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1.  INTRODUCTION  

1.1.  Product Overview 

1.1.1.  Product Description 

Product description with sufficient detail so that the user understands how to use the 
product files. (Document Object 34)1  
Writers: Algorithm Scientists. 
 
The ATMS SFR product is the instantaneous liquid-equivalent snowfall rate. The current 
algorithm is only applicable over global land although the requirement is global (land and 
ocean). The SFR product is retrieved from measurements taken by passive microwave 
sensors aboard certain polar-orbiting satellites. It is composed of two algorithms: snowfall 
detection and rate estimation. Both algorithms have been validated before SFR for a 
specific satellite is transitioned to operation.  
 
Operationally, this product is generated inside the NOAA Microwave Retrieval Integrated 
System (MiRS). Even though the SFR algorithm is independent of MiRS, they share the 
same input, and the SFR product is generated from the MiRS processing and included in 
the MiRS output files. 

1.1.2.  Product Requirements 

State the requirements for each product, either explicitly or by reference to the project’s 
requirements document, if available. Product requirements should include content, format, 
latency, quality. (Document Object 1) 
Writers: Development Lead. 
 
The AMSU/MHS SFR product went into operation at NOAA/NESDIS in 2012. Four 
satellites carry the sensor pair: NOAA-18, NOAA-19, Metop-A, and Metop-B. ATMS SFR 
was added to the JPSS Baseline Requirement Documents (L1RD) in 2018. This allows the 
S-NPP and JPSS SFR to be transitioned to operation. Table 1-1 lists the JPSS latency 
requirements for ATMS SFR. Table 1-2 shows other JPSS L1RD requirements. 
 
The SFR product is distributed in the MiRS imaging products file (IMG) in the netCDF4 
format. Besides snowfall rate including no snowfall, the product also includes flags 
indicating the conditions for no-retrieval. 
 

                                                 
1 If Document Objects have been written, the indicated object should be directly inserted to satisfy each 
template instruction. Document Objects are described in the Algorithm Theoretical Basis Document 
Standards and Guidelines http://projects.osd.noaa.gov/spsrb/standards_data_mtg.htm 

http://projects.osd.noaa.gov/spsrb/standards_data_mtg.htm
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Table 1-1. JPSS ATMS SFR Latency Requirements 
 

 Maximum Latency 
(minutes) Data Recipients 

Product/Parameter 
Total 

System 
(Th./Obj.) 

(1) 

Allocated 
To Entity 

(Threshold) 

JPSS 
GS – 
ESPC 

JPSS 
GS – 

CLASS 

JPSS 
GS – 
USN 

ESPC 
– 

NOAA 

ESPC – 
CLASS 

(10) 

ESPC 
– 

AFWA 
(9) 

ESPC 
– 

USN 
(9) 

ATMS Snowfall 
Rate 96/30         

JPSS Ground 
System 

CRIS/ATMS SDR 
(4) 

 114 X       

ESPC Product 
Generation (3)  16    X X X X 

 
Table 1-2. JPSS ATMS SFR Requirements 

EDR Attribute Threshold Objective 
Snowfall Rate Applicable 
Conditions: 
Limb-corrected 53.6 GHz ≥ 240 K 

  

Geographic Coverage Global land Global 
Vertical Coverage Single layer in lower atmosphere Single layer in lower atmosphere 
Horizontal Cell Size 15 km at nadir 15 km at nadir 
Mapping Uncertainty, 3 Sigma N/A (reflects SDR characteristics) N/A (reflects SDR characteristics) 
Measurement Range N/A N/A 
Snowfall Rate Accuracy  0.3 mm/hr 0.15 mm/hr 
Snowfall Rate Precision 1 mm/hr 0.7 mm/hr 
Probability of Detection 40% over land and 30% over 

ocean 
50% over land and 40% over 
ocean 

False Alarm Rate 15% over both land and ocean 10% over both land and ocean 
Refresh Twice Daily Twice Daily 

 
The SFR latency requirements are met since SFR is part of the MiRS processing and the 
latter meets the same latency requirements. Other SFR attributes are discussed throughout 
this document especially in Section A5.2.3. 

1.2.  Satellite Instrument Description 

Describe the attributes of the sensing system(s) used to supply data for the retrieval 
algorithm at a level of detail sufficient for reviewers to verify that the instrument is capable 
of supplying input data of sufficient quality. (Document Object 28) 
Writers: Development Lead and PAL should collaborate. 
 
 



NOAA  
  Snowfall Rate (SFR) 

Algorithm Theoretical Basis Document  
  Page 9 of 32 

 
 

 

The SFR product is derived from the AMSU/MHS and ATMS sensors. Refer to MiRS ATBD 
Section 1.2 for descriptions of these instruments.  
 
