NOAA-21 as well, although it is unable to confirm yet. GVF at the beginning is of poor quality, which also affects LSE.	Issues in LSE will affect LST quality	The GVF issue needs to be identified first and then its impact on LSE will be evaluated and monitored.
LST composition method update	The new composition method has been applied in NOAA-21 LST, while NOAA- 20 and SNPP are still using the previous composition method.	Inconsistency among the L3 VIIRS LST, particularly at high latitude.	Further testing is needed once SNPP and NOAA20 applies new update. In the meantime monitor the NOAA-21 LST performance over a longer time period.
Data missing	The data stream is not stable yet. Data missing happens sometime.	Incomplete LST dataset. Statistical and time series analysis might be affected	

Documentations (Check List, 1 slide)

Science Maturity Check List	Yes ?
ReadMe for Data Product Users	Yes
Algorithm Theoretical Basis Document (ATBD)	Yes
Algorithm Calibration/Validation Plan	Yes
(External/Internal) Users Manual	Yes
System Maintenance Manual (for ESPC products)	Yes
Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)	Yes
Regular Validation Reports (at least annually) (Demonstrates long-term performance of the algorithm)	Yes

Check List - Beta Maturity

Beta Maturity End State	Assessment
Product is minimally validated, and may still contain significant identified and unidentified errors	Yes. The validation covers all available dataset to date. The validation consists of temperature based validation using ground observations also the intersatellite comparison with SNPP and NOAA-20.
Information/data from validation efforts can only be used to make initial qualitative or very limited quantitative assessments regarding product fitness-for-purpose	Yes, the assessments is based on one and a half months of data since June 8, 2023, the statistical results based on it might be insufficient for a sound quantitative assessment yet.
Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists	Yes. A report will be prepared for any issues observed.

Conclusion

- Cal/Val results summary:
 - Team recommend the NOAA-21 LST Beta maturity
 - The LST output layers and quality flag have been verified for both L2 and L3 NOAA-21 VIIRS LST. The data is within a valid range and its distribution looks reasonable.
 - The LST data has been preliminarily validated with ground measurements from SURFRAD and ARM. The results marginally meet the requirement.
 - The inter-comparison is conducted among VIIRS LSTs. Overall it is statistically close for most areas. Inconsistency was observed under certain situations attributed to the different composition method applied in NOAA-21 LST and NOAA-20/SNPP LST.
 - The GVF issue was observed for NPP and NOAA-20 and there is a possibility of it occurring on NOAA-21 as well, although it is unable to confirm yet. It will have an impact on LSE as well as on LST data. We will pay attention to the GVF evaluation and monitor LSE time series.
 - The data stream is not yet stable and data missing happens sometime.

- Lessons learned for NOAA-21 Cal/Val
 - Very limited data availability, which is insufficient for statistical evaluation of the product performance
- Planned improvements
 - NOAA-21 LST LUT may need update
 - Comprehensive evaluation is planned using longer time period of data.
 - Closely monitor the inconsistency among the VIIRS LSTs from SNPP, NOAA-20 and NOAA-21 resulting from the implementation of the new composition method.
- Future Cal/Val activities / milestones
 - Provisional maturity review in 6 months
 - Validated maturity review in 12 months