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1. INTRODUCTION

Launched on board the Joint Polar Satellite System (JPSS) Suomi National Polar-

orbiting Partnership (SNPP) platform on 28 October 2011, the Cross-track Infrared

Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) represent

the U.S. next generation of polar-orbiting operational combined hyperspectral-infrared

and microwave (IR/MW) sounding systems (Goldberg et al., 2013).

CrIS is a Fourier transform spectrometer (FTS) that measures calibrated infrared

(IR) radiances in 2211 channels covering the longwave (655–1095 cm−1), midwave

(1210–1750 cm−1), and shortwave (2155–2550 cm−1) infrared spectral regions with a

spectral resolution of 0.625 cm−1 across all three bands. ATMS is a cross-track scan-

ner with 22 channels in spectral bands from 23 GHz through 183 GHz. This suite of

instruments has been designed to guarantee continuity to the 01:30, 13:30 equato-

rial crossing time orbit, in replacement of the AIRS/Advanced Microwave Sounding

Unit (AMSU) instruments on board the NASA Aqua satellite and in conjunction with

the European Metop satellite series operating the mid-morning orbit. Specifically,

CrIS has been designed to continue the advances in atmospheric observations and

research that started with the Atmospheric Infrared Sounder (AIRS) launched on the

Aqua platform in 2002 (Aumann et al., 2003) and followed by the Infrared Atmospheric

Sounding Interferometer (IASI), launched on the Meteorological Operational Satellite

Program (Metop)-A platform in 2006. The ATMS will similarly continue the series of

observations that started with the Advanced Microwave Sounding Unit (AMSU) first

launched by NOAA in 1998.

1.1. Product Overview

In this document we describe the algorithm theoretical basis of the NOAA Unique

Combined Atmospheric Processing System (NUCAPS), an algorithm built on the her-

itage from the of the AIRS Science Team (Susskind et al., 2003). The NOAA/NESDIS

Center for Satellite Applications and Research (STAR) led the efforts to develop, test,

validate and refine the NUCAPS algorithm to produce operationally cloud-cleared ra-

diances (CCR) and global atmospheric profiles of environmental data records (EDRs).

The algorithm has been adapted as an enterprise solution to work on the Joint Polar

Satellite System (JPSS) SNPP/NOAA-20 CrIS/ATMS, and Metop IASI, AMSU-A and

Microwave Humidity Sounder (MHS) instrument complements. The microwave (MW)

sounder data from ATMS or AMSU-A/MHS (JPSS or Metop) are used in the NUCAPS
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algorithm to produce MW-only retrieval in addition to the hyperspectral IR sounding

retrievals from CrIS or IASI, and to assist in generating high-quality geophysical prod-

ucts under non-precipitating scenes with up to 80% cloud cover.

The NUCAPS suite of EDR products includes two different files in NetCDF for-

mat: the Standard Product and the Cloud-Cleared Radiance (CCR) Product. The

Standard Product consists of retrieved estimates of geophysical variables such as

temperature, water vapor, cloud fraction and cloud top pressure, along with trace gas

retrievals such as ozone, methane, carbon monoxide, carbon dioxide, SO2, N2O, and

HNO3, and a flag indicating the presence of dust and volcano emission. The vertical

sampling of each retrieved atmospheric profile variable consists of 100 points total

between 1100 hPa and 0.016 hPa; Intermediate solutions from the microwave only

step and the regression first guess are also part of the delivered standard output. Full

spectrum cloud-cleared radiances are produced along with the Standard Product, as

they are the radiances used to retrieve the Standard Product. Both the Standard and

CCR Product files are generated at the field-of-regard (FOR) resolution. Each FOR

contains an instantaneously measured 3 × 3 fields-of-view (FOVs). The CrIS FOVs

are circular and have a diameter of 14 km at nadir. The UTC start time of the N th

granule of each data is [146 + 360(N − 1)] / 3600 hours. The instrument provides 30

FORs for each scan of observations. Four scan lines constitute a granule, and a full

day of data contains approximately 2700 granules of the CrIS observations.

NUCAPS runs within the Hyperspectral Enterprise Algorithm Package (HEAP) at

the NOAA Satellite Operational Facility (NSOF). The HEAP provides the pre and

post-processing capability for the NUCAPS to generate operational products from

SNPP/NOAA-20 CrIS/ATMS and Metop-A/B IASI/AMSU-A/MHS sensors. In addition

to NUCAPS products, the HEAP produces other derived hyperspectral radiance prod-

ucts such as thinned radiance data sets and principal component (PC) scores, and

near real time CrIS outgoing longwave radiation (OLR). The thinned radiance prod-

ucts are in BUFR format specifically tailored to cater for Numerical Weather Prediction

(NWP) centers.

A variety of NUCAPS sounding products are currently ingested into the Advanced

Weather Interactive Processing System (AWIPS-2) for their utility by many Weather

Forecasting Offices (WFOs) nationwide for analyzing atmospheric instabilities, po-

tential outbreaks of severe weather, and now-casting applications. The NUCAPS

algorithm is also part of the Community Satellite Processing Package to disseminate

products through Direct Broadcast services with improved latency for regional appli-

cations. NUCAPS operational products are available to worldwide users through the

NOAA Comprehensive Large Array-data Stewardship System (CLASS).

This ATBD is organized as follows. Section 1.2 describes the attributes of the CrIS
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and ATMS sounding systems and Section 2 provides the overall algorithm description.

Because NUCAPS is actually a combination of several algorithms (as overviewed in

Section 2.1, which provides the processing processing outline), this section is fur-

ther subdivided as follows: Section 2.2 describes the algorithm inputs; Section 2.4

describes the microwave (MW) module component of the algorithm; Section 2.5 de-

scribes the regression module for both the cloud-clearing input profile and the first

guess; Section 2.6 describes the cloud-clearing algorithm; Section 2.7 describes the

physical and mathematical basis of the algorithm, along with the technical character-

istics of the algorithm processing flow; finally, Section 2.8 details the formal validation

methodology of the algorithm EDRs.

1.2. Satellite Instrument Description

1.2.1. The Advanced Technology Microwave Sounder (ATMS)

The Advanced Technology Microwave Sounder (ATMS) is a cross-track scanner which

combines all the channels of the preceding AMSU-A1, AMSU-A2, and AMSU-B sen-

sors into a single package consisting of 22 channels in spectral bands from 23 GHz

through 183 GHz. Channel 3–15 fall within the 50–60 GHz portion of the oxygen band

to temperature and precipitation information.

In addition, ATMS contains three window-channels at 23.8, 31.4, and 89 GHz to

provide total precipitable water, cloud liquid water content, and precipitation mea-

surements, respectively. These channels can also be used to provide information on

sea-ice concentration and snow cover. ATMS also has one window-channel at 166.31

GHz to obtain high-resolution measurements of precipitation, snow cover, and sea-

ice. Three additional channels in the 183 GHz water vapor line are used to retrieve

atmospheric humidity profiles. The 3-dB beam diameter of an ATMS FOV is 1.1,

corresponding to about 16 km at nadir. This beam is co-located with the CrIS field-

of-view (FOV). Table 1.1 describes the characteristics of the ATMS microwave sensor

and of the AMSU/MHS suite.

The scanning geometry and footprint sizes of ATMS are somewhat different for

every channel. Channels 1 and 2 have a beam width of 5.2◦, which corresponds to a

footprint size of 74.8 km at nadir. Channels 3–16 have a beam width of 2.2◦, which

corresponds to a footprint size of 31.6 km at nadir. Channels 17–22 have a beam size

of 1.1◦, which corresponds to a footprint size of 15.8 km. Because the ATMS scans

at a rate of 8/3 seconds per scan, the scan pattern overlaps, but does not match

exactly, the scan pattern of CrIS. The NUCAPS preprocessor performs collocation

of ATMS observations to the CrIS FOR EDR algorithm assumes that the ATMS data
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will be re-sampled to match the CrIS FOR configuration prior to ingestion by the CrIS

software.producing NUCAPS products.

Table 1.1: Description of the Channel Characteristics of the ATMS and AMSU/MHS

Microwave Sensors (Weng et al., 2012)

1.2.2. The Cross-Track Infrared Sounder (CrIS)

The Cross-track IR Sounder (CrIS) is a Fourier transform spectrometer (FTS) on-

board the JPSS series (SNPP, NOAA-20, and JPSS-2, 3, and 4), measuring infrared

radiation emitted from the surface of the Earth. Up until December 2014, the CrIS

instrument was operating at a nominal spectral resolution (NSR) with a total of 1305

infrared sounding channels covering the longwave (655–1095 cm−1), midwave (1210–

1750 cm−1), and shortwave (2155–2550 cm−1) IR spectral regions (LWIR, MWIR and
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SWIR, respectively). Starting December 4, 2014, the S-NPP CrIS has been operating

at full spectral resolution (0.625 cm-1 across all three IR spectral bands. The CrIS

instrument aboard the NOAA-20 has been operating at full spectral resolution from

the launch.

Previous operational SNPP NUCAPS versions (v1.5) ran on CrIS spectra at the

original nominal spectral resolution spectra of ∆ν ≃0.625 cm−1, 1.25 cm−1 and 2.5

cm−1 for the LWIR, MWIR and SWIR bands, respectively. The reduced resolution

in the MWIR and SWIR bands is the result of the interferograms being truncated

in those bands during operational processing of the SDRs. The reduction in spec-

tral resolution in these bands was empirically demonstrated by Gambacorta et al.

(2014) to have an adverse impact upon trace gases, especially carbon monoxide.

Full-resolution CrIS (∆ν ≃0.625 cm−1 in all three bands) thus led to offline produc-

tion of full-spectral resolution (full-res) CrIS SDRs beginning in December 2014 (Han

et al., 2015). Additional details of the CrIS design and measurement objectives are

found in Han et al. (2013). The CrIS Full Spectral Resolution (FSR) instrument with

2211 channels at 0.625 cm−1 spectral resolution coupled with low noise in all three

bands enable high quality CO and other trace gas retrievals. The increased spectral

resolution also improves the calibration of the shortwave infrared (SWIR) and improve

temperature sounding, which, in turn, leads to improved sounding products.
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2. ALGORITHM DESCRIPTION

2.1. Processing Outline

The NUCAPS algorithm consists of the following six modules as summarized below.

1. Preliminary input quality control, look-up tables (LUT), and ancillary product ac-

quisition.

2. The microwave-only (MW-only) retrieval module which derives cloud liquid

water flags and microwave surface emissivity uncertainty (Rosenkranz, 2001).

3. An all-sky fast eigenvector regression retrieval for temperature and moisture

that is trained against ECMWF analysis and CrIS all-sky radiances (Goldberg

et al., 2003).

4. A cloud-clearing module that combines a set of microwave and IR channels

(along with, in the future, visible observations provided by the onboard VIIRS

instrument) to produce cloud-cleared IR radiances (Chahine, 1974).

5. A cloud-cleared fast eigenvector regression retrieval for temperature and

moisture that is trained against ECMWF analysis and CrIS cloud-cleared radi-

ances (Goldberg et al., 2003).

6. The final infrared (IR) physical retrieval, which employs the previous regres-

sion retrieval as the first-guess for temperature and water vapor (Susskind et al.,

2003).

Figure 2.1 describes the complete flow diagram of the algorithm software archi-

tecture. The full description of the attributes of all input data used by the algorithm,

including primary sensor data, ancillary data, forward models and look-up tables is

provided in the next chapter.

2.2. Algorithm Inputs

2.2.1. Background Climatology Look Up Tables

Climatological background profiles of temperature and water vapor, used extensively

in the MW-only retrieval step, are used to generate the covariance of the atmospheric
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Figure 2.1: NUCAPS Level 2 retrieval processing flow chart.
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temperature and water vapor. Climatological profiles of trace gases are also used

as first guess in the physical retrieval step. The climatology for earlier versions of

NUCAPS was based on two sources: (1) the National Center for Environmental Pre-

diction (NCEP) temperature and water vapor monthly means derived from the 20 year

(1979–1998) reanalysis on a 2.5 degree latitude/longitude grid; and (2) the Upper At-

mosphere Research Satellite (UARS) temperature, water vapor and ozone profiles.

The climatological temperature profile is obtained from the NCEP source from the

surface up to 100 hPa, tri-linearly interpolated by month, latitude and longitude and

then log-pressure interpolated onto the 100 levels. A P 4 extrapolation is used for alti-

tudes above 100 hPa. The climatological water vapor profile is derived from the NCEP

source from the surface up to 300 hPa, tri-linearly interpolated by month, latitude and

longitude and then log-pressure interpolated onto the 100 levels. Above 300 hPa the

information comes from the UARS source, linearly interpolated between two latitude

zones. While keeping this old climatology as a backup option, a new climatology

has been implemented into the NUCAPS, and has been used since the operational

version HEAP 2.2. The new climatology is adapted from the Microwave Integrated

Retrieval System climatology (MiRS v11.0). Generated from the ECMWF 2012 re-

analysis, the climatology includes monthly atmospheric temperature and water vapor

profiles on a global 5◦ latitude/longitude grid. The climatology is on the same 100

levels as that used in NUCAPS, and available four times a day (00, 06, 12,18 UTC) to

capture the daily changes of these two fields.

The a priori ozone climatology is derived from the UARS source, linearly inter-

polated between two latitude zones. No time interpolation is computed. The CO a

priori was a 12 month set of two single CO profiles, for the northern and southern

hemisphere respectively, computed from the Measurements of Pollution In The Tro-

posphere (MOPITT) version 4 CO monthly averages. These profiles are temporally

and spatially interpolated during the retrieval. The CH4 a priori was a function of lati-

tude and altitude was generated to capture its strong latitudinal and vertical gradients.

This CH4a priori profile was generated by using a nonlinear polynomial fitting to differ-

ent data, including the in situ aircraft observation data from six sites (the first six sites

in Table 1) of the NOAA Global Monitoring Laboratory (GML), some ground-based

flask network data (GLOBALVIEW-CH4, 2005), Matsueda aircraft observation data

(Matsueda and Inoue, 1996) and HALOE satellite observation data (Park et al., 1996)

(http://haloedata.larc.nasa.gov/download/index.php). In the fitting only the mean pro-

files as a representative of its climatology for each location and altitude were used.

For example, for each NOAA/ESRL/GMD site only the mean of all profiles observed

in the past 3 years from 2003 to early 2006 was used. Matsueda aircraft data from

GLOBALVIEW-CH4 (2005) and HALOE data were interpolated to several latitudinal
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grids first, and then the mean profiles corresponding to different latitude and altitude

were used. Monthly average of model simulated data using the TM3 (Houweling et

al., 2006) was used to extrapolate the in situ aircraft data to higher altitudes. Over the

southern hemisphere oceans where in situ measurements are not available, yearly

zonal mean profiles in several latitude grids from the TM3 model are also used. The

N2O climatology is given as a smoothed function of latitude and pressure. The gener-

ation of N2O first-guess profile was from model data only. The model simulations are

made by the Center for Climate System Research/National Institute for Environmental

Studies/Frontier Research Center for Global Change (CCSR/NIES/FRCGC) using an

Atmospheric General Circulation Model (AGCM)-based chemistry transport model.

2.2.2. Local Angle Adjustment Coefficients

CrIS makes a 90◦ measurement scan, cross-track between −49 and +49◦. The data

analysis, however, uses the data in 3 × 3 clusters with 30 scan angles between −49
and +49◦. A primary assumption of cloud clearing is that within a 3 × 3 array of 9

CrIS FOVs the differences are solely attributed to differences in clouds. Local angle

adjustment removes one potentially confounding source of intra-FOV variation: differ-

ences in observing geometry. In each 3 × 3 cluster there are 3 observations at each

of 3 different scan angles. This step makes small adjustments to the spectra for the 3

highest- angle and 3 lowest-angle FOVs so all FOVs resemble those which would be

observed at the central angle. No adjustment is applied to the central FOVs. In the

AIRS retrieval algorithm, the actual adjustment is calculated using a PCs approach.

Given the rotating scanning geometry of the CrIS instrument a more complex solution

needs to be taken and is the subject of a work in progress. Unpublished studies have

shown though that the local angle correction does not have significant impact on the

retrieval performance and can be neglected with no noticeably detrimental effects.

2.2.3. Forecast Surface Pressure

The AVN forecast surface pressure, PSurf, is used by the NUCAPS L2 retrieval. The

surface pressure is available on a one-degree grid. The surface pressure is calculated

from the 3-,6-, and 9-hour forecasts from the same model run, interpolated in space

and time to match observed location.

2.2.4. IR Surface Emissivity First-Guess

The IR surface emissivity, ǫν , is critical for accurate determination of the surface en-

ergy budget and it is a common input parameter for a variety of radiative transfer
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models (Zhou et al., 2008). Due to the intrinsic characteristic differences between

the oceanic and land surfaces, the ǫν alters substantially from place to place. In

the oceanic areas, the surface characteristics are more homogeneous, however the

land surfaces are much more complex since the land surfaces can be covered by

sands, grasses, soil, trees, ice, man-made structures, or their combinations. In the

NUCAPS algorithm, the Masuda model (Masuda et al., 1988; Masuda, 2006) has

been employed over ocean to estimate the ǫν initial guess, while a synthetic regres-

sion approach is employed instead over land surfaces. Plans for upgrading the NU-

CAPS first-guess emissivities are currently underway. For oceans this would include

accounting for the significant dependence of the IR optical constants of water on tem-

perature and for land the plan is to replace the regression first-guess with the CAMEL

database as a formal a priori , and possibly employ a physical model for snow/ice

surfaces.

Training Data Set used for Emissivity First Guess Regression Over Land

The atmospheric profiles are based on the SeeBor Version 5.0 created by Eva Borbas

and Suzanne Wetzel Seemann, University of Wisconsin-Madison (Seemann et al.,

2008). The SeeBor Version 5.0 consists of global profiles of temperature, moisture,

and ozone at 101 pressure levels in the clear sky condition. The total 15,704 pro-

files are taken from NOAA-88 (6137 profiles), an ECMWF 60-level training set (6015

profiles), TIGR-3 (1387 profiles), ozonesondes from 8 NOAA Climate Monitoring and

Diagnostics Laboratory (CMDL) sites (1595 profiles), and radiosondes from the Sa-

hara desert in 2004 (570 profiles). To ensure the quality of the atmospheric states, the

screen-out criteria are set as: (1) the relative humidity (RH) value of the profiles must

be less than 99% at each level below 250 hPa, and (2) the top pressure of sounding

measurements must be no greater than 30 hPa for temperature and water vapor pro-

files and 10 hPa for ozone profiles. For each profile in the data set, the corresponding

SSEs and surface skin temperature are added separately. The SSEs are set at 39

hinge points (see Appendix List 1) based on random characterization simulations to

represent the SSEs of the whole spectra. The infrared emissivity of soil, tree and

grass is obtained from MODIS UCSB Emissivity Library (see Figure 2.2). There are

70 types of soils, 23 types of trees and 7 types of grasses are included in the library.

A random selection algorithm is applied to estimate the surface composition fractions.
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Figure 2.2: Typical emissivity spectra of snow, ice, distilled water, and sea water in TIR

obtained at the exitance angle 10 degree by past laboratory experiments reproduced

from the ASTER Spectral Library and from the MODIS University of California, Santa

Barbara (USCB) Emissivity Library (Wan and Zhang, 1999).