2. ALGORITHM DESCRIPTION 

2.1.  Processing Outline 

Full description of the processing outline of the retrieval algorithm. All key elements and 
sub-elements needed to convey a comprehensive sense of the algorithm should be 
included. The level of detail should be consistent with the current maturity of the software 
architecture (which will improve with each revision). A data flow diagram consistent with the 
software architecture is preferred. (Document Object 13) 
Writers: Algorithm Scientists. 
 
The SFR product is generated inside the MiRS system. Figure 2-1 presents the SFR 
processing as a sub-system within MiRS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2-1. Diagram showing SFR processing as a sub-system within MiRS 
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MiRS processing starts with TDR ingestion and is followed by footprint matching for 
sensors with channels that have significantly different resolutions (MiRS ATBD Section 
2.1). An intermediate binary FMSDR file contains the footprint-matched radiance and the 
associated geolocation data. It serves as the input to both the SFR processing and the 
MiRS 1DVAR. An output file (final dep) combines the SFR product resulting from the SFR 
processing and the EDRs generated from MiRS post-processing. Finally, this file is 
converted to netCDF4 format and is distributed as MiRS IMG file.  
 
Figure 2-2 shows the SFR processing flowchart.  
 

 
 

Figure 2-2. SFR processing flowchart 
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The SFR processing starts from an interface with the MiRS system where the MiRS 
intermediate FMSDR data is ingested to the SFR sub-system. The input data also includes 
some static ancillary files and the Global Forecast System (GFS) model data produced by 
NOAA National Centers for Environmental Prediction (NCEP). The SFR algorithm consists 
of two components (algorithms): snowfall detection (SD) and snowfall rate. The two 
components are executed separately in two main modules (Fig. 2-2). The current algorithm 
only applies to over land while the satellite observations over ocean (including large inland 
lakes) and coast are flagged as undetermined. For an overland field-of-view (FOV), the 
processing first executes the SD module. The SD algorithm is composed of three main 
elements: a satellite-based SD element, a GFS model-based SD element, and a set of 
GFS model-based SD filters. The first two elements yield the probabilities of snowfall (POS) 
and are optimally combined to produce the final POS. If the POS passes the pre-defined 
thresholds and the SD filters are satisfied, snowfall is positively identified and the 
processing advances to the snowfall rate module. The SFR algorithm retrieves some cloud 
properties using a 1DVAR inversion method. The retrieved variables are then used to 
derive the final SFR. This process is performed for all FOVs in a satellite swath 
sequentially. Finally, the SFR output is combined with other MiRS non-sounding EDRs in 
the IMG netCDF4 file.  
 

Inversion Processing 
 
Figure 2-3 describes the organization of the inversion 1DVAR process. The processing 
starts with the computation of first guesses of the control vector elements including some 
cloud properties. The first guesses are derived from brightness temperatures (TBs) and pre-
derived empirical equations. An iteration scheme (Yan et al., 2008) follows in which TBs are 
simulated with a forward operator (Weng et al., 2001) and the control vector in each cycle. 
Then the differences between the simulated and the observed TBs (∆TBs) are checked 
against pre-set thresholds. The iteration terminates and the cloud properties from this cycle 
are retrieved if the simulation reaches convergence. Otherwise, the control vector is 
updated and iteration advances to the next cycle. The iterative loop also terminates if the 
convergence criterion is not met within five iterations. 
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Figure 2-3. Diagram of inversion processing (1DVAR) to retrieve cloud properties for deriving SFR 
 

2.2.  Algorithm Input  

Full description of the attributes of all input data used by the algorithm, including primary 
sensor data, ancillary data, forward models (e.g. radiative transfer models, optical models, 
or other model that relates sensor observables to geophysical phenomena) and look-up 
tables. Do not include file formats; these will be documented elsewhere. (Document Object 
14) 
Writers: Algorithm Scientists. 
 
The SFR algorithm requires a number of data files to operate properly. The data files 
needed and their purpose are listed below.  
 
Input Data: MiRS ATMS FMSDR data (single granule) 
 
Contents: Footprint-matched radiometric measurements (brightness temperatures), and 
geolocation data. 
 
Format: Binary 
 



NOAA  
  Snowfall Rate (SFR) 

Algorithm Theoretical Basis Document  
  Page 13 of 32 

 
 

 

Number of Files: 1 
 
Static/Dynamic: Dynamic 
 
 
Input Data: Land-Sea Mask Data  
 
Contents: Global surface type (land or ocean) data, 1/16 degree resolution 
 
Format: Binary 
 
Number of Files: 1 
 
Static/Dynamic: Static 
 
 
Input Data: Footprint Size Data  
 
Contents: Footprint size to mask resolution ratio as a function of scan position. Data is 
required for determining surface type at each FOV. 
 
