

MEMORANDUM FOR:	The JPSS Program Record	
SUBMITTED BY:	JPSS VIIRS Surface Reflectance Team Lead, Yunyue Yu	
CONCURRED BY:	JPSS Algorithm Management Project Lead Lihang Zhou	
	JPSS STAR Program Manager Ingrid Guch	
APPROVED BY:	JPSS Program Scientist Satya Kalluri	
SUBJECT:	NOAA-21 Product Provisional maturity status	
DATE:	01/25/2024	
Provisional maturity status declaration for JPSS VIIRS Surface Reflectance		

Maturity Review Date:	01/25/2024
Effective Date:	11/01/2023
Operational System:	NDE/NCCF, Version v1r3/v2r0

The JPSS Algorithm Maturity Readiness Review Board approved the release of the NOAA-21 VIIRS Surface Reflectance to the public with a Provisional maturity level quality as of 11/01/2023, based on JPSS Validation Maturity Review held on 01/25/2024.

- 1. Maturity stage definition (reference to the AMM webpage for maturity definition: <u>http://www.star.nesdis.noaa.gov/jpss/AlgorithmMaturity.php</u>)
 - Product is minimally validated and may still contain significant identified and unidentified errors.
 - Information/data from validation efforts can be used to make initial qualitative or very limited quantitative assessments regarding product fitness-for-purpose.
 - Documentation of product performance and identified product performance anomalies, including recommended remediation strategies, exists.
- 2. Algorithm Description:
 - 2.1 List of Products (Collection Short Name (CSN))
 - NOAA-21 VIIRS Surface Reflectance, Level 2 (version v1r3)
 - CSN: SurfRefl
 - 2.2 Product requirements/Exclusions (DPS)

Attribute	DPS	Requirement/Threshold
Geolocation	JERD-2441	The algorithm shall produce a surface reflectance product with a
		horizontal cell size of 0.80 km for radiometric and 0.40 km for
		imagery bands.
Mapping uncertainty	JERD-2529	The algorithm shall produce a surface reflectance product with a
		mapping uncertainty, 3 Sigma, of the VIIRS SDR pixel geolocation
		uncertainty
Valid range	JERD-2530	The algorithm shall produce a surface reflectance product with a
		measurement range of 0-1. (Note 1)
Accuracy	JERD-2531	0.005+0.05p. (Note 2)

Table 2-1 – Surface Reflectance Requirements

Precision JERD-2532 0.005+0.05p. (Note 2)

Note 1: The actual retrieved range of Surface Reflectance is -0.1 to 1.6.

Note 2: The symbol ρ denotes the retrieved surface reflectance. The APU metrics are applicable in conditions of low-to-moderate atmospheric turbidity (AOT (0.55µm) x m <1) where m is the air mass. The performance is degraded for the SR at wavelengths lower than 0.55µm by at least a factor 2. The SR errors may also be higher under partly cloudy and snow conditions.

2.3 Quality flags (Table)

Table 2-2 - QF1 Surface Reflectar	ice
-----------------------------------	-----

Bit #	Meaning
7	(Empty)
6	Sun Glint
	0: no sun glint detected
	1: sun glint detected
5	Low Sun Mask
	0: high
	1: low
4	Day/Night Flag
	0: day
	1: night
2-3	Cloud Detection and Confidence
	00: confident clear
	01: probably clear
	10: probably cloudy
	11: confidence cloudy
0-1	Cloud Mask Quality (currently undefined) (obsolete, set to 00)
	00: poor
	01: low
	10: medium
	11: high

Bit #	Meaning
7	Thin Cirrus Detected – Emissive Test (obsolete, set to 0, v1r3)
	0: no cloud
	1: cloud
6	Thin Cirrus Detected – Reflective Test (obsolete, set to 0, v1r3)
	0: no cloud
	1: cloud
5	Snow/Ice Flag
	0: no snow/ice
	1: snow or ice
4	Heavy Aerosol Mask
	0: no heavy aerosol
	1: heavy aerosol
3	Cloud Shadow Mask

	0: no cloud shadow
	1: shadow
0-2	Land/Water Background
	001: deep ocean
	010: shallow water
	011: land
	100: snow
	101: arctic
	110: Antarctic and Greenland
	111: desert