Methodology of Emissivity First Guess Regression Over Land

The total data set includes different surface types, e.g. land, ocean, ice/snow. But dif-

ferent surface type behaviors very different in the spectra. The ǫν regression training

needs to be done separately by different surface types. We distinguish land or ocean

by the geolocation of the profile and distinguish the warm land or ice/snow land by

the surface temperature. The regression training is performed on the sub-datasets of

warm land and ice/snow land, respectively. The predictors are the brightness tem-

peratures of m = 16 pre-selected CrIS window channels (see the Appendix List 2

and Figure 2.3) and the satellite view angle, ϑ, while the fitting vector is composed by

the SSEs of the n =39 hinge points and the surface skin temperature, Ts, as per the
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following equation




Ts

ǫ1
...

ǫn


 =




C0,0 C0,1 · · · C0,m

C1,0 C1,1 · · · C1,m
...

...
. . .

...

Cn,0 Cn,1 · · · Cn,m







TB(ν1)
...

TB(νm)
ϑ


 . (2.1)

The regression training is to solve the coefficients Cn,m of the above equation. To

consolidate the regression training, we add 1% random Gaussian distribution noises

on the predictor vectors. For each subset, we random select 90% profiles for training

to generate the coefficients and the rest 10% profiles are used for validate the training

by applying the coefficients. Figures 2.4 and 2.5 show the low bias and standard

deviations for land and snow surfaces, respectively, which indicate the regression

training is robust.
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Figure 2.3: CrIS radiance spectrum with red asterisks showing the 16 pre-selected

CrIS window channels for the regression training: (top) LWIR, (bottom) MWIR.



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 21 of 110

CrIS IR Emissivity Regression (Land)
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Figure 2.4: Regression bias and standard deviation over warm land.

2.2.5. Microwave and Infrared Tuning Coefficients

A large category of inversion algorithms relies on least square residual minimizations

of observed brightness temperature and brightness temperatures computed from first

guess profiles. In these algorithms, generally referred to as “physical,” radiative trans-

fer calculations are performed by mean of theoretical forward models and there is

a need for identifying and removing those components of the residuals arising from

modeling, measurement errors and instrumental noise. This process, commonly re-

ferred to as brightness temperature tuning, is fundamental to achieve retrieval perfor-

mance accuracy, in that it removes artificial systematic biases that could be otherwise

ascribed to a physical atmospheric source and, in long term applications, erroneously

confused with climate signals. Specifically, forward model errors may include both

systematic and profile-dependent components. Systematic errors may include radio-

metric calibration, thermal emission from parts of the space-craft, and, for microwave

sensors, antenna side lobe effects. These systematic sources of error can contribute

to a large part of the overall bias and in the microwave case show dependence on
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CrIS IR Emissivity Regression (Snow)
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Figure 2.5: Regression bias and standard deviation over ice/snow land.

view angle and slightly on the temperature profile.

MW Tuning Coefficients

Using forward model computations, a tuning coefficient set is computed as an average

bias difference of a global sample of observed minus computations (OBS − CALC),

for each channel and in the microwave case, scan angle position (for ATMS there are

96 consecutive acquisitions per scanline). In reality, we limit the collection of OBS −
CALC samples over a restricted area of the globe, which only includes open ocean,

clear sky, day-time and non-high latitude areas, where the collection of correlative

“truth” profiles is relatively more reliable. Specifically, the sub-field of view variability is

usually higher over land, coastal and broken cloud scenarios, as opposed to the more

uniform open ocean and clear sky conditions, hence our choice to restrict the tuning

training sample to the more uniform ocean-only and clear-sky areas of the globe. The

selection of non precipitating cases is also dictated by the fact that microwave forward
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models, in general, do not handle precipitation.

Besides sampling errors, measurement errors can also represent a significant

source of uncertainty in the truth. This is the case for high latitude and daytime

atmospheric measurements, whether performed by mean of in situ acquisitions (ra-

diosondes) or independent retrievals and re-analyses. Specifically, truth profiles col-

lected over high latitude regimes by mean of Vaisala radiosondes tend to suffer from

temperature dependent errors (the colder the temperature, the larger the error) in the

form of a significant dry bias in the relative humidity measurements. Furthermore,

radiosonde daytime measurements suffer from so called solar arm heating (SAH) er-

rors, originated by radiative heating of the temperature and humidity sensor prior to

launch, and resulting in a higher temperature and drier humidity measurements. It

has been observed that a temperature difference of 1 degree Celsius between the

ambient and the sensor arm corresponds to 4% SAH error in relative humidity. Alter-

native measurements, such as independent infrared retrievals or re-analyses, suffer

from high latitude low signal to noise temperature gradients, besides being subject to

large uncertainties in snow/ice infrared emissivity, daytime non local thermodynamic

equilibrium and solar reflectivity parameterization. These measurement uncertainties

in daytime and cold conditions dictate the necessity to further limit our sampling se-

lection to nighttime and tropical to mid latitude regions only. The ATMS bias tuning is

shown in Figure 2.6 as a function of view angle for both ATMS/TDR Block 1.0 and 2.0.

This is basically the bias found between the ATMS observations and the calculated or

synthetic brightness temperatures derived using a rapid atmospheric transmittance

algorithm (RTA) or forward model (Rosenkranz, 1995) and ECMWF over restricted

areas of the globe where the effects of land, Polar Regions and precipitation condi-

tions have been removed. Significant differences between Block 1.0 and Block 2.0

bias corrections are observed, mostly associated to a better noise characterization,

better instrument calibration and the bias reduction from Rayleigh-Jeans approxima-

tion. Figure 2.7 shows the standard deviation of the observed and calculated ATMS

brightness temperatures, which is used in the NUCAPS microwave-only retrieval to

define the RTA error. Here, it is observed that windows channels at 88.2 and 165.50

GHz show the largest errors, most probably associated to the surface or near surface

inhomogeneity.

IR Tuning Coefficients

To correct the IR Radiative Transfer Algorithm (RTA) bias, a set of true cloud-free ra-

diances and the corresponding truths of the atmospheric states, surface parameters

are required. We select cases from four arbitrary focus days which meet the require-

ments. The four focus days are 20 December 2014, 17 February 2015, 21 March
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Figure 2.6: ATMS bias tuning correction for channels 1–22, as a function of view

angle. Results show the actual bias correction for the ATMS/TDR Block 1.0, and the

most recent correction made for ATMS/TDR Block 2.0.

2015, and 9 June 2015. The data sources that we use for this work are SNPP CrIS-

FSR IR radiances (converted to brightness temperature), the Visible Infrared Imaging

Radiometer Suite (VIIRS) cloud mask products, VIIRS M15 images, ECMWF numer-

ical models, MOPITT CO retrievals and Japan Agency for Marine-Earth Science and

Technology (JAMSTEC) trace gas numerical model profiles (including CH4 and CO2).

To insure the cloud-free requirements, we precisely collocate the geolocation coordi-

nates of CrIS and VIIRS (see Figure 2.8). First, the VIIRS cloud mask intermediate

products are applied to select CrIS field of regards (FORs) with at least one clear

CrIS field of view (FOV) that is confidently tested and validated without cloud con-

tamination. Secondly, we multiply the VIIRS channel M15 spectral response function

on the CrIS full spectral radiances measured by the clear CrIS FOV to reconstruct
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Figure 2.7: ATMS RTA error for channels 1–22. Results show the actual RTA error for

the ATMS/TDR Block 1.0, and the most recent correction made for ATMS/TDR Block

2.0.

M15 radiances. Only those cases that the standard deviation of M15 brightness tem-

perature within the clear CrIS FOV less than 0.3 K and the difference between the

mean M15 observed brightness temperature and reconstructed M15 brightness tem-

perature less than 1 K are considered as a candidate. As for the constraints of the

atmospheric profile domain, we select cases that meet the following requirements:

1. the latitude should be within ±60◦

2. the footprint should anchor at ocean areas

3. the observation should be nighttime

The components of the atmospheric state “truths” are the combinations of the follow-

ing

1. temperature, water vapor and ozone profiles and surface temperature, surface

parameters from collocated ECMWF numerical model, including analysis and

3-hour forecast data
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2. collocated CH4 and CO2 profiles are from JAMSTEC models

3. collocated CO profiles are from MOPITT retrievals

The composed profiles are ingested in to the SARTA forward model to simulate CrIS

clear radiances. After the simulation, further criteria are used to screen out the out-

liers, those are the differences between simulated radiances (converted to brightness

temperature) and observed radiances (converted to brightness temperature) at cer-

tain channels, e.g. 900, 751, 757, 784, 1040, 1429, 1491, 1616, 2499 and 2503 cm−1,

must less than 1.5 K. Based on all the requirements, there are total 2217 cases se-

lected for IR RTA bias corrections. The channel RTA biases and standard deviations

are shown in Figures 2.9 and 2.10, respectively.

Figure 2.8: The collocation of CrIS FOVs and VIIRS pixels. The red circles (or ovals)

represents the CrIS FOVs and the pixel dots are VIIRS pixels (blue: cloudy; yellow:

probably cloudy; grey circles: clear). The upper panel shows the one single CrIS scan

line. The lower left shows the 11th CrIS FOR of the particular scan line. The lower

right even zooms in to show the 2nd FOV of the particular FOR.

The IR tuning for NOAA-20 CrIS is derived from the SNPP IR tuning by using a

double difference method. This way allows the retrieval consistency between SNPP

and NOAA-20 products. The CrIS observation-minus-simulation biases are calcu-

lated using the SARTA (RTA v11) and two days observations on June 20 and 30,

2019 for SNPP and NOAA-20, respectively. The NOAA-20 CrIS tuning is created by
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Figure 2.9: The CrIS full spectral-resolution (FSR) RTA bias versus nominal spectral-

resolution (NSR) RTA bias. The blue shows the FSR RTA bias and the red shows the

NSR RTA bias.

adding the bias between NOAA-20 and SNPP to the SNPP tuning bias (as shown in

Fig. 2.11).
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Figure 2.10: The CrIS-FSR RTA error (standard deviation) versus NSR RTA error.

The blue shows the FSR RTA error and the red shows the NSR RTA error.
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NUCAPS Tuning for S-NPP/NOAA-20 CrIS (v2.5.2)
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Figure 2.11: The comparison of CrIS-FSR RTA biases for SNPP (blue) and NOAA-20

(red) retrievals.
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2.3. Radiative Transfer Models (RTM)

The physical retrieval methodology utilized by the NUCAPS depends on the ability

to accurately and rapidly calculate the outgoing radiance based on the state of the

surface and the atmosphere. The radiative transfer model consists of a parameter-

ized algorithm to compute atmospheric transmittance, a model for surface brightness

temperature, and a model for the reflected downwelling atmospheric emission. The

following sections discuss the microwave and infrared radiative transfer models and

error estimates.

2.3.1. MW RTM

At the frequencies measured by ATMS, the most important absorbing gases in the

atmosphere are oxygen and water vapor. The oxygen molecule has only a magnetic

dipole moment, and its lines are intrinsically much weaker than those which result

from the electric dipole of water vapor; however, the much greater abundance of oxy-

gen in the atmosphere more than compensates for this difference. When clouds are

present, liquid water also plays a role in radiative transfer. However, fair-weather cirrus

composed of ice particles small compared to the wavelength are generally transpar-

ent to the ATMS frequencies.

Oxygen

O2 spin-rotation transitions comprise approximately 30 lines between 50 and 70 GHz

and an isolated line at 118.75 GHz (which is not observed by AMSU or HSB). Several

groups have measured the pressure-broadened widths of the lines in the 50-70 GHz

band. The line parameters used for the forward model are from the Millimeter-wave

Propagation Model (MPM92) (Liebe et al., 1992). The characteristic of oxygen’s mi-

crowave spectrum that introduces difficulty for construction of models is the significant

degree of line mixing. In MPM92, line mixing was treated by a first-order expansion

in pressure. The coefficients for this expansion were determined by a constrained

linear fit to laboratory measurements made on an O2-N2 mixture over the frequency

range of 49-67 GHz and the temperature range 279–327 K, with a noise level of ap-

proximately 0.06 dB/km. Within that range, the model represents the measurements

to 0.2 dB/km. It is possible that extrapolation to colder temperatures introduces larger

errors. Measurements from the NASA ER-2 at 52-56 GHz (Schwartz, 1997) seem to

be in agreement with the model, however.
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Water Vapor

Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal at-

mospheric humidity, and a much stronger, opaque line at 183.31 GHz. Intensities

of these lines have been calculated and tabulated by Poynter and Pickett (1996 ver-

sion of JPL line catalog) and Rothman et al. (1998) (HITRAN), among others. The

HITRAN intensities are used here. For the 22-GHz line, the JPL intensity is higher

than the HITRAN value by 0.3%. There is a measurement by Liebe et al., (1969)

(estimated error 0.3%) which is 3.5% lower than the HITRAN value. At 183 GHz,

the JPL line intensity is 0.1% higher than HITRAN. Widths have been measured by

Liebe et al., (1969) and Liebe and Dillon (1969) at 22 GHz with estimated uncer-

tainty of 1% for both self and foreign-gas broadening; and by Bauer et al., (1989)

and Tretyakov et al. (2003) at 183GHz, with uncertainties of 0.5% for self-broadening

and 1.0% for foreign-gas broadening, respectively. However, Gamache et al. (1994)

concluded from a survey of measurements of many H2O lines that, in general, mea-

sured line widths should be considered to have uncertainties of 10-15%. The line

at 183 GHz is a case in which published measurements of width differ significantly,

but the value of Tretyakov et al. (2003), which is used here, lies near the centroid of

the measurements. At frequencies away from these two lines, microwave absorption

by water vapor is predominantly from the continuum, which is attributed to the low-

frequency wing of the intense infrared and submillimeter rotational band lines. In the

microwave part of the spectrum, the foreign-broadened component of the continuum

is stronger than the self-broadened component, for atmospheric mixing ratios. Mea-

surements of continuum absorption as a function of temperature have been made at

various frequencies by Liebe and Layton (1987), Godon, et al. (1992) and Bauer et al.

(1993, 1995). There are also numerous measurements at single temperatures and

frequencies in the laboratory, and in the atmosphere where temperature and mixing

ratio are variable. The measurements do not present an entirely consistent picture.

Rosenkranz (1998) proposed that the most satisfactory overall agreement with lab-

oratory and atmospheric measurements of the water continuum was obtained with

a combination of the foreign-broadened component from MPM87 (Liebe and Layton,

1987) with the self-broadened component from MPM93 (Liebe et al., 1993). The

combined model is used here.

Liquid Water

It is useful to distinguish between precipitating and non-precipitating clouds with re-

spect to their interactions with microwaves. Over the range of wavelengths measured

by ATMS, non-precipitating droplets (with diameters of 50 m or less) can be treated
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using the Rayleigh small-droplet approximation. In this regime, absorption is pro-

portional to the liquid water content of the air, and scattering can be neglected. The

model for the dielectric constant limits the accuracy of these calculations. The double-

Debye model of Liebe et al., (1991) is used here; for temperatures > 0◦C, it has an

estimated maximum prediction error of 3% between 5 and 100 GHz, and 10% up to

1 THz. Although some measurements of static dielectric constant at temperatures as

low as −20 C were used by Liebe et al. to develop their model, its use for supercooled

water must be considered to be an extrapolation, with uncertain accuracy. (The model

is implemented using the alternate Eq. 2b in Liebe et al.) Precipitation, on the other

hand, requires Mie theory to calculate both absorption and scattering. The latter is

generally not negligible, and is the dominant term at some wavelengths. In the case

of convective storms, scattering from ice at high altitudes is often the most important

process. The rapid transmittance algorithm uses only the small-droplet approxima-

tion for cloud liquid water, and scattering is not included. For this reason, retrieved

profiles with more than 0.5 kg/m2 cloud liquid water are rejected, as probably rain-

contaminated.

MW Rapid Transmittance Algorithm

The modeled brightness temperature Tb received by a space born microwave ra-

diometer over a smooth surface with emissivity ǫ may be expressed as

TB =
1

ω

∫ ∞

0

H(ν) dν

∫ Ps

0

−T (P )
∂τν(0, P )

∂P
dP

+ ǫ τν(0, Ps) Ts + (1− ǫ) τν(0, Ps)

∫ Ps

0

−T (P )
∂τν(Ps, P )

∂P
dP

+ (1− ǫ) τν(0, Ps)
2 Tcb

(2.2)

where H(ν) represents the passband of the radiometer channel of frequency ν, ω is

the spectral total width of the passband, τν(P1, P2) is the transmittance at frequency ν
between the pressure levels P1 and P2, T (P ) is the atmospheric temperature at level

P, Ts and Ps are surface temperature and pressure, and Tbc is the cosmic background

brightness temperature.

Near real time operations require rapid data processing which precludes the use

of a line-by-line transmittance model. The rapid algorithm employed in this study

and operationally used at NOAA/NESDIS to process the ATMS, AMSU-A and MHS

instruments is the microwave rapid transmittance algorithm developed by Rosenkranz
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(1995, 2003) and later validated by Rosenkranz (2006). In this rapid algorithm, the

integration over frequency in (1) is replaced by a passband-averaged transmittance

〈τ(0, P )〉. The average transmittance between two adjacent pressure levels, P1 and

P2, is computed as:

〈τ(P1, P2)〉 = e−(α+βV +γL) (2.3)

where V is the vertical column density integral of water vapor between the two levels

and L is the cloud liquid vertical column density integral; α represents the opacity of

fixed gases (oxygen and nitrogen) in the layer. The coefficients α, β and γ are com-

puted for each layer and channel, given the inputs of V, temperature, pressure and

secant of observation angle. Window channels, water vapor channels and oxygen-

band channels are considered separately. Each band employs tabular or polynomial

approximations to line-wing or near-line absorption from water vapor or oxygen. Ab-

sorption by cloud liquid water and ozone is also included. For a complete description

of the derivation of α, γ and β the reader can refer to Rosenkranz (1995, 2003).

For oxygen-band channels sounding the atmosphere above 40km, Zeeman split-

ting produced by the terrestrial magnetic field becomes important. For those chan-

nels, transmittance is parameterized as a function of the magnetic field strength

B and the angle ΘB between the direction of propagation and the magnetic field.

Rosenkranz (1995, 2003) also provide an in depth description of the transmittance

parametrization in presence of Zeeman splitting.