Format: Ascii 
 
Number of Files: 1 
 
Static/Dynamic: Static 
 
 
Input Data: SFR Limit Data 
 
Contents: SFR upper and lower limits.  
 
Format: Ascii 
 
Number of Files: 1 
 
Static/Dynamic: Static 
 
 
Input Data: ATMS to MHS Measurement Conversion Coefficients 
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Contents: Coefficients to convert measurements from three ATMS channels, 88.2, 165.6, 
and 183.31±7 GHz to the MHS channels at 89.0, 157.0, and 191.31 GHz, respectively. The 
conversion is required to derive first guess for ice water path (IWP) because the original 
empirical equation was developed using the MHS measurements.  
 
Format: Ascii 
 
Number of Files: 1 
 
Static/Dynamic: Static 
 
 
Input Data: Cloud optical parameters  
 
Contents: Look-up-table of three cloud optical parameters: optical depth, single-scattering 
albedo, and asymmetry factor calculated from Mie code. The LUT is used for radiative 
transfer calculations. 
 
Format: Binary 
 
Number of Files: 1 
 
Static/Dynamic: Static 
 
 

2.3.  Theoretical Description 

2.3.1.  Physical Description 

Comprehensively describe the sensor physics and the associated geophysical 
phenomenology key to the product retrieval. (Document Object 15) 
Writers: Algorithm Scientists. 
 
The Advanced Technology Microwave Sounder (ATMS), flown on the Suomi-NPP and 
JPSS satellites, is a cross-track scanner with 22 channels.  Channel selection and 
frequencies are similar to the heritage AMSUA/MHS sensors flown on the NOAA and 
Metop polar-orbiting series of satellites.  Channel frequencies are chosen to provide 
sounding of atmospheric temperature, water vapor and cloud, hydrometeors such as rain 
and ice water, as well as retrieval of surface characteristics.  MiRS ATBD Table 2-1 
summarizes the ATMS channels and passband characteristics, instrument noise, and 
beam widths. Furthermore, MiRS ATBD Figure 2-5 shows the ATMS atmospheric 
weighting functions for all 22 channels based on a U.S. Standard Atmosphere. The 
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weighting functions provide a synthesis of how the atmospheric state at each vertical layer 
(primarily through absorption/emission) contributes to the observed upwelling radiance at 
the top of the atmosphere for each channel. The SFR algorithm utilizes a combination of 
window and sounding channels, i.e. 23.8, 31.4, 53.6, and all frequencies at and above 88.2 
GHz for snowfall detection and snowfall rate retrieval. The TBs at high frequencies, 
including the water vapor sounding channels around 183.31 GHz, are usually lowered due 
to the scattering effect of ice particles in the presence of snowfall. Since the weighting 
functions of these frequencies peak at different levels of the atmosphere, the uncalibrated 
SFR represents snowfall from the precipitating layer. The retrieval is further calibrated with 
ground radar-based precipitation analyses so the SFR product is more representative of 
surface snowfall (Section A2.3). Figure 2-4 displays the modeled impact of cloud and 
hydrometeors on over-ocean brightness temperatures. The red line indicates TB under the 
influence of cloud liquid water (CLW), graupel (GWP), and rain. The depressing effect of 
ice particles (graupel in this case) is significant at the ATMS high frequencies if one 
compares the red and the green lines. The latter is similar to the former minus the effect of 
graupel. The main physical foundation of the SFR algorithm is the TB sensitivity to the effect 
of ice scattering.      
 
 

 
 
Figure 2-4. Impact of cloud ice and rain in simulated brightness temperatures in the range 1 to 330 GHz. The shaded area 

indicates the spectral range of the ATMS channels. 
 

In addition to the impact of atmospheric conditions on upwelling radiances, surface 
characteristics also modulate observed radiances via changes in surface emissivity, which 

ATMS 
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can be highly variable and dependent on polarization, frequency, satellite zenith angle, and 
surface type. The SFR algorithm employs the two-stream radiative transfer model (RTM) 
developed by Yan et al. (2008) to retrieve cloud properties in a 1DVAR scheme. One of the 
major advantages of adopting the 1DVAR approach is that it simultaneously retrieves both 
cloud properties and emissivity. This ensures that all retrieved variables are physically 
consistent and reconcilable in the framework of the two-stream radiative transfer model. It 
also eliminates the need for a priori knowledge of the land surface types and their 
emissivity. The SFR algorithm is applicable to all land surfaces including snow cover. 
 

2.3.2.  Mathematical Description 

Comprehensively describe the mathematics used by the algorithm, including all 
assumptions, simplifications, approximations. (Document Object 16) 
Writers: Algorithm Scientists. 
 