Table 2-4 - QF3 Surface Reflectance

Bit #	Meaning
7	Bad M10 SDR data
	0: no
	1: yes
6	Bad M8 SDR data
	0: no
	1: yes
5	Bad M7 SDR data
	0: no
	1: yes
4	Bad M5 SDR data
	0: no
	1: yes
3	Bad M4 SDR data
	0: no
	1: yes
2	Bad M3 SDR data
	0: no
	1: yes
1	Bad M2 SDR data
	0: no
	1: yes
0	Bad M1 SDR data
	0: no
	1: ves

Table 2-5 - QF4 Surface Reflectance

Bit #	Meaning
7	Missing Precipitable Water data
	0: no
	1: yes
6	Invalid Land AM input data
	0: valid
	1: invalid or over ocean
5	Missing AOT input data
	0: no
	1: yes

4	Overall Quality of AOT
	0: good
	1: bad
3	Bad I3 SDR data
	0: no
	1: yes
2	Bad I2 SDR data
	0: no
	1: yes
1	Bad I1 SDR data
	0: no
	1: yes
0	Bad M11 SDR data
	0: no
	1: yes

Table 2-6 - QF5 Surface Reflectance

Bit #	Meaning
7	Overall Quality of M7 Surface Reflectance Data
	0: good
	1: bad
6	Overall Quality of M5 Surface Reflectance Data
	0: good
	1: bad
5	Overall Quality of M4 Surface Reflectance Data
	0: good
	1: bad
4	Overall Quality of M3 Surface Reflectance Data
	0: good
	1: bad
3	Overall Quality of M2 Surface Reflectance Data
	0: good
	1: bad
2	Overall Quality of M1 Surface Reflectance Data
	0: good
	1: bad
1	Missing Surface Pressure input data
	0: no
	1: yes
0	Missing total column ozone input data
	0: no
	1: yes

Table 2-7 - QF6 Surface Reflectance

Bit #	Meaning
7	Unused
6	Unused
5	Overall Quality of I3 Surface Reflectance Data

	0: good
	1: bad
4	Overall Quality of I2 Surface Reflectance Data
	0: good
	1: bad
3	Overall Quality of I1 Surface Reflectance Data
	0: good
	1: bad
2	Overall Quality of M11 Surface Reflectance Data
	0: good
	1: bad
1	Overall Quality of M10 Surface Reflectance Data
	0: good
	1: bad
0	Overall Quality of M8 Surface Reflectance Data
	0: good
	1: bad

Table 2-8 - QF7 Surface Reflectance

Bit #	Meaning
7	Unused
6	Unused
5	Unused
4	Thin Cirrus Flag
	0: no
	1: yes
2-3	Aerosol Quantity
	00: climatology
	01: low
	10: average
	11: high
1	Adjacent to Cloud (currently undefined) (obsolete, set to 0)
	0: no
	1: yes
0	Snow Present
	0: no
	1: yes

- 2.4 Product evaluation/validation
 - Preliminary validation shows the NOAA-21 SR meet the requirements and with a similar performance as NOAA20 and SNPP
 - Downstream users (Vegetation index) feedback, no big issue found when use SR in VI/GVF product.
- 2.5 Product availability/reliability
 - Available on AWS (noaa-nesdis-n21-pds/VIIRS_SurfaceReflectance_EDR), from 11/13/2023 to present.
- 2.6 Algorithm performance dependence
 - SDR data quality, include the calibration data and geolocation data.

- Upstream product, AOD product, cloud mask/height, and GFS data
- Challenging atmospheric condition (e.g., heavy aerosol) and large solar/view angle will also impact the performance.
- 2.7 Known errors/issues/limitations

The product might have increased uncertainty for the misclassified dust aerosol model area.

3. Changes since last maturity stage

Compared with v1r2 SR, the updates of v1r3 include:

- LUT update using independent spectral response function.
- QFs update due the cloud mask version change.
- Minor change for the default aerosol model, from the dust model to generic model.
- 4. Review board recommendations
- 5. Path Forward/Future Plan
 - Implement the mitigation algorithm for the dust aerosol model.
 - Long term monitoring for NOAA-21 Surface Reflectance.
 - Extensive and comprehensive validation for NOAA-21, including the inter-comparison with SNPP, NOAA-20 and other products.
 - Collaborate with downstream users to understand the product performance and required improvement.
- 6. Additional Items to note.

Additional information is available in the VIIRS Surface Reflectance algorithm theoretical basis document (ATBD) and validation maturity review briefing, which can be accessed at: <u>https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_SurfaceReflectance.pdf</u>

Point of Contact:

Name: Yunyue Yu Email: <u>yunyue.yu@noaa.gov</u> Phone: 301-683-2566