Transmittances are computed for 101 layers between 0.5 and 1100 hPa, cho-

sen with approximately even spacing on P 2/7. The total transmittance is derived as

the product of transmittances (2) for each of those layers. This total transmittance,

〈τ(0, Ps)〉, is then used in a simplified form of the radiative transfer equation expressed

by:

TB = T direct
B + 〈τ(0, Ps)〉

[
T sfc
B + T sky

B

(
1− T sfc

B

Ts

)]
(2.4)

T direct
B represents the simplified version of direct path from surface footprint to satellite:

T direct
B =

∫ 0

Ps

T (P ) d〈τ(0, P )〉 (2.5)

T sfc
B is the surface brightness temperature given by the product between the surface

emissivity and the skin temperature Ts, and T sky
B is the downward propagating sky

brightness temperature (including the cosmic background contribution, Tcb) as it would

be observed from the surface and represented by:

T sky
B =

∫ Ps

0

T (P ) d〈τ(P, Ps)〉+ Tcb 〈τ(0, Ps)〉 (2.6)
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Planck’s equation for radiant intensity is a nonlinear function of temperature. For

microwave frequencies, however, the physical temperatures encountered in the earth’s

atmosphere lie at the high-temperature asymptote of this function. Hence, as dis-

cussed by Janssen (1993), brightness temperature can be used as a surrogate for

radiance in the equation of radiative transfer with an accuracy of a few hundredths

of a Kelvin, provided that the cosmic background is assigned an effective brightness

temperature at frequency of

Tcb =
hν

2K
· exp(hν/KTc) + 1

exp(hν/KTc)− 1
(2.7)

instead of its actual temperature Tc = 2.73K, in order to linearize the Planck’s func-

tion. It has been shown that this rapid transmittance model requires thirty times less

computation than a line-by-line algorithm with an accuracy comparable to or better

than the channel sensitivities.

MW ocean surface emissivity model

The polarized ocean surface emissivity for frequency ν, ǫp(ν) for a flat surface at local

thermodynamical equilibrium is defined by:

ǫp(ν) = 1− rp(ν) , (2.8)

where p is the polarization of the signal, horizontal (h) or vertical (v), and rp is the

square of the Fresnel reflection coefficient for polarization p, defined as:

rh =

∣∣∣∣∣
cos θ −

√
ε− sin2 θ

cos θ +
√

ε− sin2 θ

∣∣∣∣∣

2

, (2.9)

and

rv =

∣∣∣∣∣
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

∣∣∣∣∣

2

(2.10)

In these equations, ε is the dielectric permittivity of saline water (not to be con-

fused with the polarized emissivity, denoted ǫp). We employ a revised Debye model,

the Double Debye model, which is obtained as a linear fit of experimental data for

synthetic seawater and at seven different temperatures representative of the world’s

oceans, in the frequency range 3–105 GHz. An extrapolation is being used for higher

frequencies.

The ATMS radiometer front-end scanning optics are of a rotating reflector and

fixed feedhorn type design. With this configuration, the polarization vector rotates
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with the cross-track scanning reflector. As a result, at any beam position making an

angle θ with respect to nadir, the received polarization is a linear combination of the

vertical and horizontal polarization vectors.

ATMS channels 1 (23.8 GHz), 2 (31.4GHz) and 16 (88.2GHz) are vertically po-

larized (perpendicular to the ground track) at nadir and generally quasi-vertically po-

larized at any other viewing angle. All other ATMS channels are quasi-horizontally

polarized and fully horizontally polarized at nadir (polarization vector parallel to the

ground track). The surface emissivity for quasi-vertical and quasi-horizontal polarized

channels can be expressed respectively as:

ǫv(ν) = (1− rv) cos
2 θ + (1− rh) sin

2 θ , (2.11)

and

ǫh(ν) = (1− rv) sin
2 θ + (1− rh) cos

2 θ . (2.12)

2.3.2. IR RTM

The total monochromatic radiance, R(ν, θ,X), at frequency ν, zenith angle θ, for an

atmosphere with geophysical state, X, emerging from the top of the atmosphere can

be broken into the following components

R(ν, θ,X) = Rs(ν, θ,X)︸ ︷︷ ︸
surface

+ Ra(ν, θ,X)︸ ︷︷ ︸
atmospheric column

+ Rd(ν, θ, θ
′, X)︸ ︷︷ ︸

atmospheric downwelling

+R⊙(ν, θ, θ⊙, X)︸ ︷︷ ︸
reflected solar

.

(2.13)

Specifically, Rs(ν, θ,X) is the contribution due to the surface radiance, averaged over

the footprint, attenuated by the atmospheric column of the observation.

Ra(ν, θ,X) ≡
∑NL

L=1RL(ν, θ) is the sum of all the contributions RL(ν, θ) from all the

layers within the IFOV. Rd(ν, θ,X) is the contribution due to the downwelling radiation

from the entire atmospheric volume reflected by the surface and transmitted through

the observed atmospheric column. R⊙(ν, θ, θ⊙, ρ⊙, X) accounts for the transmission of

sunlight from the TOA through the atmosphere at angle θ⊙, reflected from the surface,

and transmitted out of the atmosphere at angle θ to the spacecraft.

Since the Planck function is linear in the microwave region, Eq. (2.13) can be

written in terms of brightness temperatures as well

TB(ν, θ) = TBs(ν, θ) + TBa(ν, θ) + TBd(ν, θ) + TB⊙(ν, θ) . (2.14)

Radiance Contribution from the Surface

The radiance emerging at the top of the atmosphere is given by the contributions

from the surface and attenuated by the atmospheric transmittance. We will begin by
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considering only the radiation upwelling from the surface emission. The component of

out-going radiance from the surface is given by a black-body radiance at the surface

skin temperature, Ts, multiplied by the surface emissivity, ǫν . The surface radiance

must pass through the entire atmosphere and is, therefore, multiplied by the column

transmittance from the surface to the top of the atmosphere. The monochromatic

out-going surface radiance is given by

Rs(ν, θ) = ǫν Bν(Ts) τ
↑
ν (Ps, θ) , (2.15)

where we employ a short hand notation for the surface to space transmittance

τ ↑ν (Ps, θ) ≡ τν(Ps → 0, θ) (2.16)

The monochromatic brightness temperature equation for the surface contribution is

given by

TBs(ν, θ) = ǫν Ts τ
↑
ν (Ps, θ) (2.17)

and the channel averaged equation for the surface contribution is given by

TBs(n, θ) = ǫn Ts τ
↑
n(Ps, θ) (2.18)

The surface component, Rs, is given as

Rs(ν, θ) = ǫν Bν(Ts) τ
↑
ν (Ps, X, θ) , (2.19)

where ǫν is the spectral surface emissivity, Bν(T ) is the Planck function, Bν(T ), which

is the specific intensity (brightness) of a blackbody emitter given by

Bν(T ) =
α1 ν

3

exp(α2 ν
T

)− 1
(2.20)

and τ ↑ν (Ps, X, θ) is the transmittance of the atmosphere from the surface, at pressure

Ps to the instrument.

Radiance Contribution from the Atmosphere

For a thin layer of the atmosphere, defined between pressure layers at p(L) and p(L−
1), the monochromatic radiance contribution at the top of the atmosphere from the

atmospheric layer is analogous to the surface radiance and is given by

RL(ν) = ELBν(TL) τν(pL−1 → 0, θ)

= [1− τν(pL → pL−1, θ)]Bν(TL) τν(pL−1 → 0, θ)

= Bν(TL) [τν(pL−1 → 0, θ)− τν(pL → 0, θ)]

= Bν(TL)∆τ ↑ν,L(θ) , (2.21)
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where

∆τ ↑ν,L(θ) ≡ τν(pL−1 → 0, θ)− τν(pL → 0, θ) . (2.22)

The term E ≡ 1 − τν(pL → pL−1, θ) in Eq. (2.21) constitutes an effective emissivity

of the layer. When the layer is opaque the gas emits as a blackbody; however, when

completely transmissive (i.e., τν = 1), there is no emission contribution from that layer.

The proper derivation begins with the equation of radiation transfer (e.g., Chan-

drasekhar, 1950),
∂Rν

∂φν
=

1

µ
(Sν − Rν) (2.23)

For an atmosphere in local thermal equilibrium with no scattering the radiation

source function, Sν = Bν(T ), can be described by the Planck function. The radiative

transfer equation (e.g., see Mihalis, 1978; p. 38) is a function of the optical depth, φν ,

and the cosine of the zenith angle, µ,

∂Rν

∂φν
=

1

µ
(Bν − Rν) . (2.24)

We can find an integration factor to obtain

∂Rν

∂φν

e−φν/µ =
Bν(T )

µ
e−φν/µ − Rν

µ
e−φν/µ , (2.25)

∂
(
Rν e

−φν/µ
)

∂φν
=

Bν(T )

µ
e−φν/µ . (2.26)

The equation can then be integrated directly. The integration constant is the boundary

condition, which is the surface term discussed earlier.

Rν =

∫ 0

∞

1

µ
Bν [T (z)] e

−φν/µ dφ (2.27)

We may change the integration parameter from optical depth, φ, to either altitude,

z, or pressure, p and obtain:

e−φν/µ
dφ

µ
=

∂τν
∂z

dz =
∂τν
∂p

dp (2.28)

so that

Rν =

∫ ∞

0

Bν [T (z)]
∂τν
∂z

dz (2.29)
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The atmospheric radiance component, Ra, is the vertical integral of the Planck radi-

ance as seen through the level to space transmittance

Ra(ν, θ) =

0∫

Ps

Bν [T (p)]
∂τ ↑ν (p,X, θ)

∂p
dp (2.30)

In remote sounding the contribution of a single channel usually comes from a

narrow vertical region in which τ ≃ 1
2
. For discrete radiative transfer algorithms the

total contribution from the atmosphere is given by the sum of the individual layer

contributions over the entire isobaric grid

Ra(ν) =

NL∑

L=1

RL(n) =

NL∑

L=1

Bν(TL)∆τ ↑ν,L(θ) . (2.31)

In the microwave we can utilize the Rayleigh-Jeans approximation for write the total

contribution from the atmospheric column in terms of microwave brightness tempera-

ture, TB,

TBa(ν) =

NL∑

L=1

TB,L(ν) =

NL∑

L=1

TL ∆τ ↑ν,L(θ) . (2.32)

In the microwave spectrum used for remote sounding the channel averaged trans-

mittance can be utilized because the spectral characteristics of the species used for

sounding (O2 and H2) do not interact with inferring species such as water. This simpli-

fies the atmospheric radiance computation and makes the radiative transfer equation

much more linear

TBa(n) =

NL∑

L=1

TB,L(n) =

NL∑

L=1

TL ∆τ ↑n,L(θ) . (2.33)

Solar Reflected Component

In a non-scattering atmosphere sunlight is absorbed by the atmospheric particles. We

utilize the radiative transfer equation (2.23) with the boundary condition (integration

constant) equal to the solar radiance at the top of the atmosphere. The solar energy

propagates down to the surface at which point it is reflected into the view of the

satellite

R⊙ = ρ⊙(ν, θ, θ⊙) τ
↓↑
ν (ps, X, θ, θ⊙) Ω(t)H⊙(ν) cos(θ), , (2.34)

where H⊙ is the solar radiance outside the Earth’s atmosphere. The reflected solar

component requires computation of the transmittance along the bi-directional path
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from the sun to the surface, ps, and back to the spacecraft. For channel radiances

the bi-directional transmittance is not equal to the product of the downwelling and

upwelling transmittances

∫
τ ↓↑ν (ps, X, θ, θ⊙) dν 6=

∫
τ ↓ν (ps, X, θ⊙) dν ·

∫
τ ↑ν (ps, X, θ) dν (2.35)

Ω is the solid angle, given in terms of the Sun’s radius and distance. It varies by ±
3.4% over the year,

Ω(t) = π ·
(
0.6951 · 109

D⊙(t)

)2

≈ 6.79 · 10−5 − 0.23 · 10−5 · cos[2π(t− t0)/ty]

where, t is the time of year, ty is the time the Earth takes to complete 1 orbit (365.25

days), and t0 is the perihelion date (January 4 or t0=4). The solar surface reflectivity,

ρ⊙, is a function of surface type, zenith angle, solar zenith angle, azimuth angle, and

wavenumber.

Monochromatic Downwelling Thermal Component

The radiation from an atmospheric layer at p(L) emits radiation in all directions. Some

of that radiation reflects off the surface and into the solid angle of observation. The

downwelling term requires integration over all zenith angles, θ′, and azimuthal angles,

α, and all levels.

Rd(ν, θ) = τ ↑ν (Ps, X, θ)

∫ 2π

0

∫ π
2

0

ρν(θ, θ
′;φ, φ′) sin(θ′) cos(θ′) dθ dφ

·
∫ 0

Ps

Bν [T (p)]
∂τ ↓ν (p,X, θ′)

∂p
dp , (2.36)

where the thermal bidirectional reflectance distribution function (BRDF), ρν(θ, θ
′;φ, φ′),

is usually a small number ≃ 1 − ǫν (except at larger zenith angles and in the mi-

crowave). Effectively, there is a product of up-welling and downwelling transmittance

so that this term is only important in channels in which the transmittance is ≈ 1
2
.

The short hand notation for the surface to space transmittance Eq. (2.16) has been

employed and a short hand notation for the downwelling layer transmittance is

∆τ ↓ν (L, θ
′) ≡ τν [p(L− 1) → p(L), θ′] (2.37)

= τν [p(L− 1) → Ps, θ
′]− τν [p(L) → Ps, θ

′] . (2.38)
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But the monochromatic downwelling transmissivity is related to the upwelling trans-

missivity by

τν [p(L) → Ps, θ
′
ν ] =

τν(Ps → 0, θ′ν)

τν [p(L) → 0, θ′ν ]
(2.39)

so that

∆τ ↓ν (L, θ
′
ν) =

τν(Ps → 0, θ′ν)

τν(p(L) → 0, θ′ν)
− τν(Ps → 0, θ′ν)

τν(p(L− 1) → 0, θ′ν)
. (2.40)

Also, since the lines are resolved and not overlapping the channel averaged down-

welling transmittance can be written in terms of the upwelling level-to-space channel

averaged transmittances in the form shown in Eq. (2.40). The order of integration can

be changed in Eq. (2.36) as

Rd(ν, θ) = τ ↑ν (Ps, X, θ)

∫ 0

Ps

Bν [T (p)]
∂τ ↓ν (p,X, θ′)

∂p
dp

·
∫ 2π

0

∫ π
2

0

ρν(θ, θ
′;φ, φ′) sin(θ′) cos(θ′) dθ dφ . (2.41)

Infrared Downwelling Term

The infrared downwelling term has been felt by anyone who has stood out on a warm

humid day. The warmth of the hot atmosphere can be larger than the direct solar ra-

diation in the mid- to far-IR. For a surface-based uplooking or downlooking instrument

the thermal downwelling integral must be computed accurately. For a space-borne

measurement only certain channels will have a measurable thermal downwelling ra-

diation and even those channels the effect is still small. Many approximations are

employed given that the surface reflectance, ρ, is a small number, usually only a few

% for normal scan angles / 40◦. The the term becomes important when τ ≃ 1
2

be-

cause when the atmosphere is opaque (τ → 0) the sensor cannot “see” the surface

and when the atmosphere is transmissive (τ → 1) the downwelling radiance is small

(again, for smaller incidence angles / 40◦). φ′ and θ′ have been approximated by

an effective diffusive angle by the mean value theorem, and the dependence on az-

imuthal angle can be small over Lambertian surfaces (e.g., land), where integral with

respect to
∫ 2π

0
dφ can be replaced by 2π.

It has thus been assumed that the thermal reflectivity may be represented by a

mean value so that Eq. (2.36) can be written as

Rd(ν, θ) ≃ τ ↑ν (Ps, X, θ) ρ(ν, θ) π R↓
ν (2.42)

The factor of π arises by assuming azimuthal symmetry,
∫
dα = 2π and assuming we

can represent the integral of zenith angle by a diffusive term
∫
cos(θ) sin(θ) dθ = 1/2.



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 41 of 110

In Kornfield and Susskind (1977), the downwelling term is shown to be simplified as

follows. First, we can insert the surface radiance into the integral

R↓
ν =

∫ 1

τ(Ps)

Bν(T ) dτ
↓ =

∫ 1

τ(Ps)

Bν(Ts) dτ
↓ +

∫ 1

τ(Ps)

[Bν(T )− Bν(Ts)] dτ
↓ (2.43)

the left hand integral can be written exactly

R↓
ν = Bν(Ts)

[
1− τ ↓ν (Ps)

]
+

∫ 1

τ(Ps)

[Bν(T )−Bν(Ts)] dτ
↓ (2.44)

Most of the absorption takes place very low in the atmosphere, say in the lowest

150 hPa (i.e., between 1000 and 850 hPa) and Bν(τ) − Bν(Ts) is a slowly varying

function, therefore, the integral is adequately represented by the mean value theorem

R↓
ν ≃ Bν(Ts)

[
1− τ ↓ν (Ps)

]
+Bν(T )− Bν(Ts)

[
1− τ ↓ν (Ps)

]
(2.45)

where Bν − Bν(Ts) is the mean difference between atmospheric Planck function and

the surface Planck function over the range of most absorption. This equation can be

re-written in the form of

R↓
ν ≃ Fν Bν(Ts)

[
1− τ ↓ν (Ps)

]
, where Fν ≡ 1 +

Bν −Bν(Ts)

Bν(Ts)
. (2.46)

Fν differs from unity to the extent that the mean value of the atmospheric Planck

function differs from the surface Planck function.

Now it is seen that monochromatic downwelling radiance is a function of the prod-

uct of τ and (1 − τ). The maximum thermal downwelling radiation will occur when

τ ≈ 1/2. For channel averaged transmittances this is not necessarily true. In the top

example the transmittance is constant across the channel integration whereas in the

bottom example the channel is a mixture of opaque and transmissive components. In

the top case, τ · (1 − τ) is simply equal to 1/4, as expected. But in the bottom case

τ is zero everywhere where 1 − τ is unity and vice-a-versa. Therefore, the product is

zero.

Therefore, the calculation of τ · (1 − τ) needs to be done in a channel averaged

sense; however, we will show shortly that this usually introduces a small error. Given

that the entire downwelling radiance is small at the spacecraft the error is tolerable.

We can assume that the integral of the monochromatic product of τ is related to the

channel averaged product with a correlation factor, and this will be absorbed into the

Fν factor. Inserting Eq. (2.46) into Eq. (2.42) yields
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Rd(ν, θ) = π ρν(θ, θ̄i)Bν(Ts)Fν τν(ps, θ)
[
1− τν(ps, θ̄)

]
. (2.47)

A better fitting equation for channel averaged radiances might be

Rd(i, θ) = πρi(θ, θ̄i)Bνi[T (p̄i)]Fi τi(ps, θ)
[
1− τi(ps, θ̄i)

]
(2.48)

where pi is an effective pressure of downwelling for channel i. Each channel could

have an effective diffusive angle or the effective diffusive angle, θi, could be defined

w.r.t. the angle of observation, θ.

It may also be assumed that that the bidirectional reflectance is given by either

ρi(θ, θ̄i) = (1 − ǫi)/π for nighttime and long-wave (i.e., νi < 2300 cm−1) or ρi(θ, θ̄i) =
ρi(θ, θ⊙) for daytime short wave channels. To estimate the thermal downwelling term

we can calculate an approximate form of the downwelling term using the nadir rapid

algorithm

Rd(ν, θ) =
1

2
[1− ǫ(ν)] τ(ps) [1− τ(ps)]Bν [T (p̄)] , (2.49)

where p̄ = 700 hPa. To first order, if this effect is ignored entirely, a larger ǫi would be

determined and radiance residuals would be smaller.

