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1 INTRODUCTION 
In this section, the background and requirement of LSE product will be introduced along with 
satellite. Section 2 provides detailed description of the land surface emissivity (LSE) retrieval 
algorithm and operations concept. Including the algorithm theoretical basis, processing 
outline, Input/output data, error budget and practical considerations during the operation, 
finally, validation schedule and preliminary result are provided. Assumptions and limitations 
associated with the algorithm are discussed in Section 3. Finally, Section 4 lists the 
references cited. 

1.1 Product Overview 

1.1.1 Product Description 

Land surface temperature (LST) as an important proxy of surface energy is required in a wide 
variety of applications of hydrology, meteorology and climatology (Wan and Dozier 1996, Yu 
et al. 2005).Remote sensing is a unique approach which allows global and regional coverage 
for LST. Many algorithms have been proposed to retrieve LST from thermal infrared (TIR) 
observations (Dash et al. 2002, Li et al. 2013), in which temperature coupled with land 
surface emissivity (LSE) and atmospheric downward radiance. From the perspective of 
emissivity, these methods could be roughly classified as two types: LST retrieval with known 
LSE, such as split window (SW) algorithm and single-channel algorithm (Wan and Dozier 
1996, Jiménez-Muñoz 2003), and simultaneous temperature and emissivity separation (Wan 
and Li 1997, Gillespie et al. 1998).The latter requires more temporal or spectral information. 
For sensors with only one or two TIR channels, emissivity is an important input and its 
variation is still the biggest impediment in satellite LST retrieval (Becker 1987, Qin et al. 2001, 
Yu et al. 2008). Besides, as an intrinsic property of the surface, broad band emissivity is 
important for the precise determination of longwave radiative energy. This is particularly 
necessary for arid/semi-arid regions, where LSE deviate considerably from the behavior of 
black body. Satellite LST&E can be assimilated into climate, atmospheric and land surface 
models and high quality LSE has demonstrated its contribution(Jin and Liang 2006, Vogel et 
al. 2011). 
The Joint Polar Satellite System (JPSS) and the Geostationary Operational Environmental 
Satellites R Series (GOES-R) are the nation’s next generation of the polar-orbiting 
environmental satellites and geostationary weather satellites, respectively. The Visible 
Infrared Radiometer Suite (VIIRS) onboard JPSS series and the Advanced Baseline Imager 
(ABI) onboard GOES-R will play an important role in developing LST records. The new 
proposed LSE product will enhance LST production of JPSS and GOES-R missions as well 
as to support forecasting models. In the United States of America, demands of satellite LSE 
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data are from a variety of government agencies as well as from universities and research 
institutes. 

1.1.2 Product Requirements 

LSE product is primarily designed to support LST product to meet the requirement of LST 
accuracy. We define LSE product requirement according to current algorithm performance 
and input data quality. The individual requirements for each satellite missions along with the 
broad band are listed in Table 1-1. 

Table 1-1 LSE Product Requirement 
 VIIRS ABI Broadband 

Spatial Coverage Global Gridded Global Gridded Global Gridded 

Spectral Coverage M15(10.26–11.26 µm) 
M16(11.54–12.49 µm) 

Ch14(10.8-11.6 µm) 
Ch15(11.8-12.8 µm) 8-13.5 µm 

LSE Accuracy 0.01 0.01 0.015 
LSE Precision 0.015 0.015 0.02 
Data Range 0-1 0-1 0-1 
Refresh Rate Daily Daily Daily 

Horizontal resolution 0.009×0.009 degree 0.009×0.009 degree 0.009×0.009 degree 
Mapping Uncertainty 3 sigma of 1km 3 sigma of 1km 3 sigma of 1km 

1.2 Satellite Instrument Description 

VIIRS onboard S-NPP and future JPSS series satellites collect visible and infrared imagery 
and radiometric measurements of the land, atmosphere, cryosphere, and oceans. It is a new 
generation of operational moderate resolution-imaging instrument following the legacy from 
the Advanced Very High Resolution Radiometer (AVHRR) on NOAA family of polar orbiting 
platforms and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and 
Aqua satellites. Based on VIIRS data, many critical environmental products are generated, 
including snow and ice cover, clouds and aerosols properties, ocean color, sea and land 
surface temperature, vegetation health and surface albedo. These variables greatly benefit 
the operational weather community towards a more precise prediction of weather, flooding, 
and storm, etc. 
VIIRS provides global moderate-resolution data twice a day without any gap. It is a scanning 
radiometer with a total field of view of 112.56° in the cross-track direction. The swath width 
is about 3060 km at a nominal equatorial altitude of 829 km, providing full global daily 
coverage in both  daytime and nighttime. Its 22 spectral bands, from 0.4 to 12.5μm (Table 1-
2), provide data for the production of more than 20 Environmental Data Records (EDRs). 
There are 16 moderate-resolution bands (M bands, each with 16 detectors) with a spatial 
resolution of 750m at nadir, five imaging resolution bands (I bands, each with 32 detectors) 
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with a 375m spatial resolution at nadir, and one panchromatic DNB with a near constant 
750m spatial resolution throughout the scan. The M bands include 11 reflective solar bands 
(RSB) and 5 thermal emissive bands (TEB) which includes the two split window channels 
used for LST retrieval, and the I bands include 3 RSB and 2 TEB(Cao et al., 2013). Detailed 
spectral characteristics are summarized in Table 1-2. 