Snowfall Detection Algorithm 
 
The SFR algorithm includes an embedded SD algorithm (Kongoli et al, 2015 and 2018) 
which consists of two statistical models based on satellite measurements and 
meteorological variable from GFS, respectively.  
 
The satellite SD model is a scheme that combines principal component analysis (PCA) of 
seven ATMS high-frequency brightness temperature measurements with the logistic 
regression technique to compute the probability of snowfall. Logistic regression is used to 
estimate the probability of a binary outcome Y as an exponential continuous function of a 
set of predictor variables: 
 

 
              (2-1) 
 
 
where P is the probability of success of the binary variable Y, which in this case is the POS; 
X is the vector of independent variables, which in this case are brightness temperature 
measurements; and β is the vector of regression coefficients. The logarithm of the odds of 
Y called the logit can be expressed as linear combination of independent variables as in 
multiple regression: 
 
               (2-2) 
 
 
The inverse of the logit function is called the logistic function: 
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              (2-3) 
  

                                                                              
where β is the logit function or the multiple linear regression term in equation (2-2). The 
fitting procedure consists in iteratively finding the set of regression coefficients using 
maximum likelihood estimation of the joint distribution of the response Y: 
 
       
                (2-4) 
 
where yi is an individual measured value of Y, e.g., arbitrarily assigned 1 for snowfall and 0 
for no-precipitation, and pi is the probability that yi takes on the value of 1, e.g., for snowfall. 
Note that pi is computed using equation (2-1). This differs from ordinary least squares 
regression where a unique analytic solution can be found in closed form.  
 
One potential problem in applying logistic regression is the stability of regression 
coefficients when predictor variables are correlated. To address the problem of 
multicollinearity in predictor variables while retaining most of the information content, the 
seven-dimensional ATMS input data set is reduced to two or three uncorrelated principal 
components that retain most of the variance of the original data. In addition, the simple 
multivariate form in equations (A2-1) and (A2-2) would be preferable to more complex 
expressions, e.g., the power of predictor variables or other nonlinear terms, to achieve a 
solution more easily (Crosby et al., 1995). Another predictor variable considered (in 
addition to principal components) is the satellite local zenith angle. It is selected based on 
statistical significance results. The final satellite SD model has the following form: 
                
                      (2-5) 
 
where cos LZA is the cosine of the local zenith angle, PC1, PC2, and PC3 are the first 
three principal components computed from the seven-channel ATMS training data set, and 
a0, a1, a2, a3, and a4 are the logistic regression coefficients computed from the training 
data set using maximum likelihood estimation.  
 
ATMS observations at high frequencies exhibit different characteristics under warmer and 
colder conditions: TBs are generally higher during snowfall than no-precipitation in colder 
weather while the opposite is true in warmer weather. This is a response of the water vapor 
sounding channels to the amount of water vapor in the atmosphere that is highly correlated 
to temperature. The satellite SD model is therefore divided into two temperature regimes 
based on the value of the temperature sounding channel at 53.6 GHz: warm regime (limb-
corrected 53.6 GHz, 244 K < TB53L ≤ 252 K) and cold regime (240 K ≤ TB53L ≤ 244 K). 
The coefficients in Equation (2-5) are separately trained for the two regimes. FOVs with 
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TB53L lower than 240 K is flagged as no-retrieval, and those with TB53L greater than 252 K 
are considered no-snowfall (could be rainfall).  
 
A similar probabilistic logistic regression approach was adopted for snowfall detection using 
forecast meteorological variables as predictors. Equations (2-1) ~ (2-4) also apply to this 
weather-based SD model except that the X vector is now composed of GFS forecasted 
cloud thickness, relative humidity from surface to 3-km above surface, and vertical 
velocities at 2 and 3 km.  
 
The final POS is an optimal combination of the satellite-based and weather-based SD 
models:  
 

                                                 𝑃𝑃 = 𝑊𝑊𝑠𝑠 ∗ 𝑃𝑃𝑠𝑠 + 𝑊𝑊𝑤𝑤 ∗ 𝑃𝑃𝑤𝑤                                             (2-6) 
 
where P refers to POS, W refers to the weight, and subscripts s and w refer to the satellite 
and the weather-based SD algorithms, respectively. Note that Ws +Ww = 1. 
 