Rapid Transmittance Algorithm (RTA)

This fast transmittance model is based on methods developed and used by Larry

McMillan, Joel Susskind, and others. An introduction to the theoretical development of

the approximations employed can be found in: McMillin and Fleming (1976), Hannon

et al. (1996), and Strow et al. (1998, 2003).
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2.4. Microwave Retrieval Algorithm

The NUCAPS microwave (MW) module is a heritage algorithm of the AIRS Science

Team microwave retrieval algorithm (Rosenkranz, 2001, 2006). The reader is referred

to the AIRS ATBD for an in depth description of the subject of this chapter.

2.4.1. Precipitation Flags, Rate Retrieval and ATMS Corrections.

The precipitation algorithm produces the following: (1) flags indicating possible precipitation-

induced perturbations impacting ATMS channels 5, 6, 7, 8, and 9, (2) estimates of

corrections that may, at the user’s option, be applied to ATMS brightness tempera-

tures for channels 5, 6, 7, 8 and 9, to compensate for precipitation, if present, and (3)

a precipitation-rate retrieval (mm/h) for each 50-km ATMS spot which was tuned for

mid-latitudes using all-season NEXRAD data.

Precipitation Flags

The objective of the flags for each of ATMS channels 5–9 is to alert data users to the

possibility that retrievals based on these microwave channels might be impacted by

precipitation. The four possible flag states are given by the following

• Flag = 0: The magnitude of the detected precipitation perturbations (if any) are

less than 0.5 K.

• Flag = 1: Small perturbations are present (nominally between 0.5 and 2 K),

which are approximately correctable.

• Flag = 2: Estimated ATMS precipitation-induced brightness temperature per-

turbations for this channel may exceed 2 K in magnitude, so perturbation cor-

rections are less reliable.

• Flag = -1: It is unknown whether perturbations due to precipitation are present

(e.g., surface elevation greater than 2 km); these perturbations are discussed

further later in this chapter.

Figure 2.12 shows the ability of the precipitation flag to detect precipitation conditions.

Those regions where the MW-Only retrieval fails (red regions) are highly correlated

with precipitation conditions as has been evaluated using the MiRS rainfall rate prod-

uct as a reference.



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 44 of 110

Figure 2.12: NUCAPS quality control flag showing regions where the IR/MW retrieval

converges (blue regions) and where the MW-Only retrieval fails (red regions) for the

ascending (left figure) and descending (right figure) satellite modes and for the NU-

CAPS version 2.0.5.4.

Perturbation Corrections

Perturbation corrections are entirely based on the methodology employed for the

AMSU instrument. The reader is referred to the AIRS ATBD and the reference therein

for a complete description of the methodology.

Perturbation corrections are estimated for ATMS Channels 5–9. In addition, for

each ATMS beam position a precipitation-rate estimate (mm/h) is provided when flag

states 0, 1, or 2 exist for ATMS channel 5 (52.8 GHz). Users of ATMS data for tem-

perature profile retrievals should use brightness temperatures flagged with 2 or −1
with caution, even if the suggested perturbation corrections are employed. These

perturbations are computed for ATMS channels 5–9 at 50-km resolution using the

algorithm discussed further down. It should be noted that 52.8 GHz brightness tem-

peratures can suffer warm perturbations over ocean due to low altitude absorption

and emission by clouds or precipitation. Such warm perturbations could be flagged

and corrected as are the cold perturbations. The 23.8/31.4 GHz combination could

be used to validate the locations of such excess absorption and perturbations over

ocean.

Rain Rate Retrieval Algorithm

The rain rate retrieval algorithm is an adaptation of the AQUA AMSU-A AMSU-B al-

gorithm. The reader is referred to the AIRS ATBD for an in depth description of this
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methodology.

Accurate remote sensing of precipitation rate is challenging because the radio-

metric signatures of irregularly formed hydrometeors can depend strongly on their

distributions in size, temperature, ice content and structure. As a result, all active

and passive microwave remote sensing methods rely on the statistical regularity of

precipitation characteristics. Experimental validation typically involves comparisons

with rain gauges, radar, and other sensors, each of which has its own limitations. The

primary precipitation-rate retrieval products of ATMS are 15- and 50-km resolution

contiguous retrievals over the viewing positions of ATMS within 43º of nadir. The

two outermost 50-km viewing positions (six outermost for 15-km) on each side of the

swath are currently omitted due to their grazing angles. The algorithm architectures

for these two retrieval methods are presented below.

The 15-km resolution precipitation-rate retrieval algorithm begins with identifica-

tion of potentially precipitating pixels. All 15-km pixels with brightness temperatures

at 183 ± 7 GHz that are below a threshold T7 are flagged as potentially precipitating,

where

T7 = 0.667 (T53.6 − 248) + 252 + 6 cos(θ) (2.50)

and where θ is the satellite zenith angle. If, however, the spatially filtered brightness

temperature T53.6 at 53.6 GHz is below 249 K, then the brightness temperature at 183

±3 GHz is compared instead to a different threshold T3, where

T3 = 242.5 + 5 cos(θ) . (2.51)

This spatial filter picks the warmest spot within an array of ATMS pixels. The

183 ± 3 GHz band is used to flag potential precipitation when the 183 ± 7 GHz flag

could be erroneously set by low surface emissivity in very cold dry atmospheres, as

indicated by T53.6. These thresholds T7 and T3 are slightly colder than a saturated

atmosphere would be, therefore lower brightness temperatures imply the presence

of a microwave-absorbing cloud. If the locally filtered T53.6 is less than 242 K, then

the pixel is assumed not to be precipitating. Within these flagged regions strong pre-

cipitation is generally characterized by cold cloud-induced perturbations of the ATMS

tropospheric temperature sounding channels in the range 52.5–55.6 GHz. Examples

of 183 ± 7 GHz data and the corresponding cold perturbations at 52.8 GHz are il-

lustrated in Figures 5.3(a) and (c), respectively, of the AIRS ATBD (see reference).

These 50-km resolution 52.8 GHz perturbations ∆T50,52.8 are then used to infer the

perturbations ∆T15,52.8 [see Figure 5.3(d) of AIRS ATBD] that might have been ob-

served at 52.8 GHz with 15-km resolution had those perturbations been distributed

spatially in the same way as the cold perturbations observed at either 183± 7 GHz or

183 ± 3 GHz, the choice between these two channels being the same as described
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above. This requires the bi-linearly interpolated 50-km AMSU data to be resampled

at the HSB beam positions. These inferred 15-km perturbations are computed for five

ATMS channels using:

∆T15,54 = (∆T15,183/∆T50,183)∆T50,54 . (2.52)

The perturbation ∆T15,183 near 183 GHz is defined to be the difference between

the observed brightness temperature and the appropriate threshold given above. The

perturbation ∆T50,54 near 54 GHz is defined to be the difference between the limb

and surface-corrected brightness temperature and its Laplacian-interpolated bright-

ness temperature based on those pixels surrounding the flagged region (Staelin and

Chen, IEEE Trans. Geosci. Remote Sensing, 38, 2000). Limb and surface-emissivity

corrections to nadir for the five 54-GHz channels are produced by neural networks for

each channel; they operate on nine AMSU-A channels above 52 GHz, the cosine of

the viewing angle Φ from nadir, and a land-sea flag (see Figure 5.2 of AIRS ATBD).

They were trained on 7 orbits spaced over one year for latitudes up to ±55◦. Inferred

50- and 15-km precipitation-induced perturbations at 52.8-GHz are shown in Figures

5.3(c) and (d), respectively, of AIRS ATBD, for a frontal system. Such estimates of

15-km perturbations near 54 GHz help characterize heavily precipitating small cells.

Such inferred 15-km resolution perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5

GHz are then combined with (1) the 183±1-, ±3-, and ±7 GHz 15-km ATMS data, (2)

the leading three principal components characterizing the original five corrected 50-

km ATMS temperature brightness temperatures, and (3) two surface-insensitive prin-

cipal components that characterize the window channels at 23.8, 31.4, 50.3, and 89

GHz, plus the 166.31 and the five 183 GHz channels. channels. All 13 of these vari-

ables, plus the secant of the satellite zenith angle θ, are input to the neural net used

for 15-km precipitation rate retrievals, as shown in Figure 5.2 of AIRS ATBD. This net-

work was trained to minimize the rms value of the difference between the logarithms

of the ATMS and NEXRAD retrievals; use of logarithms prevented undue emphasis

on the heaviest rain rates, which were roughly three orders of magnitude greater than

the lightest rates. Adding 1 mm/h prevented undue emphasis on the lightest rates.

NEXRAD precipitation retrievals with 2-km resolution were smoothed to approximate

Gaussian spatial averages that were centered on and approximated the view-angle

distorted 15- or 50-km antenna beam patterns. The accuracy of NEXRAD precipita-

tion observations are known to vary with distance, so only points beyond 30 km but

within 110 km of each NEXRAD radar site were included in the data used to train

and test the neural nets. Eighty different networks were trained using the Levenberg-

Marquardt algorithm, each with different numbers of nodes and water vapor principal

components. A network with nearly the best performance over the testing data set
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was chosen; it used two surface-blind water vapor principal components, and only

slightly better performance was achieved with five water vapor principal components

with increased surface sensitivity. The final network had one hidden layer with 5

nodes that used the tanh sigmoid function. These neural networks are similar to

those described by Staelin and Chen (IEEE TGARS, 38(5), 2000). The resulting 15-

km resolution precipitation retrievals are then smoothed to yield 50-km retrievals. The

15-km retrieval neural network was trained using precipitation data from the 38 or-

bits listed in Table 5.1.1. Each 15-km pixel flagged as potentially precipitating using

183 ± 7 GHz or 183 ± 3 GHz brightness temperatures was used either for training,

validation, or testing of the neural network. For these 38 orbits over the United States

15,160 15-km pixels were flagged and considered suitable for training, validation, and

testing; half were used for training, and one-quarter were used for each of validation

and testing, where the validation pixels were used to determine when the training of

the neural network should cease. Based on the final ATMS and NEXRAD 15-km re-

trievals, approximately 14 and 38 percent, respectively, of the flagged 15-km pixels

appear to have been precipitating less than 0.1 mm/h for the test set.

2.4.2. MW-Only Profile Retrieval Algorithm

The “MW-only” initial guess profile retrieval algorithm derives temperature, water va-

por and non-precipitating cloud liquid water profiles from ATMS brightness tempera-

tures without using IR data. This module was originally intended to provide the start-

ing point for the cloud-clearing and retrieval algorithm but has been later replaced by a

cloudy regression solution. Nonetheless, ATMS has improved spectral resolution and

coverage with respect to previous AMSU/HSB and AMSU/MHS instruments. Since

the ATMS retrieval performance is still under exam, it was decided to leave it as part

of the NUCAPS processing flow.

The MW-only retrieval algorithm is an iterative algorithm in which the profile incre-

ments are obtained by the minimum-variance method, using weighting functions com-

puted for the current temperature and moisture profiles with the rapid transmittance

algorithm described later in this document. The input vector of measured brightness

temperatures is accompanied by an input validity vector whose elements are either

one or zero. This provides a way of handling missing or bad data.

Preliminary Surface Type Classification

The surface classification algorithm is diagrammed in Figure 5.4 of AIRS ATBD. The

classification rules are from Grody et al. (2000), and make use of discriminant func-

tions that are linear combinations of ATMS channels 1, 2, 3, and 16. If sea ice is
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indicated by the classification algorithm, then its concentration fraction is estimated

from a linear operation on channels 1, 2, and 3. If the surface type is glacier or snow-

covered land, then the snow or ice fraction is estimated using channels 3 and 16.

Parameters of the surface brightness model are assigned according to surface type

as in Table 5.1. A priori emissivities for the ice and snow types were estimated from

NOAA-15 and Aqua data. For land ǫ0 = 0.95 at all frequencies; for seawater, the

dielectric constant model of Ellison et al. (2003) was used to compute the emissivity

of a flat surface viewed in the polarization of the ATMS radiometer.

Atmospheric Moisture and Condensation Model

Brightness temperatures at the ATMS channels 16–22 depend on the vertical profile

of atmospheric opacity relative to temperature, but do not by themselves distinguish,

at any given altitude, between opacity due to water vapor and opacity due to liquid

water. However, the physics of water vapor condensation add some a priori informa-

tion or constraints. Cloud coverage is parameterized as in a stratiform condensation

model, where a relative humidity threshold determines the onset of condensation. Al-

though the water vapor profile is saturated within the cloudy part of the field of view, it

is assumed that the condensation process is not spatially resolved, hence the thresh-

old is less than 100% relative humidity. Currently, the threshold is set to 85%.

In the condensation model, the vapor and cloud liquid water density profiles are

both linked to a single parameter H. When H ≤ 85%, H is equal to relative humid-

ity; in the range 85% to 115%, changes from a water-vapor variable to liquid-water,

and values of H greater than 115% increase liquid water while the vapor remains

at saturation. Because convergence, to be discussed later, is determined from the

brightness temperature residuals, which in turn are computed using the vapor and

liquid column densities, the role of H in this algorithm is only to introduce the a priori

statistics and constraints. The average vapor density in the field of view is related to

H by

ρν =
ρs
10

[ramp(H, 10)− f(H)] , (2.53)

where ρs is the saturation value of mixing ratio and

ramp(x, c) ≡ x , x ≥ c , (2.54)

ramp(x, c) ≡ c exp(x/c− 1) , x < c , (2.55)

and

f(H) = ramp(H −HL, 6) . (2.56)
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Thus, the value of ρν/ρs lies between zero and HL/100. the liquid water mixing ratio

averaged over the field of view is assumed to be given by:

ρL = c1 f(H) (2.57)

where c1 is a coefficient equivalent to a liquid/air mass mixing ratio of 10−5 %.

The saturation vapor mixing ratio is computed from the temperature profile by the

formula of Liebe (1981). Saturation is calculated with respect to liquid water (by ex-

trapolation) even when the temperature is below 273 K. This model therefore allows

supercooled liquid water and water vapor greater than the saturation value with re-

spect to ice.

Estimation of Surface Brightness and Atmospheric Moisture

This section is taken from the AIRS ATBD, Chapter 5 and describes an algorithm

based on retrieval methods described by Wilheit (1990), Kuo et al. (1994), Wilheit

and Hutchison (1997), and Rosenkranz (2006). It uses ATMS channels 1, 2, 3, 16–22.

The measurements are weighted averages over 3×3 spatial arrays which approximate

the AMSU-A field of view. The H profile, HL, and four surface parameters T0, T1, T2,

and pg are concatenated into a vector Y . The parameter pg when the surface type is

either water or coastline, determines the secant ratio ρ by:

ρ =
sec(Θref)

sec(Θ)
= 1 + ramp(pρ, 0.02) . (2.58)

The cost function to be minimized is given by

J =
(
Ŷ −Y0

)T
Sy

−1
(
Ŷ −Y0

)
+(T̂B −TB −∆TB)

T (Sf − Se)
−1(T̂B −TB −∆TB) , (2.59)

in which Ŷ is the retrieved estimate of Y , Y0 is its a priori value and Sy is its covari-

ance matrix with respect to a priori T0, TB is a vector of the eight measured antenna

temperatures, Se is their error covariance matrix (assumed diagonal), ∆TB is the tun-

ing correction for antenna side lobe effects and possible transmittance error, T̂B is a

calculated brightness temperature vector computed from the current values of tem-

perature, moisture and surface brightness, and Sf is a diagonal covariance matrix

which approximately represents errors in T̂B resulting from errors in the temperature

profile retrieval and tuning. The retrieved estimate of Y (i.e., Ŷ ) is obtained by New-

tonian iteration (see Rodgers, 1976), except that Eyres (1989) method of damping is

used to avoid large relative humidity increments, because of the nonlinearity of the

problem.
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Iteration Procedure and Convergence Tests

Convergence is tested separately for the temperature channels and for the mois-

ture/surface channels. Iteration of either part of the algorithm is suspended when one

of the following conditions is met : (1) the computed brightness temperature vector

TB meets the closure criterion; or (2) when successive computations of the residuals

change by less than 1% for temperature channels and 2% for water vapor channels of

a given threshold; or (3) when the number of iterations exceeds a preset limit, which is

12 for the temperature channels and 16 for the moisture/surface channels. Typically,

iteration of the temperature profile ceases after one or two iterations, but the moisture

profile often requires six or more iterations.

Given the previous estimate of temperature or water vapor given by P̂n−1 (which is

P̂0 on the first iteration), the next estimate of temperature or water vapor is obtained

by Newtonian iteration, as shown in Equation (2.60) where a method of damping

(represented by δ) is used for water vapor to avoid large relative humidity increments

because of the nonlinearity of the problem. For temperature no damping is used

(δ = 1)

P̂n = P̂n−1 − δ
(
P̂n−1 − P̂0

)
+ δSP W T

P XP . (2.60)

In Equation (2.60), SP is covariance matrix with respect to P̂0, WP is the Jacobian ma-

trix (matrix of derivatives of brightness temperatures with respect to the atmospheric

parameter P ), computed and updated for the state represented by P̂n−1. The XP term

in Equation (2.60) is the solution vector as described in Rosenkranz (2001). Figures

2.13 and 2.14 show global maps of the atmospheric temperature and water vapor

retrieved by the NUCAPS MW-only algorithm.
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Figure 2.13: Temperature at 500 hPa for the ascending (left plot) and descend-

ing (right plot) satellite modes, retrieved by the NUCAPS MW-only retrieval (offline

v2.0.5.4).

Figure 2.14: Water Vapor at 950 hPa for the ascending (left plot) and descend-

ing (right plot) satellite modes, retrieved by the NUCAPS MW-only retrieval (offline

v2.0.5.4).
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2.5. Regression Retrieval

2.5.1. Post-Launch First Guess Regression Procedure

NOAA/NESDIS uses an eigenvector global regression procedure to provide fast and

accurate initial guesses for temperature and moisture profiles as well as surface emis-

sivity and reflectivity using simulated CrIS data. Eigenvector regression for atmo-

spheric sounding was first demonstrated by Smith and Woolf (1976). It is assumed

that all independent CrIS radiances have been preprocessed by the cloud clearing

module described in the last section. Eigenvectors are computed from a training

dataset of radiances that have been normalized by the CrIS expected noise and are

used as basis functions to represent the CrIS radiometric information. Eigenvectors

are commonly referred to as empirical orthogonal functions (EOFs) in the literature, a

convention that will be adopted throughout the remainder of this section. Because of

the large number of channels measured by CrIS, the eigenvector form of regression is

crucial for exploiting the information content of all channels in a computationally effi-

cient form. By representing radiometric information in terms of a reduced set of EOFs

(much fewer in number than the total number of instrument channels) the dimension

of the regression problem is reduced by approximately one order of magnitude. An-

other advantage of using a reduced set of EOFs is that the influence of random noise

is reduced by elimination of higher order EOFs which are dominated by noise struc-

ture. It should be noted that if all EOFs are retained as basis functions the eigenvector

regression reduces to the ordinary least squares regression solution in which satellite

measurements are used directly as predictors. The mathematical derivation of the

EOF regression coefficients is detailed in the following sub-sections.

Generating the Covariance Matrix and Regression Predictors

A training ensemble of temperature, humidity, and ozone profile data are used to

generate radiances for all CrIS channels that meet specified instrument performance.