Table 1-2 Spectral Characteristics of VIIRS 

  Bands NO. Driving EDR(s) Spectral Range(µm) Resolution(m) 

R
ef

le
ct

iv
e 

Ba
nd

s 

V
IS

/N
IR

 

M1 Ocean Color, Aerosol 0.402-0.422 750 
M2 Ocean Color, Aerosol 0.436-0.454 750 
M3 Ocean Color, Aerosol 0.478-0.488 750 
M4 Ocean Color, Aerosol 0.545-0.565 750 
I1 Imagery EDR 0.600-0.680 375 
M5 Ocean Color, Aerosol 0.662-0.682 750 
M6 Atmospheric Correction 0.739-0.754 750 
I2 NDVI 0.850-0.880 375 
M7 Ocean Color, Aerosol 0.846-0.885 750 

DNB Day & Night 0.500-0.900 750 

S
/M

W
IR

 

M8 Cloud Particle Size 1.230-1.250 750 
M9 Cirrus/Cloud Cover 1.371-1.386 750 
I3 Binary Snow Map 1.580-1.640 375 

M10 Snow Fraction 1.580-1.640 750 
M11 Clouds 2.230-2.280 750 

Em
is

si
ve

 B
an

ds
 I4 Imagery Clouds 10.26-11.26 375 

M12 SST 3.610-3.790 750 
M13 SST, Fire 3.970-4.130 750 

LW
IR

 M14 Cloud Top Properties 8.400-8.700 750 
M15 SST, LST 11.54-12.49 750 
I5 Imagery Cloud 10.50-12.40 375 

M16 SST, LST 11.54-12.49 750 
ABI is the primary instrument on the GOES-R Series observing the earth’s weather, oceans, 
and environment. It is a multi-channel passive imaging radiometer designed to observe the 
western hemisphere with multiple spatial domains. The instrument has two scan modes; the 
default mode concurrently takes a full disk (FD) image every 15 minutes, a Continental U.S. 
(CONUS) image every five minutes, and two Meso-scale images every 60 seconds. ABI can 
also operate in continuous FD mode, providing uninterrupted FD scans every 5 minutes. ABI 
views the Earth with 16 different spectral bands, including two visible channels, four near-
infrared channels, and ten infrared channels. Its spatial resolution is nominally 2 km for the 
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infrared bands and 0.5 km for the 0.64μm visible band (Schmit et al., 2007). More details are 
provided in Table 1-3. 
ABI is used in a wide range of applications related to weather, oceans, land, climate and 
hazards (fires, volcanoes, floods, hurricanes and storms that spawn tornadoes).It tracks and 
monitors cloud formation, atmospheric motion, convection, land surface temperature, ocean 
dynamics, flow of water, fire, smoke, volcanic ash plumes, aerosols and air quality, and 
vegetative health. ABI’s data enables meteorologists to pinpoint and track developing storms 
in much greater detail. Benefits from the ABI include improved tropical cyclone forecasts, 
fewer weather-related flight delays and airline incidences with volcanic plumes, improved 
production and distribution of electricity and natural gas, increased efficiency in irrigated 
water usage in agriculture, and higher protection rates for recreational boats in the event of 
a tropical storm or hurricane. 

Table 1-3 Spectral Characteristics of ABI 
Channel Number Wavelength (µm) Bandwidth(µm) NEDT/SNR Spatial Resolution 

1 0.47 0.45 – 0.49 300:1[1] 1 km 
2 0.64 0.59 – 0.69 300:1[1] 0.5 km 
3 0.86 0.8455 – 0.8845 300:1[1] 1 km 
4 1.38 1.3705 – 1.3855 300:1[1] 2 km 
5 1.61 1.58 – 1.64 300:1[1] 1 km 
6 2.26 2.225 – 2.275 300:1[1] 2 km 
7 3.9 3.8 – 4.0 0.1K[2] 2 km 
8 6.15 5.77 – 6.60 0.1K[2] 2 km 
9 7.0 6.75 – 7.15 0.1K[2] 2 km 

10 7.4 7.24 – 7.44 0.1K[2] 2 km 
11 8.5 8.30 – 8.70 0.1K[2] 2 km 
12 9.7 9.42 – 9.80 0.1K[2] 2 km 
13 10.35 10.10 – 10.60 0.1K[2] 2 km 
14 11.2 10.80 – 11.60 0.1K[2] 2 km 
15 12.3 11.80 – 12.80 0.1K[2] 2 km 
16 13.3 13.0 – 13.6 0.3K[2] 2 km 

[1] 100% albedo, [2] 300K scene. Shaded channels are used for LST retrieval. 
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2 ALGORITHM DESCRIPTION 

2.1 Processing Outline 
LSE product is generated based on the vegetation cover method (VCM), which combines 
two constant emissivity values from the bare ground and full vegetation situations of each 
pixel. The real time emissivity is adjusted according to the green vegetation fraction (GVF). 
The processing includes two parts as figure 2-1 shows: the static emissivity module aims to 
generate background component emissivity climatology served as the bare component in the 
algorithm, and the dynamic emissivity module accounts for the emissivity variation due to 
GVF and snow fraction. 