Snowfall Rate Algorithm 
 
The SFR algorithm (Meng et al., 2017; Ferraro et al., 2018) is based on the one 
dimensional variational retrieval (1DVAR) approach (Yan et al., 2008). A single-layer 
scattering-based RTM (Weng et al., 2001) is the forward operator utilized for TB simulation. 
The inversion is an iterative physical algorithm that optimally extracts the information 
content present in the measurements. Equation (2-7) explains the retrieval concept: 
 
 
 
 
 
                        (2-7) 
            
 
 
 
 
where the control variables on the left are cloud ice water path Iw, ice particle effective 
diameter De, and emissivity ε; Jacobian matrix A includes all partial derivatives of the 
simulated TBs with respect to each of the control variables; E refers to the observation and 
background error matrix; ∆TB represents the difference between TB observations and RTM 
simulations; the ∆ of control variables indicates the difference between two consecutive 
iterations; and the number subscript refers to frequency. It is noted TB simulation also 
requires total precipitable water (TPW), skin temperature (Ts), and cloud temperature (Te). 
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The GFS forecasted TPW and Ts are utilized in the RTM and Te is derived empirically from 
TB observations. The control variables Iw and De are the targeted cloud properties to be 
retrieved from the 1DVAR. The mathematical solution to the inversion problem is to 
minimize the ∆TB matrix by varying the control variables at each iteration. The retrieved 
cloud properties are then utilized to derive ice water content (IWC). Furthermore, ice 
particle terminal velocity, V, is computed from a model developed by Heymsfield and 
Westbrook (2010). The product of IWC and V result in SFR: 
 

                 
                  (2-8) 

 
 
                       (2-9) 
 
 
                  

                                                              (2-10) 
 
 
where D is the diameter of ice particle (assuming spherical habit), η is dynamic viscosity of 
air, ρw is water density, ρa is air density, ρI is ice density, δ0 and C0 are fitting parameters, 
δ0 = 8.0 and C0 = 0.35. There is no analytical solution for Equations (2-8)-(2-10) so the 
equations are solved numerically using Romberg's method. An implicit assumption is made 
in the above equations, i.e., IWC is linearly distributed in the cloud column. Calibration was 
conducted against the National Stage IV quantitative precipitation estimates (QPE) product 
to statistically account for the deviation from the assumption. Stage IV is gauge corrected 
radar precipitation analyses produced by NCEP. The final SFR equation is derived through 
histogram matching (Kidder and Jones, 2007) between SFRu and collocated Stage IV data: 
 

                                                                  𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑎𝑎1𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢 + 𝑎𝑎2𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢2+𝑎𝑎3𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢3           (2-11) 
 
where a1 = 1.5813, a2 = -0.2236, and a3 = 0.0216.  

2.4.  Algorithm Output  

Describe the output data products - not format - at a level of detail to determine if the 
product meets user requirements. (Document Object 17) 
Writers: Algorithm Scientists. 
 
The output of the current SFR algorithm is the water equivalent instantaneous snowfall rate 
over global land. It is stored in the MiRS IMG netCDF4 output files.  
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2.5.  Performance Estimates 

2.5.1.  Test Data Description 

Description of data sets used for V&V, including unit tests and system test, either explicitly 
or by reference to the developer's test plans, if available. This will be updated during 
operations to describe test data for maintenance. (Document Object 31) 
Writers: Development Testers 
 
The ATMS SFR algorithm is validated and verified using three sets of data: the NCEP 
Stage IV, the Multi-Radar Multi-Sensor (MRMS) radar precipitation data produced by 
NOAA National Severe Storms Laboratory (NSSL), and the in-situ Snow Telemetry 
(SNOTEL) data produced by the Natural Resources Conservation Service (NRCS). The 
Stage IV data is hourly precipitation estimates on a 4-km grid covering CONUS except the 
Pacific Northwest. MRMS is instantaneous precipitation analyses over CONUS with a 0.01 
degree resolution. SNOTEL is an automated system of snowpack and related climate 
sensors that collect data including hourly water equivalent snowfall accumulation. There 
are more than 700 SNOTEL stations in the Western US including Alaska, mostly in remote 
high mountains. The Stage IV and MRMS V&V data is from winter 2017-2018 while 
SNOTEL data is three winters from 2014-2017.       
  

2.5.2.  Sensor Effects 

Characterize sensor effects that may contribute to retrieval error. Include the following 
effects if relevant: 

o Flowed-through effects of sensor noise (radiometric, thermal, or other) on the 
quality of products, using text and graphics (scatter plots, image displays, etc.). 
o Flowed-through effects of calibration errors (radiometric, including structured 
scenes and response versus scan, or any sensor biases) on the quality of products, 
using text and graphics. 
o Flowed-through spatial and spectral error effects (pointing and geolocation errors, 
apodization, modulation transfer function (MTF), point-spread function (PSF), out-of-
band (OOB) response, near-field stray light, Earth shine, solar contamination, 
polarization, cross talk, etc.) on the quality of products, using text and graphics.  
o Flowed-through effects of un-modeled or neglected geophysical phenomena on 
the quality of products, using text and graphics. 