Expected instrumental noise is added to the simulated radiances. Note that real ob-

servations will be used after launch to generate the eigenvectors. Computed radi-

ances are only used for prelaunch coefficients. The deviations of the radiance scaled

by noise from their sample mean are stored in the matrix ∆T̃Bn(m),j (i.e., Eq. (2.61)),

a matrix of dimensions M × J , where M is the total number of instrument channels,

m, and J is the sample size of the training data set. We begin by normalizing the

measured radiances, R[n(m)], for a subset of channels n(m), by the measured in-

strument noise, NER[n(m)]. The noise scaled radiance covariance matrix from which
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the EOFs are derived is then generated as follows:

∆T̃B,n(m),j ≡ Rn(m),j

NER[n(m)]
− 〈Rn(m),j〉j

NER[n(m)]
≡ Rn(m),j

NER[n(m)]
− 〈T̃B〉n(m) . (2.61)

The eigenvectors of the signal-to-noise covariance are computed for ∆T̃B,n(m),j .

For the CrIS FSR v2.0, the eigenvector file was trained using one day CrIS block 2.0

SDR radiances of 15 January 2015.

TN,cov ≡ 1

J

J∑

j=1

∆T̃B,n(m),j ∆T̃B,j,n(m)(θ) = ET
n(m),k Λk,k′ Ek′,n(m) (2.62)

The diagonal elements of represent the variance of the respective channel noise

scaled radiance while the off-diagonal elements represent the covariance between

pairs of channels. An eigenvector decomposition is performed on the matrix.

The eigenvectors of the normalized signal-to-noise covariance are orthogonal and

Λk,k′ is a diagonal matrix with elements equal to λk. We normalize ∆TB ∆T T
B by the

number of observations J so that the magnitude of the eigenvalues does not change

with the size of the training ensemble.

NOAA Eigenvector File Format

The eigenvector file is written out with the following components

1. Header Block containing

• the number of channels in the subset (M = 2211) and sample size (J =
77, 790)

• the eigenvectors, Kstore = 200

• a flag if radiances are used

• a flag if the mean is subtracted

• the noise file filename

2. The average of Θ̃ for the M channels

〈T̃B〉 ≡
〈Rn(m),j〉j
NE∆Nn(m)

(2.63)

3. Each eigenvector, Ek,n(m), is written out a single record for each value of k =
1, Kstore
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4. The value of λ(k) for k = 1, Kstore

5. The value of NE∆N(nm) for m = 1,M

6. The value of f [n(m)] for m = 1,M

7. The value of n(m) for m = 1,M

Post-Launch Regression Computation

The radiances can be represented by their principal component scores. We have two

sets of regression coefficient files, for all sky regression, the principal components

are calculated from measured CrIS radiances, and for cloud clear regression, they

are calculated from cloud clear radiance (see details in next chapter). In this algo-

rithm we normalize by the square root of the eigenvalue to normalize the principal

component scores so that they are numerically significant. Otherwise, the first princi-

pal component would have values approximately 1000 times the signal as P (Kmax).

Pk,j =
1√
λk

Ek,n(m)∆T̃B,n(m),j (2.64)

an estimate of the propagated error in the principal components for case j, δP̂k,j, can

be given by the root-sum-square (RSS) of the linear combination and an estimate of

the error in the radiance for case j, δRn(m),j . This results in an error in the argument

of δT̃N,n(m),j ≡ δRn(m),j/NE∆Nn(m) and

δP̂k,j =

√
1√
λk

(
Ek,n(m) δT̃N,n(m),j

)2

(2.65)

Only k = 1, Kmax principal components are kept, where Kmax is the number of sig-

nificant eigenvalues. For IR plus MW retrieval, the predictors also include ATMS 17

channel brightness temperature and they are channels 5–15 and 17–22. But for IR

only retrieval, we should exclude ATMS brightness temperature of these channels

from the predictors. Currently, Focus Days from CrIS/ATMS observations for generat-

ing regression coefficients are, 15 April 2018, 15 July 2018, 15 October 2018, and 15

January 2019 for SNPP; and 15 July 2018,15 October 2018, 15 January 2019, and

15 April 2019 for NOAA-20. Data are selected by screening out cases where the CrIS

cloud cleared radiances may be affected by clouds and where there may be problems

with the geophysical states used as “truth” using the following tests:
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1. The brightness temperature of the CrIS observation in channel ν0 = 2390 cm−1

must be less than 2 K of a predicted brightness temperature, T̂B(ν0), estimated

from ATMS brightness temperatures, TBn, for ATMS channels n = 5, 6 and 7,

as follows

T̂B(ν0) = a1 + a2 TB5 + a3 TB6 + a4 TB7 + a5 cos(θ⊙) + a6 [1− cos(ϑ)] , (2.66)

where ai, i = 1, . . . , 6, are the coefficients of the ATMS screening test used to

predict CrIS channel at 2390 cm−1 (determined to be +50.05, +0.4791, +0.5635,

−0.2332, +3.03, −15.02, respectively), θ⊙ is solar zenith angle and ϑ is the view

angle.

2. The reconstruction score is less than 1.5.

3. The surface temperature Ts must be higher than 180.0 K.

The regression is trained using ensembles at similar view angles. Currently, there

are four view angle regimes as defined in Table 2.1. A predictor array is constructed

using the principal component scores for those cases, j(v) with ϑ1(v) < |ϑ| ≤ ϑ2(v),
where ϑ is the instrument view angle. For CrIS this angle varies from −48.3◦ ≤ ϑ ≤
48.3◦. The predictor argument for the sub-set of cases is assembled with the first Kmax

elements being set equal to Pk,j. The element i = Kmax+1 is set equal to one if ϑ < 0
or zero if ϑ ≥ 0

Pk,j(v) =




P1,j(v)

P2,j(v)
...

PKmax,j(v)

1

2
{1− sgn[ϑ(v)]}

TB5, . . . , TB15, TB17, . . . , TB22

1− cos[ϑ(v)]




, i = 1, Kmax + 2 . (2.67)

Another issue for the regression is that topography limits the available training

ensemble for some altitude layers. For each case, j, there is a maximum number of

vertical levels defined by the surface pressure (that is, some of the 100 layer grid is

below the surface). If this lower level is given as Lbot then the number of cases in the

training ensemble is a function of how many cases have surface pressure above that

level, therefore, the number of cases, J , in the training ensemble is a function of both

view angle and Lbot and will can write that index as j(v, Lbot) which is the subset of

cases that satisfy the criteria in Table 2.1 and have valid geophysical parameters in
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Table 2.1: View-Angle Regimes in Post-Launch Regression

v ϑ1(v) ϑ2(v)

1 53.130◦ 42.269◦

2 42.269◦ 31.788◦

3 31.788◦ 19.948◦

4 19.948◦ 0.000◦

the layer under consideration in Xi. See Table 2.2 for a translation from Xi to layer

index L. The average predictor argument for this subset ensemble can be computed

and subtracted from the training ensemble

∆Pk,j(v,Lbot) = Pk,j(v,Lbot) − 〈Pk,j(v,Lbot)〉J(v,Lbot) (2.68)

The equation to be solved is given by

Xi,j(v,Lbot) = 〈Xi,j(v,Lbot)〉j(v,Lbot) + Av
i,k ∆Pk,j(v,Lbot) (2.69)

where we can write,

∆Xi,j(v,Lbot) = Xi,j(v,Lbot) − 〈Xi,j(v,Lbot)〉j(v,Lbot) (2.70)

The geophysical parameters in the NOAA regression are defined in Table 2.2. For

moisture the regression is trained on both the ln[r(L)] and r(L), where r is the mass

mixing ratio in grams/kilo-gram (g/kg).

q =
Mw ∆Cw(L)

Mt ∆Ct(L)
=

Mw∆Cw(L)

1000 · Mt

Md
NA

∆p(L)
g

. (2.71)

If it is assumed that Mt ≃ 0.98Md + 0.02Mw ≈ 1 and g = 980.64 ≈ 1000, the form

used in the code (mx2mr.F) is obtained, which is

q(L) =
Mw ∆Cw(L)

NA ∆p(L)
(2.72)

and the mass mixing ratio is then given by

rw(L) =
q(L)

1− q(L)
(2.73)
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Table 2.2: Geophysical parameters, Xi, solved for in NUCAPS regression

i L interpretation

1 1 T (1)
2 1 rw(1)
3 1 ln[rw(1)]
4 1 ln[ro(1)]
5 2 T (2)
6 2 rw(2)
7 2 ln[rw(2)]
8 2 ln[ro(2)]
...

...
...

385 97 T (97)
386 97 rw(97)
387 97 ln[rw(97)]
388 97 ln[ro(97)]
393 99 T (Ps)
394 99 rw(Ps)
395 99 ln[rw(Ps)]
396 99 ln[ro(Ps)]
397 100 Ts

rw ≡ mass mixing ratio of water, ro ≡ mass mixing ratio of ozone. The index i is used in the data file

and the index L = 1 + (i − 1)/4 is used in a storage vector in the retrieval code.

and the least square solution is given by

Av
i,k = ∆Xi,j(v,Lbot)∆P T

j(v,Lbot),k

[
∆Pk,j(v,Lbot) ∆P T

j(v,Lbot),k

]−1
(2.74)

No regularization is needed since the principal components have been essentially

regularized by selecting only 85 of the principal components. Note that the regression

coefficients can be related to empirical Kernel functions, K̃n(L), for channel n and

pressure level L.

In the eigenvector regression the empirical Kernel functions can be computed by

K̃n(L) = Ai(L),k Ek,n , (2.75)

where i(L) is the subset of indices for the selection of the geophysical parameter
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group (e.g., T (L), is given for L = 1, 2, 3, . . . , which is given by i = 1, 5, 9, . . . in Table

2.2)

Once Av
i,k is determined we can combine the average of the geophysical parame-

ter given in Eq. (2.70), Xj ≡ 〈Xi,j(v,Lbot)〉j(v,Lbot), and the average of the predictor given

in Eq. (2.68), P k ≡ 〈Pk,j(v,Lbot)〉J(v,Lbot) into a single value, called Ai = X i + Ai,k P k, so

that our regression equation can utilize the un-normalized predictors

Xi,j(v,Lbot) = Av
i + Av

i,k Pk,j(v,Lbot) (2.76)

where Av
i is defined as

Av
i ≡ 〈Xi,j(v,Lbot)〉j(v,Lbot) − Av

i,k 〈Pk,j(v,Lbot)〉J(v,Lbot) (2.77)

A propagated error estimate can be computed from the linear combination of prin-

cipal components

δX̂i,j(v,Lbot) =

√∑
i

(
Av

i,k δPk,j(v,Lbot)

)2
(2.78)

Once the regression matrix is known it is useful to compute the mean and standard

deviation of the real error between the regression, applied to the training ensemble

radiances, and the geophysical value in the training ensemble. Each case has an

error, δX, given by

δXi,j(v,Lbot) = Xi,j(v,Lbot) −
[
Av

i + Av
i,k · Pk,j(v,Lbot)

]
(2.79)

For each geophysical parameter we can compute a mean and standard deviation

of the regression error (difference of regression from the training values). The mean

is given by

δXi ≡
1

J(v, Lbot)

∑
j
δXi,j(v,Lbot) (2.80)

and a standard deviation is given by

σ(δXi) ≡
√

1

J(v, Lbot)

∑
j

(
δXi,j(v,Lbot) − δXi

)2
(2.81)

The standard deviation can be compared to the standard deviation of the training

ensemble’s departure from its mean, given in Eq. (2.70)

σ(Xi) ≡
√

1

J(v, Lbot)

∑
j

(
∆Xi,j(v,Lbot)

)2
(2.82)
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NOAA Regression File Format

In the NOAA regression file each set of geophysical parameters is written for a view

angle block. The index number system for the geophysical parameters is given in

Table 2.2. In the profile regression, the 393 parameters (1–388, 393–397) are written

out in 4 sequential blocks in the regression file. In the surface regression the 39

emissivity regressions are written out first for land and then for ocean.

• A header line for each parameter block contains

– parameter number (see Table 2.2)

– number of predictors

– pressure at level L or frequency at emissivity L

– number of cases in training ensemble, J(v, Lbot) or J(l).

– the mean of the training ensemble, 〈Xj(v,Lbot(L))〉j(v,Lbot)

– the standard deviation of the training ensemble, σ[X(L)]

– the standard deviation of the error in the training ensemble, σ[δX(L)]

• A block of I + 1 coefficients, starting with Av
i and then the I values of Ai(L).

Post-Launch Surface Emissivity Regression

In the case of surface emissivity there is no truth file to train against with real radiance

data. In this case, we simulated J cases where the infrared radiances were computed

from the ECMWF forecast and a surface emissivity model (Fishbein et al., 2003). The

eigenvector approach was not used. In this case, radiances for window channels,

R[n(m), j], are selected. The emissivities, ǫ(L, j), were provided by a model at the 39

frequencies. Notice that short-wave observations are not used to predict shortwave

emissivity. This regression relies on statistical correlations between the short-wave

and long-wave to solve for these parameters.

In this case, the predictors consisted of the M radiances, written as signal-to-

noise (see Eq. (2.61)), and the side of the scan and cosine of the view angle were

used as additional predictors. In this case, all J cases see the surface, so there is

no subset for topography. Also, window channels require only a minor adjustment

for view angle, so the complete ensemble was used. The ocean emissivity is a well

modeled function (e.g., Masuda et al., 1988; Masuda, 2006; Nalli et al., 2008b,a) and
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the regression is performed on land and ocean separately; land or ocean is indicated

by the superscript l. Therefore, the predictors are given by

P l
k,j =




R1,j(l)

R2,j(l)
...

RM,j(l))

1

2

{
1− sgn[ϑ(vj(l))]

}

1− cos[ϑ(vj(l))]




, i = 1, M + 2 (2.83)

where

∆Xi,j(l) = Xi,j(l) − 〈Xj(l)〉j(l) (2.84)

with the least square solution is given by

Al
i,k = ∆Xi,j(l)∆P T

j(l),k

[
∆Pk,j(l)∆P T

j(l),k

]−1
. (2.85)

Again, once Al
i,k is determined we can combine the average of the geophysical

emissivity parameter and the average of the predictor into a single value, called Ai,

so that our regression equation becomes

Xj(v,Lbot(L)) = Al
i + Al

i,k Pk,j(v,Lbot) (2.86)

where Al
i is defined as

Al
i ≡ Al

i,k 〈Pk,j(v,Lbot)〉J(v,Lbot) (2.87)

These regression coefficients have the same format as the ones described in Sec-

tion 2.5.1.
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2.6. Cloud-Clearing

Cloud-clearing is the process of computing the clear column radiance for a given

channel n, and represents what the channel would have observed if the entire scene

were cloud free. The entire scene is defined as the ATMS field of regard (FOR) which

includes and array of 3× 3 CrIS filed of views (FOV).

The cloud clearing approach is based upon the following reasoning. For simplic-

ity of argument, we momentarily consider using only K = 2 adjacent FOVs and one

cloud formation. The observed radiances in FOV j = 1 and 2, corresponding to chan-

nel n are given by:

R1(n, φ0) = (1− α1(φ0)) Rclr(n, φ0) + α1(φ0)Rcld(n, φ0) , (2.88)

R2(n, φ0) = (1− α2(φ0)) Rclr(n, φ0) + α2(φ0)Rcld(n, φ0) , (2.89)

where α1(φ0) and α2(φ0) are the zenith angle dependent effective cloud fractions for

each field of view, Rclr(n, φ0) is the radiance which would be observed if the entire

field of view were clear, and Rclr(n, φ0) is the radiance which would be observed if the

entire field of view were covered by the cloud. The basic assumption of cloud-clearing

is that if the observed radiances in each field-of-view are different, the differences in

the observed radiances are solely attributed to the differences in the fractional cloudi-

ness in each field of view while everything else (surface properties and atmospheric

state) is uniform across the field of regard. A process referred to as local angle ad-

justment is applied to these observed radiances, channel by channel, to generate

angle adjusted radiances, Rj(n, φ0), representative of the radiance that CrIS channel

n would have observed in FOV j if the observation were taken at the satellite zenith

angle of the center FOV, φ0 rather than at its actual satellite zenith angle. Based

on this assumption, both Rclr(n, φ0) and Rcld(n, φ0) are assumed to have the same

respective values in each field of view. For simplicity, from now on we will omit the

central satellite zenith angle term, φ0.

Combining (2.88) and (2.89) and eliminating Rcld(n) one can solve for the cloud-

cleared radiance term as a linear extrapolation of the radiances from the two cloudy

fields of view as follows:

Rclr(n) = R1(n) +
α1

α2 − α1

[R1(n)− R2(n)] . (2.90)

This is done in two steps. We first use an estimate of the cloud clear radiance, R̂clr(n)
, to obtain the so called cloud-clearing parameter η, defined as:

η =
α1

α2 − α1
=

R̂clr(n)− R1(n)

R1(n)−R2(n)
(2.91)
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The cloud-clearing term η is channel independent and is used then in (2.90) to solve

for Rclr(n) and cloud clear the entire spectrum.

While it is true that a single channel and 2 fields of view can be used to cloud

clear the full spectrum in the presence of one cloud, for the case of K clouds a total

of K + 1 fields of view and many channels must be used in a least squares sense

to discriminate the clouds at different levels. Using the uniform scene assumption

described above, Chahine (1977) showed that the reconstructed field of regard clear-

column radiance for channel n, RCCR(n), can be written as a linear combination of the

measured radiances in K + 1 fields of view, according to:

Rclr(n) = R1(n) + η1 [R1(n)−RK+1(n)] + . . . + ηl
[
R1(n)−R(K+2)−l(n)

]

+ ηK [R1(n)−R2(n)] , (2.92)

where ηK are unknown channel independent constants and K + 1 fields of view are

needed to solve for K cloud formations.

Equation (2.92) was later replaced by a similar but more stable equation of the

form:

Rclr(n) ≡ Rn +
K∑

j=1

(
Rn − Rn,j

)
ηj (2.93)

where Rn is called the extrapolation point and is an average of K FOV’s defined by

Rn ≡ 1

K

K∑

j=1

Rn,j , (2.94)

where Rn is the average radiance of all K fields of view. The expression in (2.93),

Rn − Rn,j is defined as radiance contrast.

As in Susskind et al. (1998), the ηj values are determined from observations in

a selected set of Nc cloud filtering channels which are primarily selected in between

lines of the 15 micron CO2 band. If, for each channel n, one substitutes an estimated

value,R̂clr(n), of the expected cloud-clear radiance for channel n, Rclr(n) in Eq. (2.93),

this gives Nc equations for K unknowns, of which only K−1 are linearly independent.

Therefore, the solution for the K ηj is given by a least square minimization whose

parametrization is derived below. The radiance contrast can be rewritten in matrix

form as:

Sn,j ≡ Rn −Rn,j . (2.95)
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For nine FOVs the components of this matrix are given by:

Sn,j =




R1 − R1,9 R1 − R1,8 . . . R1 − R1,1

R2 − R2,9 R2 − R2,8 . . . R2 − R2,1
...

...
. . .

...