 
Figure 2-1 LSE algorithm description 

In the static emissivity module land surface is classified into three types with different 
processing approaches, due to its thermal emission characteristics. The permanent snow & 
ice emissivities are directly converted from the mean value of a long term MODIS emissivity 
product, the values of the inland water are determined according to Advanced Spaceborne 
Thermal Emission and Reflection Radiometer(ASTER) spectral library dataset, and those of 
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soil and vegetation area, also the most common situations, are derived using ASTER Global 
Emissivity Dataset (GED) dataset and related mean normalized difference vegetation 
index(NDVI)using the reverse form of the VCM, more details will be elaborated in section 
2.3.  
VIIRS/ABI bare ground emissivity climatology, VIIRS GVF and snow fraction are used in the 
dynamic emissivity module to derive the daily emissivity and its associated quality flags to 
determine the data quality. The dynamic LSE processing flowchart is demonstrated in Figure 
2-2. 

 
Figure 2-2 LSE Processing Flowchart 

2.2 Algorithm Input 

This section describes the input needed to process the LSE product. LSE uses VIIRS 
vegetation and snow product as primary input, along with ancillary data such as bare ground 
emissivity and the look-up table.  

2.2.1 Derived sensor data 

There are three types of derived data from VIIRS: VIIRS GVF, VIIRS annual surface type 
and VIIRS snow fraction. 
Currently, VIIRS GVF contains two parts with different spatial resolution, global coverage 
with 4km resolution and North America part (130°E to 30°E 90° N to 7.5° S) at 1km grids. 
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They will be employed to generate a global GVF at 0.009 degree with degraded value apart 
from the North America region. 
VIIRS Global Surface Type (GST) also taken as an input to support emissivity calculation. 
Updated annually, GST is generated with the 17-type classification scheme of the 
International Geosphere-Biosphere Program (IGBP) and is produced at a 1-kilometer spatial 
resolution. 
VIIRS reflectance based snow fraction is another important input for LSE product. All the granules 
of yesterday will update the snow information for the near-real-time dynamic emissivity. 
Table 2-1lists the primary derived sensor data used in the LSE algorithm.  

Table 2-1 LSE product algorithm input 
Name Type Source Description Dimension 

VIIRS gridded 
GVF 

Dynamic NDE VIIRS 4km global weekly GVF grid (xsize, ysize)1 

Dynamic NDE VIIRS weekly 1km GVF for North 
America grid (xsize, ysize)2 

Surface Type Static DAP VIIRS Global Surface Type grid (xsize, ysize)3 
VIIRS Snow 
Fraction Dynamic NDE VIIRS reflectance based snow 

fraction 
granule (xsize, 
ysize) 

NDE: S-NPP Data Exploration, DAP: Delivery Algorithm Package 
1. xsize = 10000, ysize = 5000;  2. xsize = 28889, ysize = 10833; 3. xsize = 40000, ysize  = 20000 

2.2.2 Ancillary data 

The background emissivity will serve as ancillary data along with the previous day’s gap free 
snow fraction. Background emissivity contains emissivity and uncertainty of three bands 
(VIIRS M15, M16 and broadband), plus the background surface type.  
LSE is a global product without any gap over land surface, however, the snow fraction data 
has filled value due to the cloud or darkness, a gap free snow fraction with latest available 
snow information is provided here to replace these areas. 
The following table lists and briefly describes the ancillary data required to generate the LSE. 

Table 2-2 LSE product algorithm ancillary input 
Name Type Source Description Dimension 

Background 
Emissivity 
Climatology 

Static DAP 
Table containing predefined 
emissivity, uncertainty and surface 
type 

7 variables; 
each of 
grid (xsize, 
ysize)1 

Gap free Snow 
Fraction  Dynamic DAP Prior gap-free gridded snow 

fraction 
grid (xsize, 
ysize)1 

1. xsize = 40000, ysize = 20000;   

2.2.3 Look-up tables 
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In addition to the derived sensor data and the ancillary data, algorithm also requires some 
look-up tables for algorithm implementation and control. This includes vegetation emissivity 
(4 narrow channels and 1 broadband) and correction factors for each surface type (17 IGBP 
classes), snow emissivity and uncertainty at VIIRS/ABI SW channels. 