 (Document Object 18) 
Writers: Algorithm Scientists. 
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The sensor-related errors are generally on the order of a degrees K or less. Errors of this 
magnitude can be expected to only have minor effect on SFR retrieval. Figure 2-5 presents 
the result of a TB perturbation study on the S-NPP ATMS SFR. The 165.5 GHz and 
183.31±7 GHz channels are used for this study because statistical analyses reveal that 
they have much larger impact on SFR than the other channels. Figure 2-5 shows that the 
effect of 1.5 K perturbation at the 165.5 GHz and up to 3 K perturbation at the 183.31±7 
GHz only result in very small changes in SFR where less than 0.4 mm/hr variation is 
observed if SFR is up to 5 mm/hr.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2-5. SFR change corresponding to TB perturbation at 165.5 GHz and 183.31±7 GHz 
 

2.5.3.  Retrieval Errors 

Accuracy of products, as measured by V&V testing, and compared to accuracy 
requirements. Refer to relevant test reports. (Document Object 39) 
Writers: Algorithm Scientists and Development Testers should collaborate 
 
Product Accuracy 
 
The JPSS L1RD requirements for SD and SFR are given in Table 1-2. The SD and SFR 
algorithms were validated against in-situ data, radar and gauge corrected radar 
precipitation analyses. Product accuracy is determined from these validation studies. 
  
The validation datasets utilized for SD validation are MRMS and the Quality Controlled 
Local Climatological Data (QCLCD) data available from NOAA National Centers for 
Environmental Information (NCEI). The latter is in-situ hourly snowfall accumulation 
collected by gauges throughout CONUS and Alaska. Three years (2015 – 2017) of 
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validation data are collocated with the S-NPP ATMS SFR (SD is embedded) and the 
validation metrics are computed including Accuracy Rate, Probability of Detection (POD), 
False Alarm Rate (FAR), Heidke Skill Score (HSS). Accuracy Rate is defined as the 
fraction of correct snowfall and no-snowfall retrieved. The statistics are determined 
separately for CONUS as Alaska as follows (Table 2-1): 
 

Table 2-1. Over-Land SD Validation Metrics  
Source/Coverage Accuracy POD FAR HSS 
QCLCD/CONUS 0.88 0.51 0.08 0.40 
QCLCD/Alaska 0.86 0.46 0.10 0.37 
MRMS/CONUS 0.90 0.53 0.06 0.43 

 
The SFR algorithm is validated against Stage IV and MRMS data over CONUS from winter 
2016-2017. Figure 2-6 presents the scatter plot and the probability distribution (histogram) 
of the Stage IV-based validation. Table 2-2 lists the corresponding validation metrics. 
Figure 2-7 and Table 2-3 are similar to Figure 2-6 and Table 2-2, respectively, but for 
validation against MRMS.  

 
Figure 2-6. S-NPP ATMS SFR validation against Stage IV; left: scatter plot, right: probability distribution 

 
 

Table 2-2. Over-Land SFR Validation Metrics against Stave IV over CONUS 
Correlation 
Coefficient 

Accuracy 
(mm/hr) 

Precision 
(mm/hr) 

0.50 0.06 0.74 
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Figure 2-7. S-NPP ATMS SFR validation against Stage IV; left: scatter plot, right: probability distribution 
 

Table 2-3. Over-Land SFR Validation Metrics against MRMS over CONUS 
Correlation 
Coefficient 

Accuracy 
(mm/hr) 

Precision 
(mm/hr) 

0.43 0.14 0.62 
 
It is noted that both MRMS and Stage IV are derived from the NEXRAD radar reflectivity 
except that the latter is gauge corrected so is considered to have higher accuracy.  
 
The validation results demonstrate that the SFR and the embedded SD meet the JPSS 
Threshold Requirements but some do not yet meet the Objective Requirements. The latter 
includes SFR precision and SD POD over Alaska. 
 
  
Error Budget 
 
Organize the various error estimates into an error budget, presented as a table. Error 
budget limitations should be explained. Describe prospects for overcoming error budget 
limitations with future maturation of the algorithm, test data, and error analysis 
methodology. (Document Object 19) 
Writers: Algorithm Scientists. 
 
Table 2-4 shows the error budget for the ATMS SFR algorithm. 
 
 



NOAA  
  Snowfall Rate (SFR) 

Algorithm Theoretical Basis Document  
  Page 24 of 32 

 
 

 

Table 2-4. ATMS SFR Error Budget 
Error Source Magnitude of Retrieval Impacts Mitigation Strategies 

Sensor Noise  • Less than 5%  
Bias from GFS Model • Less than 5%  
Sensor Bias  • Less than 10%  Current scan-dependent biases in 

ATMS SDRs are being investigated by 
cal/val team and if a physically-based 
mitigation approach is developed, the 
MiRS algorithm can easily switch from 
processing TDRs to SDRs. The SFR 
algorithm shares input data with 
MiRS so will switch input with MiRS. 