RN − RN,9 RN − RN,8 . . . RN − RN,1


 . (2.96)

The equation to be solved can be written as:

R̂(n)− Rn = Sn,j ηj . (2.97)

The estimate of the clear radiances can be derived from

1. IR radiances computed from an estimate of the clear atmosphere from a MW

physical retrieval, Rn(X
s,i−1
L ),

2. IR radiances computed from an estimate of the clear atmosphere from a IR+MW

physical retrieval which agrees with the MW radiances,

3. IR radiances computed from regression with MW radiances.

We apply a weight to the channels used in the least squares fit of this equation,

Wn,n′, which is the inverse of an estimate of the covariance of R̂(n) − Rn. The error

covariance is given by computational error estimates associated with R̂(n) derived

from error estimates in the geophysical parameters, Cn,n′ and instrumental noise,

In,n′, associated with Rn.

Wn,n′ =

(
In,n′

NA
+ Cn,n′

)−1

(2.98)

The computational covariance matrix, Cn,n′, is composed of a summation of all the

radiance error estimates, Es,i
n,g, for all geophysical parameters held constant during a

retrieval:

Cn,n′ ≡
∑

g
Es,i

n,g

(
ET

g,n

)s,i
. (2.99)

The radiance error estimate, Es,i
n,g, due to uncertainties in geophysical quantities

is computed from error estimates in geophysical groups Xs,i
L,g (e.g., an entire temper-

ature profile). As with the sensitivity functions, this can be thought of as an error

estimate of a parameter, δAg, and an associated function, F s
g (L). The partial deriva-

tives are calculated from the current estimate of the geophysical state, Xs,i
L , and an

estimate of the uncertainty in each geophysical group to be held constant in this stage
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of the retrieval, δXs,i
L,g, and is calculated by a finite difference for infrared channels (with

additive functions)

Es,i
n,g ≡ δAs,i

j ·
∂Rn

(
Xs,i

L + Fj ⊗ Âj

)

∂Aj

∣∣∣∣∣
Xs,i

L

(2.100)

≈
[
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

)]
, (2.101)

and for microwave channels

Es,i
n,g ≈ TBn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
− TBn

(
Xs,i

L

)
. (2.102)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and

correlated with respect to other parameters (e.g., surface spectral emissivity error

can be correlated with skin temperature). We use Qg as a scaling to compensate for

assumed anti-correlation in these error estimated. Currently we set Qg to 0.5 for T (p)
and q(p) error estimates and 1.0 for all other error estimates.

The instrument noise correlation matrix, In,n′, is given by

In,n′ = NERn δn,n′ NERn′ , (2.103)

where the Kronecker delta function, δn,n′

δn,n′ = 1 , n = n′

= 0 , n 6= n′ . (2.104)

For an apodized interferometer the correlation matrix and noise reduction factor for the

apodization function would replace the Kronecker delta function (e.g., Barnet et al.,

2000).

The iterative methodology to determine clear-column radiances consists of four

passes to determine ηs, s = 1, 2, 3, 4, using four sets of conditions, described later,

to compute Rclr(n). At each iteration, both Rclr(n) and ηs become increasingly more

accurate. Each set of conditions has its own covariance matrix, reflecting expected

errors in Rclr(n) and Rj(n). The diagonal term of the noise covariance matrix is mod-
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eled according to:

(W s
n,n)

−1 = (In,n)
2 +

[
∂Rn

∂Ts
δT s

s

]2
+

[
∂Rn

∂ǫn
δǫsn

]2

+

[
∂Rn

∂ρn
δρsn

]2
+

[
∂Rn

∂T (p)
δT (p)s

]2

+

[(
∂Rn

∂q(p)/q

)(
δq(p)s

q

)]2
+ 0.12

(
dB

dT

)2

TB,n,clr

+ N ′2
n,n

(
dB

dT

)2

TB,n,clr

, (2.105)

where In,n′ is the channel i instrumental noise and the next 5 terms are contributions

to errors in the computed value Rclr(n) resulting from errors in estimated surface skin

temperature, surface spectral emissivity, surface spectral bi-directional reflectance of

solar radiation, and temperature and moisture profile respectively. Two additional

sources of radiance uncertainty are included in the equation, representative of the

physics error estimate, N ′
n,n′ (see ahead), and an additional radiance uncertainty

term. Both terms are in brightness temperature units. The off-diagonal term of the

noise covariance matrix is given by:

(W s
n,n′)−1 =

[
∂Rn

∂Tsfc

∂R′
n

∂Tsfc
δT s

sfc

]2
+

[
∂Rn

∂ǫn

∂R′
n

∂ǫn′

δǫnδǫn′

]
+ . . .

Multiplying both sides of Eq. (2.97) with Eq. (2.98) yields

W s
n,n

[
R̂(n)− Rn

]
= W s

n,n Sn,j η
s
j , (2.106)

then multiplying both sides by the transpose of the S-matrix yields

(Sj,n)
T W s

n,n

[
R̂(n)− Rn

]
= (Sj,n)

T W s
n,n Sn,j η

s
j , (2.107)

and the least squares determination of the extrapolation parameters would be

ηsj =
[
(Sj,n)

T W s
n,n Sn,j

]−1
(Sj,n)

T W s
n,n

[
R̂(n)− Rn

]
(2.108)

In low signal-to-noise or clear scenes the signal-to-noise matrix,
[
(Sj,n)

T W s
n,n Sn,j

]
,

can vanish and the solution would become unstable. In addition, we would like to de-

termine the error covariance of the cloud clearing parameters, δη′ δη, which, we will

discover, is equal to the inverse of the signal-to-noise matrix. The error covariance is

highly non-diagonal which makes both damping and noise determination difficult.



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 66 of 110

Selection of Optimal Fields of View

The effects of instrumental noise on the clear column radiances will generate in gen-

eral be amplified from single spot noise because the clear column radiance are ex-

pressed as a linear combination of the observations in different fields of view. We can

compute the amplification of the random noise that results from cloud-clearing using

Eq. (2.90). Taking again the case of two FOVs, Eq. (2.90) is first rewritten as

Rclr(n) = R1(n) (1 + η)−R2(n) η (2.109)

and note that the standard deviation of the error in R1(n) and R2(n) are both given by

NE∆N. The error in Rclr is given by

δR2
clr(n) = NER2 (1 + η)2 +NER2 η2 (2.110)

= NER2
[
(1 + η)2 + η2

]
, (2.111)

therefore, the error has been “amplified” by

A =

√
(1 + η)2 + η2 . (2.112)

Analogously, for the case of n = 9 field of view, we have:

A ≡

√
∑n

j=1

[
1

n

(
1 +

∑n

j′=1
ηj′

)
− ηj

]2
. (2.113)

A is approximately equal to
√∑n

j=1 η
2
j because the first term, containing the factor

1/n, is small. It is desirable to find an accurate expression for clear column radiance

which minimizes the amplification factor. We can do this by expressing Equation

(2.93) in terms of radiances in an optimal set of fields of view, given by linear combi-

nation of the original set.

The matrix to be inverted can be transformed to a vector of eigenvalues, λk, with

a unitary transformation matrix, Uj,k. The index j denotes the parameters in trans-

formed space versus k for the untransformed parameters. This is equivalent to trans-

forming the original Sn,j matrix to an optimum linear combination of the original radi-

ance differences, Sn,j Uj,k.

Λk,k ≡ (Uk,j)
T (Sj,n)

T W s
n,n Sn,j Uj,k , (2.114)

where λk are the diagonal elements of Λk,k. Eigenvalues where λk < λc, where λc is

determined empirically, are not used in the solution. Removing low eigenvalues has
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the effect of reducing noise in the solution. The number of non-zero eigenvalues is

an estimate of the number of cloud formations determined by the observed radiances

and the signal-to-noise analysis. The linear combination associated with each eigen-

value represents is uncorrelated with the other eigenvalues. The total number of cloud

formations, Nζ can be computed from the total number of significant eigenfunctions,

defined by

φs
k = 1 , λk ≥ λc

= 0 , λk < λc , (2.115)

Nζ =
K∑

k=1

φs
k . (2.116)

Equation (2.97) can then be written in transformed ζ space or un-transformed η
space as follows

R(n)CCR = Rn + (Sn,j Uj,k) ζ
s
k (2.117)

= Rn + Sn,j (Uj,k ζ
s
k) = Rn + Sn,j η̃

s
j . (2.118)

Multiplying both sides of Eq. (2.117) with Eq. (2.98) yields

W s
n,n

[
R̂(n)−Rn

]
= W s

n,n (Sn,j Uj,k) ζ
s
k , (2.119)

then multiplying both sides by the transpose of the transformed S-matrix yields

(Uk,j)
T (Sj,n)

T W s
n,n

[
R̂(n)−Rn

]
= (Uk,j)

T (Sj,n)
T W s

n,n Uj,k Sn,j ζ
s
k , (2.120)

and the least squares determination of the extrapolation parameters would be

ζsk =
[
(Uk,j)

T (Sj,n)
T W s

n,n Sn,j Uj,k

]−1

(Uk,j)
T (Sj,n)

T W s
n,n

[
R̂(n)− Rn

]
, (2.121)

however, the inverse can be replaced with Eq. (2.114)

ζsk = (Λk,k)
−1 (Uk,j)

T (Sj,n)
T W s

n,n

[
R̂(n)− Rn

]
(2.122)

=

(
1

λk

)
(Uk,j)

T (Sj,n)
T W s

n,n

[
R̂(n)− Rn

]
. (2.123)

Equation (2.122) is exactly equal to the transform of Eq. (2.108)

ηsj = Uj,k ζ
s
k , (2.124)
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however, we can now remove the ζ associated with low eigenvectors

ζ̃sk =
φs
k

λk
(Uk,j)

T (Sj,n)
T W s

n,n

[
R̂(n)− Rn

]
, (2.125)

η̃sj ≡ Uj,k ζ̃
s
k = Uj,k

φs
k

λk

(Uk,j)
T (Sj,n)

T W s
n,n

[
R̂(n)− Rn

]
, (2.126)

where η̃sj is the extrapolation parameters from the damped least squares solution.

Discarding low eigenvalues reduces the noise amplification factor by suppressing

noise in the solution for η, resulting in lower values of η. The values of ηsj are used in

Eq. (2.93) to determine the cloud-cleared radiance.



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 69 of 110

Definition of Cloud Clearing Symbols Used in Section 2.6

symbol description

Xs superscript s refers to the step

i FOV index

j η index

J number of ηj
k ζ index

n channel index

NF the number of FOV’s within an AMSU footprint

NA the number of FOV’s within Rn

δn,n′ Kronecker delta function

ηj extrapolation parameters, determined w/o damping

η̃j extrapolation parameters, determined w/ damping

δη̃j error in η with damping

As
n noise amplification factor

Rn,j observed radiance in FOV j
Xs

L geophysical state (T (p), q(p),O3(p), ǫ(n), . . . )

Rn(X
s,i−1
L ) Radiance Computed from a geophysical state

R(n)CCR clear column radiance

R̂(n) clear radiance estimate

Rn average of observed cloudy FOV’s

In,n′ instrument noise covariance

NER standard deviation of instrumental noise

Nn,n′ error covariance of (R̂(n)− Rn)

Wn,n′ inverse of error covariance of (R̂(n)− Rn)
Sn,j FOV contrast, Rn − Rn,j

Uj,k eigenvectors of [(Sj,n)
T W s

n,n′Sn,j]

Λk,k eigenvalue matrix of [(Sj,n)
T W s

n,n′Sn,j]
λk diagonal elements of Λk,k

ζsk transformed extrapolation parameters(
δζ̃kδζ̃

T
k

)s

error covariance of solved components of ζ(
δζ̂kδζ̂

T
k

)s

error covariance of components of ζ not solved for(
δζk · δζTk

)s
total error covariance of ζ
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2.7. Physical Retrieval Algorithm

2.7.1. The Inverse Problem

The retrieval of geophysical quantities, such as the atmospheric water, from satellite

radiances is highly non-linear, requiring inversion of the equations of the form

Rn(ν,X) ≈
∫

ν

Φν

∫

p

B[T (p)] ∂
∂p

{exp[−τi(ν)]} dp dν , (2.127)

where τi(ν) is the optical depth for species i and channel ν defined as

τi(ν) ≡
∫ z(p)

∞

∑
i
κi(ν,X, . . . ) dz′ . (2.128)

It should be kept in mind that Eq. (2.127) is an approximation and that the real

radiative transfer equation (RTE) has non-linear components resulting from

1. The temperature dependence of the transmittance,

2. The non-linearity of the Planck function,

3. The downwelling component of the radiative transfer equation.

Brightness temperature, TBn, is usually more linear with temperature (a NUCAPS

core product EDR), provides improved numerically stability, and is a convenient way

to display multi-spectral radiance information

TBn ≡ B−1
ν0
(Rn) =

α2 ν0

ln
[
1 +

α1ν30
Rn

] . (2.129)

Usually, only radiance differences (i.e., observations minus calculations, abbrevi-

ated “obs − calc” or “O − C”), are needed in remote sounding so that a radiance

difference, ∆Rn, can be converted to a brightness temperature difference, ∆TBn, as

follows

∆TBn ≃ ∆Rn

[
∂Bν

∂T

]−1

B−1
ν [Rn(X

s,i−1

L
)]
. (2.130)
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2.7.2. Linearization of the RTE

The first step to retrieving the atmospheric state is the linearization of the RTE. This

can be achieved via a Taylor expansion integrand about a reference or background

state, X0.

For a temperature retrieval this is accomplished by first linearizing the Planck func-

tion a the reference temperature profile as follows:

T (z) ≡ T0(z) + ∆T (z) , (2.131)

so that

Bν [T (z)] = Bν [T0(z)] +
∂Bν [T0(z)]

∂T

∣∣∣
T0(z)

∆T (z) . (2.132)

In general, the radiance of the reference state, X0, can be computed. In our

example, we will consider only the atmospheric component of the RTE:

Rν0 =

∫ ∞

0

Bν [T0(z)]
∂τν(X0)

∂z
dz . (2.133)

Everything is known within this equation except the temperature profile correction,

∆T (z). Inserting Eq. (2.132) into (2.133) leaves

∆Rν = Rν − Rν0 =

∫ ∞

0

{
Bν [T0(z)] +

∂Bν [T0(z)]

∂T

∣∣∣
T0(z)

∆T (z)

}
∂τν
∂z

dz −Rν0 , (2.134)

which can be simplified

∆Rν =

∫ ∞

0

∂Bν [T0(z)]

∂T

∣∣∣
T0(z)

∂τν
∂z

∆T (z) dz , (2.135)

Then defining the kernel function as

K(z, ν) ≡ ∂Bν [T0(z)]

∂T

∣∣∣
T0(z)

∂τν
∂z

, (2.136)

we arrive at a linearized RTE, written as

∆Rν =

∫ ∞

0

K(z, ν)∆T (z) dz . (2.137)

Thus, the frequency dependence of the Planck function and the temperature de-

pendence of the transmittance are both ignored. Note that for unapodized interfer-

ometers and broad band instruments this expansion is not justified. For narrowband
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channels (i.e., ∆ν ≥ O(101) cm−1, e.g., MODIS, HIRS, etc.), an effective Planck func-

tion can be computed by integration over the band pass, ∆ν. For an un-apodized

interferometer the side-lobes are significant for 100’s of cm−1. The linearization of the

integrand is one of the principal reasons for use of apodized interferometer spectra.

Equation (2.137) can be approximated by a numerical integral which has the ad-

vantage of being solved by matrix inversion.

∆Rn ≈
NL∑

L=1

[∆z(L)K(n, L)] ∆T (L) = K̃n,L∆T (L) . (2.138)

The thickness of the layer for the finite difference form is usually absorbed into the

definition of K, written as K̃ above.

As an example, For Nν = 3 and Nz = 4 the matrix would look like:



∆R(ν1)
∆R(ν2)
∆R(ν3)


 = ∆z



K(z1, ν1) K(z2, ν1) K(z3, ν1) K(z4, ν1)
K(z1, ν2) K(z2, ν2) K(z3, ν2) K(z4, ν2)
K(z1, ν3) K(z2, ν3) K(z3, ν3) K(z4, ν3)







∆T (z1)
∆T (z2)
∆T (z3)
∆T (z4)


 , (2.139)

which can be written in matrix form as (the ∆z component is included in the matrix

Kn,L):

∆Rn = Kn,L∆TL . (2.140)

If Nν is greater than Nz then there are more equations than unknowns and an inverse

for Kn,L exists, K−1
L,n, then the correction to the initial temperature profile can be found

as follows:

K−1
L,n∆Rn = K−1

L,nKn,L∆TL = ∆TL , (2.141)

∆TL = K−1
L,n∆Rn =

[
KT

L,nKn,L

]−1
KT

L,n∆Rn . (2.142)

where we employ the definition of a an inverse of a non-square matrix to find the

expression for K−1 as follows

Kn,LK
−1
L,n = In,n

KT
L,n

(
Kn,L K

−1
L,n

)
= KT

L,n In,n(
KT

L,nKn,L

)
K−1

L,n = KT
L,n

K−1
L,n =

(
KT

L,nKn,L

)−1
KT

L,n . (2.143)

Unfortunately, Nν is usually much smaller than Nz. This is because the kernel

functions tend to overlap and, therefore, are not independent. This is a condition
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generally referred to as information redundancy which makes the inversion equation

ill-posed. Least squares techniques need to be applied and the solution for ∆T can

be found by iterative techniques. The above expression is generalized as follows.

Using the notation of the generalized sensitivity matrix, Sn,L, in place of the traditional

kernel function, Kn,L the unconstrained expression to be solved has the form of

∆Rn = Rn − f(XL) = Sn,L∆XL . (2.144)

The inverse solution is given by:

∆XL = S−1
L,n∆Rn . (2.145)

Again, from the definition of an inverse

Sn,L S
−1
L,n = In,n (2.146)

ST
L,n

(
Sn,L S

−1
L,n

)
= ST

L,n In,n (2.147)
(
ST
L,n Sn,L

)
S−1
L,n = ST

L,n , (2.148)

therefore, for a non-square matrix, Sn,L, the inverse is given by

S−1
j,n =

[
ST
L,nSn,L

]−1
ST
L,n . (2.149)

So that Eq. (2.145) becomes

∆XL =
[
ST
L,n Sn,L

]−1
ST
L,n∆Rn . (2.150)

In addition to the redundancy problem, ∆Rn has a large fraction of noise (due to

low signal-to-noise related to the low temperatures) which makes the solution unsta-

ble. Careful attention must be given to the select channels containing the maximum

amount of unique information from the spectra and with the lowest instrumental noise.

See ahead the section on the channel selection methodology. To take into account

the noise problem, a weighted least squares solution can be computed

∆XL =
[
ST
L,nWn,nSn,L

]−1
ST
L,nWn,n∆Rn . (2.151)

Another critical problem is represented by the fact that the kernel functions Sn,L

are very broad functions and, therefore, are insensitive to high frequency oscillations

in ∆XL. As a result, the inversion process usually converges with unrealistic vertical

profiles.

In the most crude sense, regularization is the stabilization of the inverse by adding

something to the matrix to avoid an in-determinant solution (i.e., a zero divided by
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zero). This, in effect, will dampen the solution, ∆XL, and make it “stick” to the previous

iteration. This results in a need for a background term, Ψn, in order to iterate the

solution

∆XL =
[
ST
L,nWn,n Sn,L +HL,L

]−1
ST
L,nWn,n (∆Rn − Φn) . (2.152)

The atmospheric state, Xs
L, and the error estimate of that state, δXs

L, are used to

minimize the residuals in observed minus computed radiances in each retrieval step

s.