2.3 Theoretical Description 

2.3.1 Physical Description 

Both VIIRS and ABI have the split window channels centered at around 11μm and 12μm for 
LST retrieval (Table 1-2 and 1-3). To support LST retrievals for the two missions, LSE product 
includes four narrow bands emissivity: VIIRS M15 & M16and ABI B14 &B15and a thermal 
broadband emissivity which will be used for LST validation and the surface models.LSE 
product is generated based on the vegetation cover method, in which each pixel assumedly 
consists of the vegetation and bare ground components. A linear model is adopted to 
estimate pixel emissivity using the vegetation components proportion. In order to account for 
the interaction at the structured and rough surface, a compensation factor, named cavity term 
derived from the geometric model (Caselles and Sobrino 1989), was considered. The 
effective pixel level emissivity λε  could be calculated by: 

( )1bare vegf f dλ λ λ λε ε ε ε= − + + (2-1) 

where bare
λε  and veg

λε are the emissivity values of the bare component and vegetation at 

wavelength of λ, respectively, f is the fraction of vegetation cover and d λε is the cavity term. 
In traditional VCM algorithm, both the bare and vegetation component emissivity of each 
surface type were assigned according to the spectral library data, which works well for the 
vegetation part with high and stable emissivity. However, soil emissivity could vary from as 
low as 0.6 to nearly 1 in TIR bands due to the diverse mineral components, soil moisture 
content, and surface roughness. A simple constant value from the limited spectrum in the 
spectral library might introduce large uncertainty especially for the arid area with spare 
vegetation covered. A high spatial resolution bare component emissivity map with more 
detailed information is needed to fix this issue. Historical emissivity products, such as ASTER 
and MODIS, were employed to generate this bare emissivity climatology for this purpose. It 
should be noted that a conversion between narrow channel emissivities is required from 
source sensors to target ones. 
To account for the seasonal variation, the dynamic surface parameters closely related to the 
emissivity are introduced to adjust the bare emissivity climatology. In the concept of VCM, 
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the phenology is the predominant factor in the land cover change in most areas so that the 
real time fractional vegetation cover is indispensable to produce dynamic emissivity.  
Snow with distinct emissivity spectral characters is a common natural phenomenon in the 
middle and high latitude regions during wintertime. The snowfall can dramatically change the 
LSE and should not be neglected. To improve the data quality, a simple linear model was 
adopted for the snow effect. 

( )1bv snow
SF SFf fλ λ λε ε ε= − + (2-2) 

where bv
λε is the emissivity after the vegetation adjustment, snow

λε is snow component 

emissivity, and SFf is the snow cover fraction.  

2.3.2 Mathematical Description 

2.3.2.1 Bare emissivity climatology 
Land surface bare ground could be roughly classified into three types: the bare soil, 
permanent ice & snow, and the inland water. Since the emissivity of each type differs from 
others, the bare emissivity climatology was processed separately with the assistance of the 
surface type data. Soil covered with/without vegetation constitutes most of the land surface, 
whose emissivity is the key part of the climatology. 
ASTER GED is a mean emissivity database developed by the National Aeronautics and Space 
Administration’s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology,  from all 
available clear-sky ASTER data between 2000 and 2008. The version 3 provides a static 
emissivity of 5 ASTER TIR bands with an average band error of ~1%.This global gridded 
data was released in 1x1 degree tiles at ~100m and ~1km spatial resolution, respectively 
(Hulley et al. 2015). The 1km dataset was used to generate bare ground emissivity 
climatology by reversingequation2-1: 

,
,

,1
AST veg v AST

AST bare
v AST

f
f

ε ε
ε

−
=

−
(2-3) 

where ASTε  is the ASTER GED v3 emissivity, ,AST bareε  and vegε  is the ASTER bare and 

vegetation component emissivity, and ,v ASTf  is the ASTER vegetation cover fraction. 

In equation (2-3), vegε  was originally the mean value from ASTER spectral library, however, 
very low values were found over dense vegetation in GED v3 data, in which pixels with FVC 
greater than 0.9 have the mean emissivities of 0.972, 0.971, 0.969, 0.974, 0.974 for the 5 
ASTER TIR bands, respectively. Compared with the spectral library value of 0.987, 0.983, 
0.979, 0.981 and 0.983, the discrepancy could be up to 0.01, which is significant difference 
in emissivity. The overestimated vegε used in (2-3) may result in an underestimated bare 
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ground emissivity. Therefore, a modification of equation (2-3) is made to use the vegetation 
component emissivity derived from product instead of that from spectral library. In addition, 
to address the difference between vegetation types, the vegetation component emissivity 
was surface type dependent. The result confirms this assumption, the needle leaf forest have 
highest emissivity while the savannahs with the lowest, there is a gap of almost 0.01 between 
them. 
The bare emissivity climatology derived from ASTER GED v3 covers ASTER 5 TIR bands, 
different from VIIRS and ABI split window bands (Figure 2-3).A linear conversion is 
constructed to get the channel emissivity iε  