Forward Model Bias  • 10 - 40% • Improve RTM assumptions such as 
expand the range of ice particle 
effective diameter in the LUT of 
cloud optical parameters , 
incorporate emission effect from 
supercooled cloud droplets, and 
adopt non-spherical ice particle 
shape etc. 

• Explore the possibility to employ 
MiRS retrieved cloud properties  in 
the SFR algorithm  

First Guess Bias  • Up to 50 - 75%   Some first guess parameters are 
derived from a single empirical 
equation. These empirical 
relationships need to be stratified 
into several categories based on 
atmospheric and surface conditions.  

2.6.  Practical Considerations 

2.6.1.  Numerical Computation Considerations 

Describe how the algorithm is numerically implemented, including possible issues with 
computationally intensive operations (e.g., large matrix inversions, truncation and 
rounding). (Document Object 21) 
Writers: Development Programmers. 
 
The ATMS SFR algorithm is programmed in C with the exception of the RTM which is 
programmed in Fortran-90. Double precision variables are defined where computation 
accuracy requires such precision. The SFR processing requires rather limited computation 
resources. The algorithm starts with the detection of snowfall utilizing the SD algorithm 
which is a statistical model and is very computationally efficient. Only if snowfall is detection 
will the 1DVAR-based SFR algorithm be executed. The forward model is a one-layer RTM 
which is also much more efficient than a multi-layer model such as CRTM.    
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2.6.2.  Programming and Procedural Considerations 

Describe any important programming and procedural aspects related to implementing the 
numerical model into operating code. (Document Object 22) 
Writers: Development Programmers. 
 
The AMSU/MHS SFR algorithm has been running in MiRS operationally for several years 
at NOAA. There are many similarities between the AMSU/MHS SFR processing and the 
ATMS SFR processing. The ATMS SFR code has been integrated in MiRS and fully tested 
for proper execution.  
 

2.6.3.  Quality Assessment and Diagnostics 

Describe how the quality of the output products and the retrieval itself is assessed, 
documented, and any anomalies diagnosed. (Document Object 23) 
Writers: Algorithm Scientists. 
 
The SFR product is visually inspected for anomaly on the operational side at 
NOAA/NESDIS Office of Satellite and Product Operations (OSPO). The SFR development 
team at NOAA and CICS-University of Maryland also maintains a near real-time SFR 
website: http://cics.umd.edu/sfr/. The ATMS SFR product is monitored through the site and 
any anomaly is investigated and solutions are developed where it is feasible.  
 
The SFR product is often assessed through comparisons with Stage IV and MRMS 
precipitation analyses in case studies for significant snowstorms. The product has also 
gone through several official assessments at NWS Weather Forecast Offices. More 
assessment will be conducted as the algorithm reaches higher level of matures in the 
future. The SFR team will also develop the capability to monitor SFR quality through routine 
comparisons with Stage IV and MRMS data.    
 

2.6.4.  Exception Handling 

List the complete set of expected exceptions, and describes how they are identified, 
trapped, and handled. (Document Object 24) 
Writers: Development Programmers. 
 
The SFR processing takes ATMS input data from MiRS. Therefore, any exceptions caused 
by issues with the ATMS data will be handled through MiRS.  
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Checks are built in the SFR code to capture missing or erroneous GFS data. The SFR 
processing will exit in such case and the product flagged as missing. 

2.7.  Validation 

Describe how the algorithm has been or should be validated at a level of detail appropriate 
for the current algorithm maturity. (Document Object 26) 
Writers: Algorithm Scientists. 
 
Refer to section 2.5.3 for the SFR validation studies. 
  



NOAA  
  Snowfall Rate (SFR) 

Algorithm Theoretical Basis Document  
  Page 27 of 32 

 
 

 

3.  ASSUMPTIONS AND LIMITATIONS  

 
Figures used in Section 3 should be numbered Figure 3-1, Figure 3-2, etc. 
 
Tables used in Section 3 should be numbered Table 3-1, Table 3-2, etc. 
 

3.1.  Performance Assumptions 

Describe all assumptions that have been made concerning the algorithm performance 
estimates. Note any limitations that apply to the algorithms (e.g., conditions where 
retrievals cannot be made or where performance may be significantly degraded. To the 
extent possible, the potential for degraded performance should be explored, along with 
mitigating strategies. (Document Object 20) 
Writers: Algorithm Scientists. 
 
Meng et al. (2017) examined the various assumptions made in the SFR algorithm and their 
impact on the algorithm performance. The assumptions relevant to the 1DAVR retrieval are 
constant ice particle mass density, exponential ice particle size distribution, and spherical 
ice particle shape. Among them, size distribution and shape play more important role in the 
retrieval accuracy than the mass density. Further study on the size distribution assumption 
and adopting non-spherical shape or aggregates will benefit the SFR algorithm.  
 