2.7.3. IR+MW Physical Retrieval Module

The current NUCAPS retrieval system is a modular set of retrieval steps. Each re-

trieval step solves for certain parameters while holding all others constant. The geo-

physical state of the clear atmosphere, Xs,i
L , at a given retrieval step, s, and iteration,

i, is given in Table 2.3.

Table 2.3: Definition of the Geophysical State, Xs,i
L , in the NUCAPS Algorithm

T (p) vertical temperature profile

q(p) vertical water vapor profile (7.7 g/kg @ surface)

L(p) vertical liquid water profile

O3(p) vertical ozone profile (0.4 ppmv, 8ppmv @ 6 hPa))

Ts surface temperature

ǫ(ν) spectral surface emissivity

ρ⊙(ν) spectral surface reflectivity of solar radiation

CO2(p) carbon dioxide profile

CH4(p) methane profile

CO(p) carbon monoxide profile

N2O(p) nitrogen oxide profile

SO2(p) sulfur dioxide profile

HNO3 nitric acid profile

Each step solves for specific geophysical parameters while holding others con-

stant. The parameters considered as error sources in the error covariance matrix are

shown in the table. Some parameters are not accurately known and, therefore, they

are only considered on the diagonal of the error covariance matrix. These are shown

with a dagger symbol, †.
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Each step uses its own subset of channels. If the error covariance matrix is large

for a given channel or it has large spectroscopic uncertainties then it is permanently

removed from the computation. This has obvious improvements for execution time

and it also improves results, since error estimates and damping are the least accurate

components of the retrieval process.

The clear-column radiance is calculated from the NF FOV’s using the equation:

R(n)CCR = Rn +

NF∑

j=1

(
Rn − Rn,NF+1−j

)
η̃s,ij (2.153)

It is possible for the cloud-cleared radiance observations to be close to zero or even

negative due to instrumental noise and cloud clearing errors. Therefore, we never

attempt to compute a clear column brightness temperature from these radiances.

The retrieval algorithm minimizes the weighted difference between the clear col-

umn radiance observations, R(n)CCR, and radiances computed using a forward model,

Rn

(
Xs,i

N

)
, by varying the geophysical state, Xs,i

L , where i is the iteration number within

the current retrieval step, s. The forward model at iteration i = 1 uses the previous

iteration’s retrieved geophysical state, Xs,i
L . For s = 1, i = 1, X1,1

L comes from a first

guess (climatology) and for s > 1, i = 1 the retrieval uses the result from the last

iteration, I + 1, from the previous step as a first guess, Xs,1
L = Xs−1,I+1

L .

For multi-spectral retrievals the radiances can vary many orders of magnitude over

the spectral regions (e.g., microwave, long-wave infrared, and short-wave infrared).

To maintain numerical precision it is desirable to normalize the obs − calc (or O − C).

We would like to mimic a brightness temperature difference and we can approximate

this by

For IR channels O − C is computed as

∆T s,i
B,n ≡

[
R(n)CCR − Rn

(
Xs,i

N

)] [∂Bν

∂T

]−1

B−1
ν (Rn(Xs,i

N ))
, (2.154)

while for MW channels, where the data is given in brightness temperature, a bright-

ness temperature difference can be computed as

∆T s,i
B,n ≡

[
TB,n,CCR − TB,n

(
Xs,i

L

)]
, (2.155)

where TB,n,CCR is either the observed microwave brightness temperatures or the av-

erage of the 9 brightness temperatures within the ATMS field-of-regard (FOR).
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2.7.4. Specification of Geophysical Functions

A change to a group of the geophysical state are represented by a geophysical per-

turbation parameters, ∆As,i
j , and an associated perturbation function, F s

L,j. This is the

generalized sensitivity matrix. For vertical profiles, such as T (p), q(p), O3(p), the per-

turbation function, F s
L,j = F s

j (p), is a trapezoid (with dimensionless maximum value

of 1.0) covering a vertical range of layers. For spectral parameters such as ǫ(n) and

ρ(n), F s
L,j = F s

j (ν) is a wedge or triangle covering a range of frequencies with a di-

mensionless peak value of 1.0. For surface temperature and microwave emissivity

F s
L,j is a value equal to unity. These are summarized in the following table:.

Temperature functions are expressed as additive vertical trapezoids, the atmo-

spheric profile being

T s,i+1(p) = T s,i(p) +
∑

j
F s
j (p)∆As,i+1

j , (2.156)

and the surface skin temperature being

T s,i+1
s = T s,i

s + F s
j ∆As,i+1

j . (2.157)

Composition functions are expressed as multiplicative vertical trapezoids. The

radiance kernel is ∝ exp
[
κ(Xs,i

L )
]

and κ(Xs,i
L ), is the optical depth ∝ Xs,i

L . Therefore,

composition variables are more linear in ln
(
Xs,i

L

)
, with ∂ ln(Xs,i

L ) ∝ ∂Xs,i
L /Xs,i

L being a

% change in Xs,i
L ; thus

qs,i+1(p) = qs,i(p)
[
1 +

∑
j
F s
j (p)∆As,i+1

j

]
. (2.158)

Emissivity functions are expressed as additive spectral triangles

ǫs,i+1(n) = ǫs,i(n) +
∑

j
F s
j (ν)∆As,i+1

j . (2.159)

The scaling parameter Âs
j is used to create dimensionless parameters and adjust

scale between different functional groups (e.g., when mixing T (p), q(p), and emissivity

in one retrieval). The Jacobian, Ks,i
n,L, becomes a set of new derivatives, Ss,i

n,j, in which

groups of parameters in L space are grouped together in J space. Subsets (e.g.,

temperature) of vertical and spectral functions must sum to unity:
∑

j F
s
L,j = 1 for a

group of functions.

The entire geophysical state is expressed as a vector XL, with associated geo-

physical perturbation functions ∆XL,j = F s
L,j ⊗ ∆Âs

j and perturbation parameters

∆As,i
j . The ⊗ symbol represents a scale factor for F s

L,j and not a matrix multiply



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 77 of 110

and is equivalent to an identity matrix multiplication, F s
L,j ⊗ ∆Âs

j ≡ F s
L,j Ij,j ∆Âs

j . For

vertical functions the index L will specify pressure intervals while for spectral param-

eters the functions will represent frequency intervals and L will specify the channel

numbers, n. For other functions, such as skin temperature the function is a value that

is, the index L is single valued, and there is only one value of j

Xs,i+1
L = Xs,i

L +
∑

j

(
F s
L,j ⊗∆Âs

j

)
∆As,i+1

j . (2.160)

The sensitivity matrix, Ss,i
n,j, is calculated for each channel n and each geophysical

parameter, denoted by index j, to be solved for in the current retrieval step, s, and

iteration, i. The sensitivity matrix is computed for a pre-set perturbation functions,

F s
L,j ⊗∆Âs

j as follows

For additive functions the S-matrix is given by

Ss,i
n,j ≡ ∆Âs

j

∂Rn

(
X + F s

L,jAj

)

∂Aj

∣∣∣∣∣
Xs,i

L

[
∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(2.161)

≈
[
Rn

(
Xs,i

L + F s
L,j∆Âs

j

)
− Rn

(
Xs,i

N

)] [∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(2.162)

for IR channels, and for MW channels given by

Ss,i
n,j ≃ TBn

(
Xs,i

L + F s
L,j∆Âs

j

)
− TBn

(
Xs,i

L

)
. (2.163)

For multiplicative functions the S-matrix is given by

Ss,i
n,j ≡ ∆Âs

j

∂Rn

[
X

(
1 + F s

L,j Aj

)]

∂Aj

∣∣∣∣∣
Xs,i

L

[
∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(2.164)

≈
{
Rn

[
Xs,i

L

(
1 + F s

L,j∆Âs
j

)]
− Rn

(
Xs,i

N

)} [
∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
, (2.165)

and for MW channels

Ss,i
n,j ≈ TBn

[
Xs,i

L

(
1 + F s

L,j ∆Âs
j

)]
− TBn

(
Xs,i

L

)
. (2.166)

Analytic derivatives on the RTM/RTA grid does not help the algorithm and δ-
function perturbations are sub-optimal (Backus and Gilbert). Single-sided finite differ-

ences have been used, although the benefit of double-sided and dynamically scaled

derivatives will be explored (this is not the algorithm’s biggest error source).
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2.7.5. Retrieval Error Covariance Matrix

The error covariance matrix, N s
n,n′, is computed in the first iteration of every step and

is the estimate of the uncertainty in the observed minus computed effective bright-

ness temperature difference, ∆T s,i
Bn. It consists of the clear column radiance error

estimate, discussed earlier and computational uncertainties in the forward calculation

of Rn

(
Xs,i

N

)
. The computational uncertainty is calculated for all geophysical parame-

ters, X, not modified by the retrieval and, therefore, assumed known in a given step

of the retrieval process.

The radiance error estimate, Es,i
n,g, due to uncertainties in geophysical quantities

is computed from error estimates in geophysical groups Xs,i
L,g (e.g., an entire temper-

ature profile). As with the sensitivity functions, this can be thought of as an error

estimate of a parameter, δAg, and an associated function, F s
g (L). The partial deriva-

tives are calculated from the current estimate of the geophysical state, Xs,i
L , and an

estimate of the uncertainty in each geophysical group to be held constant in this stage

of the retrieval, δXs,i
L,g, and is calculated by a finite difference

For IR channels the error estimate is converted to effective brightness temperature

units using

Es,i
n,g ≡ δAs,i

j

∂Rn

(
Xs,i

L

)

∂Aj

∣∣∣∣∣
Xs,i

L

[
∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(2.167)

≈
[
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

)] [∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(2.168)

and for MW channels the computation is

Es,i
n,g ≈ TBn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
− TBn

(
Xs,i

L

)
. (2.169)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and

correlated with respect to other parameters (e.g., surface spectral emissivity error

can be correlated with skin temperature). We use Qg as a scaling to compensate for

assumed anti-correlation in these error estimated. Currently we set Qg to 0.5 for T (p)
and q(p) error estimates and 1.0 for all other error estimates.

The computational covariance matrix, Cs,i
n,n′, is composed of a summation of all the

radiance error estimate for all geophysical parameters held constant during a retrieval

Cs,i
n,n′ ≡

∑
g
Es,i

n,g

(
ET

g,n

)s,i
. (2.170)
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The retrieval error covariance matrix is a combination of the cloud cleared radiance

error covariance and the computational error covariance terms

N s,i
n,n′ = Cs

n,n′ +

[
δR(n)CCR (δRn′,obs)

T + δRU
n δn,n′

(
δRU

n′

)T]

[
∂Bν

∂T

]
B−1

ν [Rn(Xs,i
N )] ·

[
∂Bν

∂T

]
B−1

ν [Rn′ (X
s,i
L

)]
, (2.171)

where δRU
n is a small term for additional unknown sources of error which is presently

computed from

δRU
n ≡ 0.1

[
∂Bν

∂T

]−1

B−1
ν [Rn(Xs,i

N )]
. (2.172)

In the retrieval code, the cloud-cleared radiance error estimates are computed

in the routine noisecv.F and the computation terms are computed and added to the

noise covariance matrix in the individual retrieval routines (e.g., rettmpc.F, retwatr.F,

etc.)

2.7.6. The Retrieval of the Geophysical State

The brightness temperature difference residuals can be written in terms of a linear

Taylor expansion change to the geophysical parameters, ∆As,i
j , which is dimension-

less due to ∆Âs
j in Eqs. (2.161) or (2.164). In any given retrieval step, we separate

the parameters we are solving for into the matrix Ss,i
n,j and the parameters we are

not solving for into the matrix Es,i
n,g. If it is assumed for the moment that the value of

the parameters not being solved for are known, such that Es,i
n,g could be known, the

following could be written

∆T s,i
Bn = Ss,i

n,j ∆As,i+1
j +

∑

g

±Es,i
n,g . (2.173)

But the sign of the errors are not known in the parameters not being solved for,

otherwise that uncertainty could be eliminated. At best there is only an estimate for

the covariance and spectral correlation of these uncertainties, therefore,
∑

g ±Es,i
n,g

enters into the error covariance matrix via Eqs. (2.170) and (2.171) so that the bright-

ness temperature residuals, ∆T s,i
Bn, can be related to the parameters being solved for

via

(
N s

n,n

)−1
Ss,i
n,j ∆As,i+1

j =
(
N s

n,n

)−1
∆T s,i

Bn (2.174)
(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j ∆As,i+1

j =
(
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn . (2.175)
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The assumption that is implicit here is that properly weighted geophysical param-

eter errors,
(
N s

n,n

)−1∑
g ±Es,i

n,g, are uncorrelated with the parameters we are trying to

solve for. That is, the properly weighted equation is one that has the smallest standard

deviation.

The change required to the parameters can be solved in a weighted least-squares

sense. If there were no damping then the solution would be given by

∆As,i+1
j (0) =

[(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j

]−1 (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn (2.176)

however, this solution would be highly unstable, given the under-determined nature of

atmospheric retrievals. The adjustment to the parameters is found by solving for the

eigenvalues, λs,i
k , and eigenvector transformation matrix, Us,i

j,k, of
(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j,

such that

Λs,i
k,k ≡

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,jU

s,i
j,k . (2.177)

Press et. al (1986) (pp. 350–363) provide Fortran routines for computing λs,i
k and

Us,i
j,k. The 2-D matrix Λs,i

k,k has only diagonal elements equal to λs,i
k . The transformation

matrix, Us,i
j,k, can be thought of as a transformed sensitivity matrix given by Ss,i

n,j U
s,i
j,k. At

this point in the derivation we have not changed anything except how we are comput-

ing the inverse. Note that when computing
[
Λs,i

k,k

]−1
any components of λk < 0.052 λs

c

are set to zero, that is we remove the singular values. When λk is approaching zero

both the numerator and denominator are tending toward zero. Therefore, setting

those components of ∆As,i+1
k (0) to zero is most logical

∆As,i+1
j (0) = Us,i

j,k

1

λs,i
k

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn . (2.178)

These new optimal functions can be utilized to compute a change made in trans-

formed parameter space, is given by ∆Bs,i+1
k (0). Solving Eq. (2.181)

∆T s,i
Bn = Ss,i

n,jU
s,i
j,k ∆Bs,i+1

k (0)
(
N s

n,n

)−1
∆T s,i

Bn =
(
N s

n,n

)−1
Ss,i
n,j U

s,i
j,k ∆Bs,i+1

k (0)
(
UT
k,jS

T
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn =
(
UT
k,jS

T
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j U

s,i
j,k ∆Bs,i+1

k (0)
(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn = Λs,i
k,k ∆Bs,i+1

k (0) , (2.179)

and

∆Bs,i+1
k (0) =

[
Λs,i

k,k

]−1 (
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn

∆Bs,i+1
k (0) =

1

λs,i
k

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn . (2.180)
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Again, note that when computing
[
Λs,i

k,k

]−1
any values of ∆Bs,i+1

k (0) are set to zero

when λk < 0.052λs
c. When λk is approaching zero both the numerator and denomina-

tor are tending toward zero, therefore, setting ∆Bs,i+1
k (0) to zero is most logical.

And note that the transformed parameters are related to the original parameters

by the eigenvectors

∆T s,i
Bn = Ss,i

n,j ∆As,i+1
j = Ss,i

n,j U
s,i
j,k ∆Bs,i+1

k . (2.181)

Equation (2.181), that is, that ∆As,i+1
j = Us,i

j,k ∆Bs,i+1
k , is also a statement that the

original functions Eq. (2.160) have been transformed to new optimal functions

Xs,i+1
L = Xs,i

L +
∑

j

(
F s
L,j ⊗∆Âs

j

)
∆As,i+1

j =
∑

j

(
F s
L,j ⊗∆Âs

j

)
Us,i
j,k ∆Bs,i+1

j . (2.182)

If no damping is required the change made in transformed parameter space, is

given by ∆Bs,i+1
k (0). Combining Eqs. (2.176) and (2.181) yields

∆As,i+1
j (0) = Us,i

j,k∆Bs,i+1
k (0) = Us,i

j,k

1

λs,i
k

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn (2.183)

The changes can be damped by adding a value of ∆λs,i
k to the λs,i

k such that λs,i
k ≥ λs

c.

This limits the noise in ∆B to a maximum value

δBs
max ≡ 1√

λs
c

or (2.184)

λs
c ≡

(
1

δBs
max

)2

. (2.185)

The damping parameter, δBs
max is determined empirically for each step. Therefore,

the fraction of the transformed function solved for is defined as

φs,i
k ≡ λs,i

k

λs,i
k +∆λs,i

k

(2.186)

which is a diagonal matrix and where φs,i
k = 0 represents a parameter which is com-

pletely damped and φs,i
k = 1 is completely solved for. For completely damped eigen-

values, the change to the geophysical parameters is set to zero and the first guess is

unchanged for that component of the solution.

The size of λs,i
k and, therefore, λs

c will be proportional to the size of the perturbation

functions, ∆
(
Âs

j

)2

(see Eqs. (2.161) or (2.164)).
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The degrees of freedom (DOF) is given by the sum of the significant eigenvalues.

Given that damping has been employed, the DOF is given by

DOF =
K∑

k=1

φs,i
k =

K∑

k=1

λs,i
k

λs,i
k +∆λs,i

k

. (2.187)

The damped change made to the transformed parameters is given by ∆Bs,i+1
k ≡

φs,i
k ∆Bs,i+1

k (0) which makes the damped change equal to

∆As,i+1
j = Us,i

j,k∆Bs,i+1
k = Us,i

j,kφ
s,i
k

1

λs,i
k

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
∆T s,i

Bn . (2.188)

Therefore, the difference between ∆As,i+1
j and ∆As,i+1

j (0) is the amount of the solution

we did not believe. If Eq. (2.188) is to be iterated we will ultimately believe all of

∆As,i+1
j (0). Therefore, the radiances need to be adjusted.

2.7.7. Rejection Criteria

A profile is rejected if any of the conditions itemized below is true. The # refers to the

step # in Table 2.4.

• A row of Ss,i
n,j is zero. That is all Ss,i

n,j for a given j are zero in any step.

• The determined cloud fraction within ATMS footprint exceeds 80% (step # 18).

• The cloud clearing quality indicator (etarej in previous chapter) exceeds 3 on

the cloud clearing after the NOAA regression (step # 12).

• The effective amplification factor exceeds 30.