0 1 10 2 11 3 12 4 13 5 14i c c c c c cε ε ε ε ε ε= + + + + + (2-4) 

where, 10ε - 14ε are the five ASTER channel emissivities, and c0 - c5 are the coefficients 
determined by regression. Since this conversion is designed for the bare soil, a spectral set 
of soil, rocks and few construction material including asphalt and concrete were selected 
from ASTER spectral library for the regression, both the source and target channel emissivity 
were convoluted with their corresponding spectral response function. 
The coefficients were summarized in Table 2-3. Considering the correlation between source 
and target channels, the 11μm channel was just calculated by ASTER B13 and B14.Although 
it's difficult to infer the emissivity of 12μm band with little overlap with ASTER bands, the 
correlation with adjacent bands emissivity for a certain type is good enough to get an 
acceptable conversion. Previous studies have shown that 8 - 13.5μm spectral domain could 
represent the broadband emissivity best, and the BBE could be modeled using ASTER 
narrow TIR bands (Cheng et al. 2013). 
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Figure 2-3 Spectral response functions of ASTER, VIIRS and ABI TIR bands 
Table 2-3 Coefficients of the spectral conversion equation 

 C0 C1 C2 C3 C4 C5 R2 
VIIRS M15 -0.0117 --- --- --- 0.8453 0.1661 0.9988 
VIIRS M16 0.4099 -0.0006 0.0095 -0.0264 0.1048 0.4948 0.9250 
ABI Ch14 -0.0256 --- --- --- 0.1644 0.8228 0.9992 
ABI Ch15 0.5125 0.0145 0.0042 0.0291 -0.0176 0.4520 0.9080 

Broadband 0.1949 0.1075 0.0664 0.1233 0.3925 0.1111 0.9921 
Permanent snow and ice occupies a large area at polar region, however, there are no ASTER 
GED data at Antarctic. Besides the permanently covered snow and ice at northern 
hemisphere have a much lower emissivity than the spectral library value. Current data also 
indicated snow and ice emissivity vary in types, e.g., generally ice and coarse snow have 
lower emissivity than fine or fresh snow (Salisbury et al. 1994). An alternative emissivity 
product is required to map snow emissivity, rather than the mean library data. University of 
Wisconsin Global Infrared Land Surface Emissivity Database (UWIREMIS) database is 
derived from MODIS emissivity product could extend to high resolution emissivity spectra 3.6 
and 14.3 microns and serves the need well. Using the same method as for ASTER GED, 
UWIREMIS mean emissivities at 10 channels was generated from the monthly data between 
2003 and 2014.Ahigh spectral resolution algorithm was employed to generate finer resolution 
data, which was then convoluted to the emissivity of VIIRS, ABI SW bands and 8 - 13.5μm 
broadband. Compared with ASTER GED, corresponding channel emissivity derived from 
MODIS mean emissivity works better over the snow area. As Figure 2-4 shows. 
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Figure 2-4 Snow/Ice emissivities of MODIS, ASTER GED, and spectral library at ASTER 
TIR channels 

Based on the analysis above, climatology of the permanent snow and ice area is replaced 
by the mean value derived from UWIREMIS after re-sampled from 0.05 degree to 0.009 
degree. Given the high homogeneity of snow area, this procedure will not introduce 
significant uncertainty. 
For the third type, namely inland water is always regarded as black body for its high 
emissivity. ASTER emissivity product might not work very well at the surface with low-
contrast spectral; the average value from spectral library was used according to the surface 
type data. Additionally, once the water get frozen at high latitude area, ice emissivity will be 
used instead, which is much lower than that of water. 
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Figure 2-5 VIIRS M15 background emissivity 
It should be noted that there are nearly 1% pixels with either missing values or unreasonable 
values (larger than 1 or less than 0.6) in ASTER GED dataset due to cloud contamination, 
spatial coverage, or inversion issues. These were replaced by the mean value of adjacent 
available pixels with the same surface type. The effective radius was set as 2.5 degree. If 
there are no enough available pixels, a global mean value of that surface type will be used. 
An example of the global gridded background emissivity climatology was shown in Figure 2-
5. 
2.3.2.2 Dynamic emissivity 
Based on the bare ground emissivity climatology, the real time vegetation fraction datawas 
used to adjust the emissivity by equation (1), in which the climatology works as the soil 
component emissivity, while the vegetation one was assigned according to the spectral 
library. The cavity term 

( )4 1d d f fλ λε ε= −  (2-5) 

where d λε  is the maximum cavity effect value, which is assumed to exist under nadir 
observation and can be simplified as: 
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( ) ( )1 1bare vegd F fλ λ λε ε ε= − −  (2-6) 
where, F is the shape factor in the "box model" depending on the vegetation height and 
separation. 
Both the vegetation component emissivity and cavity term depend on surface type and will 
be estimated based on the IGBP database. The vegetation emissivity for each type is 
assigned as (Trigo et al. 2008) configured library samples for SEVIRI. The detailed values 
for each surface type are shown in  Table 2-4 

Table 2-4 Mean vegetation emissivity and cavity term for each surface type 
IGBP Class M15 M16 Ch14 Ch15 BBE F 