The SFR algorithm is applicable if the following criterion is met: TB53L ≥ 240 K. Analysis 
reveals that this condition is statistically equivalent to 2-m temperature (t2m) equals about -
15 °C. This limitation results in flagged SFR in most of the interior Alaska and other high 
latitude regions in winter. In addition, SD performance is usually inferior if 240 K ≤ TB53L ≤ 
244 K (equivalent to -15 °C ≤ t2m ≤ 6°C, i.e. cold regime) compared to 244 K < TB53L ≤ 252 
K (warm regime). Further study is required to improve SD performance in the cold regime 
and extend to even colder regions. 
 
The RTM used to simulate TBs only takes into consideration the scattering effect from ice 
particles but not the emission effect of supercooled cloud liquid droplets. This assumption 
results in SFR underestimation.  
 
The current SFR algorithm only applies to over land. To meet the JPSS requirement for 
global SFR, development is required to extend the algorithm to over ocean including coast 
and sea ice.  
 



NOAA  
  Snowfall Rate (SFR) 

Algorithm Theoretical Basis Document  
  Page 28 of 32 

 
 

 

3.2.  Potential Improvements 

Describe potential future enhancements to the algorithm, the limitations they will mitigate, 
and provide all possible and useful related information and links. (Document Object 25) 
Writers: Algorithm Scientists. 
 
The SFR algorithm can benefit from development in several areas as described below.  
 
Ice Particle Shape 
 
The SFR algorithm assumes spherical shape ice particles. The LUT of cloud optical 
parameters is constructed from Mie’s theory based on this assumption. However, ice 
particles in real world are non-spherical and often exist as aggregates. There have been 
some studies on the scattering properties of more realistic ice particle shapes (Liu 2004; 
Kuo et al., 2016). A study on the MHS SFR has shown that the assumption of non-
spherical shape ice particles may lead to improved SFR accuracy (Meng, et al., 2017). 
 
First Guess IWP (stratify) 
 
A single empirical equation is used to derive first guess IWP from TBs. This approach has 
been proven inadequate. Multiple equations will need to be developed stratified by 
environmental conditions and satellite measurements. This task has the potential to 
significantly improve the SFR estimates.  
 
Emission from Supercooled Cloud Droplets  
 
The RTM used for TB simulation does not take into consideration the emission effect from 
supercooled cloud droplets and causes SFR to underestimate when there is abundance of 
such droplets, e.g. strong convective snowstorm or coastal environment. The RTM should 
be modified to include the emission effect of cloud droplets or CLW. This effort requires the 
development of an approach to determine first guess CLW. It is an important but 
challenging task. However, incorporating CLW in the RTM is critical to the improvement of 
SFR in the Alaska region and also to the development of ocean SFR in the future.  
 
Alaska SFR 
 
Alaska has a stronger demand for polar-orbiting satellite products than CONUS because it 
has limited radar and GEO satellites coverage. However, Alaska has very different climate 
than most CONUS which can lead to degraded performance for SFR. The feedback from 
product assessment at Alaska WFOs reveals that SFR underestimation is a common issue 
in Alaska southeast and the Anchorage region. The SD filters also require further 
adjustment due to the unique meteorological conditions prevailing in this region. In addition, 
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the interior Alaska is flagged as too-cold by the current SFR algorithm in most winter 
season. A SD cold-extension algorithm is required to extend the current algorithm to colder 
conditions. An Alaska-specific SFR algorithm will improve SFR performance considerably 
for this region.         
 
Ocean/Coast/Sea Ice SFR  
 
The current SFR is an over-land product. There is a significant user demand for snowfall 
information over ocean including over coast and sea ice. The JPSS L1RD also requires 
SFR to have global coverage. Ocean/coast/sea ice SFR algorithms can be developed 
following similar framework as land SFR. Due to the different dominant snowfall mode over 
land and over ocean, however, the development of ocean/coast/sea ice SFR algorithms is 
expected to be a very challenging task.  
 
Utilizing MiRS Retrievals 
 
MiRS produces a comprehensive suite of EDR products through a 1DVAR retrieval 
algorithm and post-processing. These products can be explored for their potential to 
enhance SFR retrieval. For instance, the MiRS temperature and water vapor profiles might 
replace the GFS forecast variables in the SFR algorithm if the quality of the MiRS products 
is comparable or superior to the GFS counterparts. Another MiRS retrieval that holds 
potential to improve SFR is the graupel water path (GWP). This variable is closely related 
to IWP and might serve as the first guess IWP or even replace the retrieved IWP in the 
SFR algorithm. It is noted that MiRS GWP is not yet an operational product over snow 
cover. Therefore, focused study is necessary to examine the validity of its application in 
SFR enhancement.  
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