1, 2 0.989 0.991 0.989 0.991 0.991 0.92 
3, 4 0.974 0.973 0.973 0.974 0.977 0.92 
5 0.981 0.982 0.981 0.983 0.984 0.92 
6 0.981 0.982 0.981 0.983 0.984 0.65 
7 0.981 0.982 0.981 0.983 0.984 0.14 
8 0.967 0.968 0.967 0.970 0.973 0.65 
9 0.965 0.967 0.965 0.969 0.971 0.38 
10 0.982 0.988 0.985 0.989 0.983 0.08 
12 0.982 0.988 0.985 0.989 0.983 0.38 
13 0.982 0.985 0.983 0.986 0.983 0.08 
14 0.975 0.978 0.977 0.979 0.979 0.79 
16 0.965 0.967 0.965 0.969 0.971 0.05 

To implement the vegetation adjustment, real-time vegetation fraction product is required. 
VIIRS GVF operational product developed by the NOAA/NESDIS Center for Satellite 
Applications and Research (STAR) is produced as a daily rolling weekly composite at 1-km 
resolution. This GVF product derived from enhanced vegetation index with uncertainty of 
~12%. It should be noted that its data latency is one day after the 7-day compositing period. 
Such a delay is considered acceptable for emissivity modeling, since the growth of plants is 
a relative slow process. 
To model the snow cover impact on emissivity, snow fraction product is used  in the algorithm 
as described by (2-2). An operational VIIRS snow fraction product generated by NOAA/STAR 
is adopted here, which uses the reflectance of VIIRS visible band I1 (0.6-0.68μm) and applies 
a linear unmixing technique to empirically determine the snow portion (Romanov et al. 2003). 
In the operational processing, the gridded snow fraction of all granules data from the previous 
day is needed to make the composition, leading to a one-day latency. Gaps in snow fraction 
product exist due to cloud, darkness at pole region, and will be replaced by the previous 
available values. This might introduce uncertainty, especially when heavy snow fall event 
occurs. 
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2.4 Algorithm Output 

Output of the LSE algorithm contains four data arrays: the LSE values and associated quality 
control flags (Tables 2-5 and 2-6). 

Table 2-5 LSE algorithm output data description 

Data Set Variables Description Dimension 

VIIRS LSE 
Product 

emis_m15 Land surface emissivity value for each pixel of VIIRS 
M15 (xsize, ysize)3 

emis_m16 Land surface emissivity value for each pixel of VIIRS 
M16 (xsize, ysize)3 

emis_bbe 8- 13.5μ broadband emissivity value for each pixel (xsize, ysize)3 

quality_flag Quality control flags for each pixel (xsize, ysize)3 
 

Table 2-6 LSE product quality flag description 
byte bit Flag Source description 

1 

0-1 Overall 
quality Combined 

00=Mean error [0, 0.005] 
01=Mean error (0.005, 0.010] 
10=Mean error (0.010, 0.015] 
11=Mean error  >  0.015 

2-3 Surface Type Surface Type 
Land Sea Mask 

00=Land, 01=Permanent snow/ice 
10=Ocean, 11=Inland water 

4 GVF VIIRS Gridded GVF 0 = Original 1km GVF 
1 = Resampled 1km GVF from 4km data 

5 Snow VIIRS Granule 
Snow Fraction 

0 = instantaneous VIIRS snow fraction 
1 = non instantaneous snow fraction 

6-7 For future use 

2.5 Performance Estimates 

2.5.1 Test Data Description 

Unit Tests have been conducted to verify whether LSE is correctly implemented in the NDE 
system. Dataset from three seasons (20170109, 20170409 and 20170709) with a wide 
range of vegetation and snow fraction have been selected for product verification. These 
datasets include the static input data designed for LSE algorithm, which have been 
introduced in section 2.2, such as background emissivity climatology, VIIRS annual surface 
type and the look-up tables. For these certain days, dynamic input data are prepared for 
test as follows: 
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• Daily rolling weekly GVF data Global 4km and North America regional 1km. 
s20170103_e20170109, s20170403_e20170409, s20170703_e20170709 

• VIIRS snow fraction EDR: all granules of 20170109, 20170409 and 20170709 
• Previous day (Day-1) global gridded gap free snow fraction: 20170108, 20170408 and 

20170708 
Eventually, daily LSE products of these days are produced, as Figure 2-6shows. 

 
Figure 2-6 LSE product verification dataset 

Although the in-situ emissivity measurement is still a challenge and very limited, , it is the 
most effective and reliable dataset for algorithm validation. The primary ground emissivity 
dataset was collected in northwest China on 2012 under the context of Heihe Watershed 
Allied Telemetry Experimental Research (HiWATER).The corresponding satellite LSEs are 
produced corresponding to the ground observation time. Four barren sites measurements 
were obtained on July 10, 2012, and three observations at different growing stages 
(20120530, 20120615 and 20120624) were made over a vegetation site. Besides, 
performance of long time LST derived from LSE are also used to evaluate the product. 

2.5.2 Sensor Effects 

LSE product is generated based on VIIRS EDR as well as historical emissivity climatology 
rather than directly retrieved from sensor data record (SDR). Sensor effects such as its 
random noise, calibration error and geolocation uncertainty will indirectly impact LSE 
accuracy through the retrieval error of VIIRS GVF, snow fraction and surface type. More 
detailed information about the errors of these products can be found from the related 
algorithm theoretical basis documents, while their impact on LSE will be characterized in the 
following section. 

2.5.3 Retrieval Errors 

To quantify the uncertainty in the emissivity product, the theoretical emissivity error is 
calculated based on the error propagation theory. LSE retrieval error budget contains three 
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types of uncertainty sources: the bare ground emissivity uncertainty, GVF error and VCM 
method uncertainty, snow fraction error and linear mixing uncertainty. 
The bare ground climatology uncertainty largely depends on the quality of ASTER GED. 
ASTER GED is mean value of clear sky emissivity product retrieved using TES algorithm 
after an enhanced atmospheric correction named water vapor scaling method. The 
uncertainty has been quantified through the Temperature and emissivity uncertainty 
simulator (Hulley et al. 2012), in which the band-dependent emissivity error is quantified as 
a function of the total column water for three surface types (bare, gray body and the 
transition). Besides, the emissivity conversion between ASTER and VIIRS/ABI channels will 
also introduce uncertainty, especially for the 12µm bands, which has part of overlap with 
ASTER. All these uncertainties are assumed to be independent. The combined error could 
be calculated using (2-7). 

( )2

1

n

i
i

δε δε
=

= ∑ (2-7) 

For the dynamic emissivity, the errors of GVF and snow fraction contribute to the product 
uncertainty along with the climatology. The uncertainty of VCM could be described as (2-8) 

( ) ( ) ( )1 4 1 4 1 2VCM v v v g v v v g v vf f f f d d f fδε δε δε δ ε ε ε ε δ = + − + − + − + −  (2-8) 

where, gδε is the bare ground emissivity uncertainty mentioned above, vδε is the vegetation 
emissivity uncertainty, using the standard deviation of the emissivity from the spectral library, 

vfδ  is the GVF product error.  
Similar as the GVF, the uncertainty brought during the snow effect calculation could be treat 
as (2-9) 

( ) ( )1s VCM s s s VCM sf f fδε δε δε ε ε δ= + − + − (2-9) 

Where, VCMδε is result of (2-8), and sδε is snow emissivity uncertainty from the spectral library, 

the snow fraction product uncertainty is sfδ  
The mean emissivity errors of the split window channels are grouped into four bins: [0, 0.005], 
[0.005, 0.010], [0.010, 0.015] and 0.015 beyond.  Figure 2-7 shows a case on 20170409, in 
which the four groups have 1.17%, 75.91%, 22.88% and 0.04%, respectively. 
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Figure 2-7 LSE overall quality on April 9, 2017 

2.6 Practical Considerations 

2.6.1 Numerical Computation Considerations 

The LSE product is developed using a semi-empirical algorithm with basic mathematical 
routines, which are robust and computationally efficient. For storage consideration, LSE 
values are scaled to signed byte, with scale factor and offset defined in the attributes. Quality 
flags for each pixel value should be bit-flag definitions, to minimize data storage. 

2.6.2 Programming and Procedural Considerations 

The simplicity of the algorithms described in this document is translated into small amount of 
code using basic mathematical routines. Since the daily LSE data size is very large due to 
its global coverage and high spatial resolution, it is partitioned to multiple segments with 
smaller data size. 

2.6.3 Quality Assessment and Diagnostics 

The LSE overall quality flags are designed according to the system requirement. And a 
couple of parameters and indicators are reported in the LSE product as retrieval diagnostic 
flags, for example, the GVF resolution and latency flag of snow fraction help to diagnose the 
data quality. The lists of quality flags as well as their detailed descriptions are given in section 
2.4. 
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Statistical information is also included in the product, e.g., the minimum and maximum value, 
each quality group percentage etc.  

2.6.4 Exception Handling 

The algorithm will handle exceptions by input/output data check and quality flags. LSE is 
designed as a gap-free global product. When generating the bare ground emissivity 
climatology, the missing value and pixel with poor quality will be replaced by the interpolated 
value.  
For the GVF input, if there is no data from yesterday, the latest available data will be used 
instead.  
For  the snow fraction, there are gaps due to the cloud or darkness, and previous day’s data 
will be used instead and will be marked in the quality flag as a non-instantaneous input. This 
processing might introduce some error especially when new snow fall event occurs, the 
quality flag will help for diagnostics. 

2.7 Validation 

2.7.1 LSE validation 

A series of in situ emissivity measurements were carried out in northwest China in 2012 
under the context of Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 
(Li et al. 2013). Ground emissivity was collected at four barren sites for once and cropland 
areas at three different growing stages. Four large homogeneous sites located in the arid 
area were chosen for LSE evaluation, which cover three typical surface types at this region, 
the gobi site (GB), desert site (SSW) and two desert steppe sites (HZZ, JCHM), as Figure 2-
8 shows. 
The emissivity was acquired by an ABB BOMEM MR304 Fourier Transform Infrared 
Spectroscopy which is a high-precision instrument with a spectral resolution of up to 1cm-1 
in 2-15 µm range. Under field conditions, the targets and downward sky radiance was 
measured using the MR304 and a diffuse golden plate and the emissivity was retrieved by 
the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm, 
with an accuracy better than 0.01(Wang et al. 2015). The LSE data derived from the product 
was compared with the field measured emissivity spectra convolved with the spectral 
response function of VIIRS and ABI SW bands. The results indicate that LSE algorithm works 
well for these bare surfaces with pretty good agreement within0.006 for narrow bands and 
0.012 for broadband. 
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Figure 2-8 LSE in situ validation sites 

To evaluate dynamic emissivity, a corn field (WX) located in the artificial oasis was selected 
to evaluate the vegetated area with various GVF. To facilitate the measurement over canopy, 
a more compact multichannel thermal infrared radiometer (CE312-2) with 5 narrow bands 
(8.25-8.60, 8.49-8.86, 8.95-9.34, 10.16-10.96, 10.86-11.71μm) and a broadband channel 
(8.01-13.34μm) was used. This radiometer has a field view of 10° and was mounted at least 
1 meter above the top of canopy to collect the radiation from the mixed scenes. 5 narrow 
band emissivities along with LST were retrieved using ASTER TES algorithm; consequently, 
the broadband emissivity could be determined using Planck function using  the retrieved LST 
in TES. Since CE312-2 is a multichannel radiometer with similar channel as ASTER, it could 
not be directly compared with the VIIRS and ABI emissivity product. Considering the product 
is derived from ASTER GED, an alternative approach to evaluate the dynamic emissivity is 
to produce emissivity of ASTER 5 TIR channels using current algorithm. The result shows 
LSE product works well at this site with a mean accuracy of ~0.007 for ASTER channels. 

2.7.2 Evaluating LSE in LST retrieval 

Currently, LSE field measurement is still a challenge, in situ measurements are still limited 
and long-term LSE monitoring using ground data is nearly impossible. LSE product is 
proposed primarily for LST retrieval, in which LSE accuracy will significantly impact the LST 
quality. What’s more, there are long-term LST ground measurements available for 
evaluation, so LST retrieval accuracy could be regarded as an alternative criterion for LSE 
quality. To evaluate the LST accuracy, the temperature based method was adopted, which 
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involves direct comparison with ground measurements performed at the thermally 
homogenous sites concurrent with the satellite overpass. 
The SURFace RADiation budget observing network (SURFRAD) could provide high quality 
long-term measurements of surface upwelling and downwelling long wave radiations along 
with other meteorological parameters(Augustine et al. 2000). There are seven sites available 
for the LST validation, each station equipped with a pyranometeron a 10 meter high tower 
with a field-of-view approximate70 m × 70 m. SURFRAD observations from February 2012 
to July 2015 are used for validation of the VIIRS LST retrieval. 
The spectral emissivity data has been applied to a variety of emissivity-explicit LST 
algorithms including the VIIRS enterprise LST algorithm. The derived LSTs have been 
evaluated against in situ measurements and show promising quality. 
These validation activities mentioned above are preliminary results, more substantial 
algorithm and product validations are necessary. 
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3 ASSUMPTIONS AND LIMITATIONS 

3.1 Performance Assumptions 

The following assumptions have been made in the LSE algorithm development and quality 
evaluations.  
• The basic assumption of VCM is that land surface pixels contain two components: bare 

ground and vegetation and emissivities of the two components do not change over time. 
Vegetation emissivity and 3-D structure are surface type dependent, thus each IGBP 
class has same vegetation emissivity and cavity correction factors.  

• Weekly composited GVF data after noise filtering is available and vegetation fraction 
doesn’t have dramatic change during one week. 

• Permanent snow/ice emissivity is homogenous at 0.05×0.05 degree grids, thus degraded 
MODIS snow emissivity at 5km resolution will not introduce significant uncertainty. Since 
there is no data in the area under polar night, we assume snow fraction will not change 
during the darkness period. 

Based on the assumptions mentioned above, LSE product has its limitations: 
3 Currently, the emissivity is designed for nadir view only without consideration of the  

angular effect of emissivity. 
4 GVF and snow fraction are the only two factors controlling the variation of emissivity, soil 

moisture has not been taken into account in the current algorithm, which will result in a 
constant value for barren area with no vegetation and snow. 

5 Snow fraction data has at least one day latency, the pixels with new heavy snow fall 
might have larger uncertainty due to lack of instantaneous data. 

3.2 Potential Improvements 

Soil moisture has been proved to have significant impact on emissivity. However, bare 
ground emissivity as a static value in LSE algorithm made great contribution at low GVF 
areas. While this is acceptable for arid areas with extremely low soil moisture, it might 
introduce large uncertainty at the sparse vegetation area with large soil moisture fluctuations. 
A potential improvement in the future will be soil moisture correction, which will improve the 
LSE quality over low GVF area. 
For the validation part, ground measurements are still very limited, and more in-situ emissivity 
from different areas could be collected through international collaborations, which will highly 
support LSE product. 
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