• The RMSE of O − C brightness temperatures exceed 2.5 for a sub-set of ATMS

channels (currently ATMS channels, . . . , are used after step # 21)




L∑
n=1

(
1

NE∆T

)2
(TB,n,CCR − TB,n(X

s=21
L ))

2

∑
n=1

(
1

NE∆T

)2




1

2

≥ 1.75◦ (2.189)

• If the amplification factor exceeds 5.0 and the retrieval cloud fraction is between

65% and 80% and there is more than 10% of the cloudiness with cloud top

pressure exceeding 500 hPa after step # 19.
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• The quality indicator from final surface retrieval exceeds 4 (step # 20)

• The quality indicator from final temperature retrieval exceeds 4 (step # 21)

• The quality indicator from final water vapor retrieval exceeds 5
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Table 2.4: Retrieval Steps in the NUCAPS Algorithm

step solve for step name computational error sources CrIS ATMS
s in error covariance channels channels

1 T (p), ǫ(ν), Ts MIT q(p), L(p) 12
2 q(p), L(p) MIT T †(p), Ts, ǫ(ν), ρ⊙(ν) 3

3 T (p), ǫ(50.3), Ts AMSU(Ts) q(p), L(p) 11
4 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
5 Rccr ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
6 T (p), q(p), O3 RT NOAA 1680
7 Ts, ǫ(ν), ρ⊙(ν) RT NOAA 1680
8 T (p), ǫ(50.3), Ts AMSU(Ts) Rccr(ν), q(p), L(p) 11

9 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
10 Rccr ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
11 Ts, ǫ(ν), ρ⊙(ν), q SURFACE T †(p) 25
12 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 108 7

ǫ(ν), ρ⊙(ν), CO2

13 q(p) WATER Rccr(ν), T
†(p), L(p), Ts, 44 3

ǫmw(f), ρ⊙(ν), CH4(p)
14 O3(p) OZONE Rccr(ν), q(p), Ts, ǫ(ν) 34
15 T (p), ǫ(50.3) AMSU(RJ) Rccr(ν), q(p), L(p), Ts 11

16 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
17 Rccr ETA T †(p), q†(p), Ts, ǫ(ν), ρ⊙(ν) ≤ 58
18 Ts, ǫ(ν), ρ⊙(ν) SURFACE Rccr(ν), T

†(p), q†(p) 25
19 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 124 7

ǫ(ν), ρ⊙(ν), CO2

20 CO(p) CO Rccr(ν), T (p), q(p), Ts 36
21 CH4(p) CH4 Rccr(ν), T (p), q(p), Ts 71
22 CO2 CO2 Rccr(ν), T (p), q(p), Ts 70

O3, ρ⊙(ν)

23 HNO3(p) HNO3 Rccr(ν), T (p), q(p), Ts 8
24 N2O(p) N2O Rccr(ν), T (p), q(p), Ts 52
25 SO2(p) SO2 Rccr(ν), T (p), q(p), Ts 63

† indicates that off-diagonal elements are not used
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Table 2.5: Scale Size of Perturbation Functions in v2.0

∆Âs
j

retrieval step Ts ǫ(ν) ρ(ν) T (p) q(p) trace

RETAMSU 1K 1% 1K

RETSURF 3K 1% 0.5% 3K 20%

RETTMP 1K

RETWATR 10%

RETOZON 10%

RET CO 10%

RET CH4 2%

RET CO2 1%

RET HNO3 20%

RET N2O 5%

RET SO2 50%
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2.8. Validation

2.8.1. Sounder Validation Methodology

This section overviews the NUCAPS validation methodology, which is generally ap-

plicable to operational products obtained from the NUCAPS CrIS/ATMS, IASI and

AIRS systems. Section 2.8.1 focuses on EDRs required to be validated on profile

layers (viz., temperature, water vapor and ozone), whereas Section 2.8.1 focuses on

carbon trace gas EDRs required only to be validated on total atmospheric columns.

Validation results for NOAA-20 and Metop-A/B/C NUCAPS are discussed in Section

2.8.2.

Temperature, Moisture and Ozone Profiles

The standard methodology and theoretical basis for validation of satellite sounder re-

trieved atmospheric temperature, T (p), moisture, Q(p), and ozone, O3, profile EDRs

was formalized by Nalli et al. (2013) and is overviewed here. Sounder profile EDR vali-

dation is performed versus a quasi-independent baseline measurement often referred

to as “truth” data. Because validation is an ongoing process, a sounder validation hi-

erarchy paradigm has been established based roughly upon the relative strengths of

the datasets used (Barnet, 2009; Nalli et al., 2013). Techniques/datasets at the be-

ginning of the hierarchy are those typically used at the early stages of EDR validation

(i.e., early in the satellite mission), whereas those near the end are typically applied in

the later stages. For example, the Joint Polar Satellite System (JPSS) cal/val program

has adopted a phased approach to cal/val over the satellite mission lifetimes (Barnet,

2009; Zhou et al., 2016).

1. NWP Model Global Comparisons. Numerical weather prediction (NWP) mod-

els (e.g., ECMWF, NCEP/GFS) allow for large, truly global samples acquired

from global “Focus Days”; they are useful for sanity checks, bias tuning and re-

gression, but are otherwise not considered independent truth data. But more

importantly, models are essential for performing “double-differences” and can

serve as a “transfer-standard” for analyzing retrievals from different platforms.

2. Satellite EDR Intercomparisons. As with NWP models, intercomparisons with

other independent satellite EDRs (e.g., AIRS, COSMIC) allow for global sam-

ples acquired from Focus Days, however other sensors (e.g., AIRS) may have

similar error characteristics, and a rigorous assessment would need to account

for the averaging kernels of both systems (e.g., Rodgers and Connor, 2003).
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3. Radiosonde Matchup Assessments. Operational sonde networks can be col-

located with satellite overpasses within broad space-time matchup windows to

allow characterization of the satellite EDRs versus in situ measurements with

representation of global zones and large samples within a couple month’s ac-

quisition period (e.g., Divakarla et al., 2006, 2008; Nalli et al., 2018b). This tech-

nique has been routinely implemented as part of the NOAA Products Validation

System (NPROVS) (Reale et al., 2012; Sun et al., 2017), which also facilitates

long-term monitoring. However, limitations include skewed distribution toward

NH-continents, mismatch errors (Sun et al., 2010), and the assimilation of these

data into models, thereby limiting their independence.

4. Dedicated/Reference Radiosonde Assessments. Dedicated radiosondes and

ozonesondes are allocated for the explicit purpose of satellite validation, these

generally being state-of-the-art instrument packages (e.g., Vaisala radiosondes)

that are launched synchronized in space and time with satellite overpasses,

thereby minimizing measurement and mismatch uncertainties. Reference mea-

surements (e.g, frost-point hygrometer and GRUAN-processed sondes) are trace-

able measurements typically including uncertainty estimates. While these datasets

provide an optimal truth measurement (with minimized combined measurement

uncertainties), they are limited by relatively small sample sizes and sparse geo-

graphic coverage.

5. Intensive Field Campaign Assesements/Dissections. Intensive field cam-

paigns typically include dedicated sondes and ancillary datasets (e.g., lidar,

sunphotometer, etc.); ideally they also include a funded aircraft IR spectrom-

eter (e.g., NAST-I, S-HIS) for SDR cal/val. The combination of these datasets

enables detailed performance specification, geophysical state specification, as

well as deep-dive case studies. Examples of traditional funded cal/val intensive

field campaigns include European Aqua Thermodynamic Experiment (EAQUATE)

(Taylor et al., 2008), Joint Airborne IASI Validation Experiment (JAIVEX) (New-

man et al., 2012), the AIRS Water Vapor Experiment–Ground (AWEX-G) (Milo-

shevich et al., 2006). More recently, multi-disciplinary opportunistic campaigns

have been leveraged for the remote sensing cal/val objective, including Aerosols

and Ocean Science Expeditions (AEROSE) (Morris et al., 2006; Nalli et al.,

2006, 2011), the CalWater and ARM Cloud Aerosol and Precipitation Experi-

ment (ACAPEX), and the El Niño Rapid Response (ENRR).

The Joint Polar Satellite System (JPSS) Level 1 Performance Requirements for

temperature and moisture profiles are given in Tables 2.6 and 2.7, respectively. The
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requirements are defined for global, non-precipitating cases on 3–5 atmospheric “broad-

layers” that are computed as an average of 1–5 km “coarse-layers” for temperature

and 2 km for moisture. “Partly Cloudy” conditions are defined by successful cloud-

clearing and IR retrieval, whereas “Cloudy” conditions are defined by cases where

cloud-clearing was not successful, thereby resulting in a MW-only algorithm solution

as the final product. These tables provide the metrics by which the system is con-

sidered to have reached Validated Maturity and has met mission requirements (Zhou

et al., 2016; Nalli et al., 2018a).

Conversion of Profile Truth Data to Correlative Layers. Comparisons between

high-resolution in situ measurements (e.g., RAOBs) with coarser-resolution satellite

EDR retrievals require that the RAOB measurements first be reduced to correlative

effective RTA layer quantities consistent with the forward model utilized by the re-

trieval. The approach is to integrate column density weighted quantities from the top

to the bottom of the observed atmospheric column, interpolate those to the RTA layer

boundaries (i.e., levels), then compute the RTA layer quantities from the interpolated

level values. MATLAB and Fortran programs, conv layers.m and conv layers.F, has

been developed for calculating performing the reduction to layers. The theoretical

basis is overviewed below (Nalli et al., 2013).

Effective layer pressures, pL, are defined as pL ≡
∫ zl
zl+1

p(z) dz/
∫ zl
zl+1

dz where z

is geopotential height, and subscripts l denote layer boundaries (i.e., levels). It can

be shown that for the nl = 101 standard RTA standard pressure levels (Strow et al.,

2003), the nL = nl − 1 = 100 RTA layer pressures can then be derived as (Nalli et al.,

2013)

PRTA,L =
Pl+1 − Pl

ln(Pl+1/Pl)
, l = L = 1, 2, . . . , nL , (2.190)

where uppercase P denote RTA pressures, and subscripts L and l denote layer and

level, respectively.

For correlative measurements or observations, lowercase p denotes pressure, and

subscripts L and ℓ denote layer and level, respectively. Generally speaking, RAOB

data are at higher vertical resolution than the RTA, with the number of RAOB points

much greater than the RTA pressure levels. Given a typical sounding measuring

pressure, temperature and humidity (PTU), the number density (molecules/cm3) for

air is given (in CGS units) by (e.g., Wallace and Hobbs, 1977)

Na,ℓ(pℓ, Tℓ) = 103
pℓ
k Tℓ

, ℓ = 1, 2, . . . , nℓ , (2.191)

where k is the Boltzmann constant in ergs, pℓ and Tℓ are pressure (hPa) and temper-

ature (K) measured at observation level ℓ, and the 103 factor converts pressure from
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Table 2.6: JPSS Level 1 Requirementsa for CrIS/ATMS Atmospheric Vertical Temper-

ature Profile (AVTP) EDR Measurement Uncertainty

GLOBAL AVTP MEASUREMENT UNCERTAINTY REQUIREMENTb

Atmospheric Broad-Layer Threshold Objective

Cloud-Free to Partly Cloudy (IR+MW)c

Surface to 300 hPad (1 km layers) 1.6 K 0.5 K

300 hPa to 30 hPa (3 km layers) 1.5 K 0.5 K

30 hPa to 1 hPa (5 km layers) 1.5 K 0.5 K

1 hPa to 0.5 hPa (5 km layers) 3.5 K 0.5 K

Cloudy (MW-only)e

Surface to 700 hPa (1 km layers) 2.5 K 0.5 K

700 hPa to 300 hPa (1 km layers) 1.5 K 0.5 K

300 hPa to 30 hPa (3 km layers) 1.5 K 0.5 K

30 hPa to 1 hPa (5 km layers) 1.5 K 0.5 K

1 hPa to 0.5 hPa (5 km layers) 3.5 K 0.5 K

a Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final,

Version 2.10, 25 June 2014, NOAA/NESDIS.
b Expressed as an error in layer average temperature.
c Partly cloudy conditions are those where both the IR and MW retrievals are used and are typically

scenes with ≤ 50% cloudiness.
d The IR+MW surface to 300 hPa requirement is for over global ocean. Over land and ice mass, the

Uncertainty is relaxed slightly to 1.7 K due to the state of the science of the land emissivity knowledge

within the temperature sounding algorithm.
e Cloud conditions are those where only the MW retrievals are used and are typically scenes with

> 50% cloudiness.

hPa to dPa. Number densities for moisture and ozone, Nw,ℓ and No,ℓ (molecules/cm3),

are calculated from the radiosonde measurements of relative humidity (RH) % and

O3 partial pressure (mPa). For ozone the total atmospheric pressure in (2.191) is
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Table 2.7: JPSS Level 1 Requirementsa for CrIS/ATMS Atmospheric Vertical Moisture

Profile (AVMP) EDR Measurement Uncertainty

GLOBAL AVMP MEASUREMENT UNCERTAINTY REQUIREMENTb

Atmospheric Broad-Layer Threshold Objective

Cloud-Free to Partly Cloudy (IR+MW)c

Surface to 600 hPa greater of 20% or 0.2 g kg−1 10%

600 hPa to 300 hPa greater of 35% or 0.1 g kg−1 10%

300 hPa to 100 hPa greater of 35% or 0.1 g kg−1 10%

Cloudy (MW-only)d

Surface to 600 hPa greater of 20% or 0.2 g kg−1 10%

600 hPa to 300 hPa greater of 40% or 0.1 g kg−1 10%

300 hPa to 100 hPa greater of 40% or 0.1 g kg−1 NS

a Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final,

Version 2.10, 25 June 2014, NOAA/NESDIS.
b Expressed as a percent of average in 2 km layers.
c Partly cloudy conditions are those where both the IR and MW retrievals are used and are typically

scenes with ≤ 50% cloudiness.
d Cloud conditions are those where only the MW retrievals are used and are typically scenes with

> 50% cloudiness.

replaced with the measurement of O3 partial pressure (in mPa) and multiplied by a

factor of 10−2 to convert to dPa. Similarly, number density for water vapor can be

obtained by replacing the total pressure pℓ in Eq. (2.191) by the water vapor partial

pressure, eℓ. The vapor pressure can be calculated directly from RAOB RH as (e.g.,

Stull, 2000)

eℓ = es(Tℓ)
RH

100%
, (2.192)

where es is the saturation vapor pressure (SVP) for temperature Tℓ. Because ra-

diosondes typically measure RH, Eq. (2.192) requires the calculation of SVP (es)
(Miloshevich et al., 2006; Wexler, 1976; Hyland and Wexler, 1983). The H2O number
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Table 2.8: JPSS Level 1 Requirements∗ for IR Ozone Profile EDR

IR OZONE PROFILE (CRIS) LAYER AVERAGE REQUIREMENT

Atmospheric Broad-Layer Threshold Objective

Precision (random error, σ)

Surface to 260 hPa 20% 10%

(6 statistic layers)

260 hPa to 4 hPa 20% 10%

(1 statistic layer)

Accuracy (systematic error, bias)

Surface to 260 hPa ±10% ±5%

(6 statistic layers)

260 hPa to 4 hPa ±10% ±5%

(1 statistic layer)

Combined Uncertainty (RMSE)

Surface to 260 hPa 25% 15%

(6 statistic layers)

260 hPa to 4 hPa 25% 15%

(1 statistic layer)

*Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement — Final,

Version 2.9, 27 June 2013, NOAA/NESDIS, p. 49.

density can be calculated from mass mixing ratio (rℓ) as

Nw,ℓ(pℓ, Tℓ, rℓ) = 103
pℓ

(1 + ǫ/rℓ) k Tℓ
, ℓ = 1, 2, . . . , nℓ . (2.193)

where ǫ is the ratio of the molecular masses of water vapor and dry air, ǫ ≡ Mw/Md ≈
0.622.

Integrated column abundances (from the top measurement zt to the measurement
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level height z) for atmospheric species x (molecules/cm2), defined as

Σx(z) ≡
∫ z

zt

Nx(z
′) dz′ , (2.194)

are calculated as

Σx(z) ≈ Σx,L ≡
nL∑

L

Nx,L δzL , L = ℓ = 1, 2, . . . , nL (2.195)

≈
nℓ∑

ℓ

(
Nx,ℓ+1 +Nx,ℓ

2

)
(zℓ+1 − zℓ) , (Nx,ℓ+1 ∧Nx,ℓ) > 0 .

where Nx,L δzL are the nL = nℓ−1 fine-layer (geopotential thicknesses δzL ≡ zℓ+1−zℓ)
mean abundances.

In a similar manner, the temperature profile is integrated weighted by the air num-

ber density,

ΣT (z) ≡
∫ z

zt

T (z′)Na(z
′) dz′ , (2.196)

which is calculated as

ΣT (z) ≈ ΣT,L ≡
nL∑

L

TL Na,L δzL , L = ℓ = 1, 2, . . . , nL , (2.197)

≈
nℓ∑

ℓ

(
Tℓ+1 + Tℓ

2

)(
Na,ℓ+1 +Na,ℓ

2

)
(zℓ+1 − zℓ) , (Na,ℓ+1 ∧Na,ℓ) > 0 .

The calculations from Eqs. (2.195) and (2.197) are linearly interpolated to the trun-

cated RTA pressure vector P (spanning the measured column), and simply denoted

Σx,L(P) and ΣT,L(P), respectively. P is defined as RTA pressure levels Pl including

the observed surface and top levels. The top RTA level l0 is defined simply as the level

just below the top observed pressure level, p0 (e.g., at balloon burst altitude). Because

of variable terrain and surface pressure, the bottom level, lb, is defined consistent with

the RTA calculation used in the retrieval algorithm. The interpolation vector P is given

by

P ≡
{

[pt, Plt , Plt+1, . . . , Plb−1, Plb, ps] , 0 < ps − Plb < 5 hPa

[pt, Plt , Plt+1, . . . , Plb−1, ps, Plb ] , ps − Plb−1 ≥ 5 hPa .
(2.198)

Given Σx,L(P) and ΣT,L(P), the effective RTA layer quantities are calculated as

follows. The effective layer pressures PL are computed from (2.190) using the lev-

els defined in (2.198). Given Σa,L(P) and ΣT,L(P), the effective layer temperatures,



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 93 of 110

TL(PL) are calculated as

TL(PL) =
ΣT,L(Pl+1)− ΣT,L(Pl)

Σa,L(Pl+1)− Σa,L(Pl)
, l = L = 1, 2, . . . , mL , (2.199)

where mL is the length of vector P. Given Σx,L(P), and TL(PL) from (2.199), effective

layer water vapor mass mixing ratio (g/kg relative to dry air) is calculated as

rw,L(PL) = ǫ · 103 Σw,L(Pl+1)− Σw,L(Pl)

Na,L δzL − [Σw,L(Pl+1)− Σw,L(Pl)]
, (2.200)

where ǫ ≡ Mw/Md ≈ 0.622 (Mw and Md the molecular weights of water and dry air,

respectively), and the atmospheric mean layer abundance is given by

Na,L δzL ≡ 103
PL

k TL(PL)
δzL , (2.201)

and δzL ≡ z(Pl)− z(Pl+1). Likewise, the effective layer ozone volumetric mixing ratio

(ppbv, dry air) is calculated as

ro,L(PL) = 109
Σo,L(Pl+1)− Σo,L(Pl)

Na,L δzL − [Σw,L(Pl+1)− Σw,L(Pl)]
. (2.202)

Coarse-Layer Statistics. Given correlative truth profiles on effective RTA layers

(§2.8.1), profile error statistics are computed on coarse-layers using the SIMSTAT pro-

gram developed and maintained at NOAA (separate Fortran, MATLAB and IDL code

versions have been developed). The theoretical basis for this is detailed in Nalli et al.

(2013) and overviewed below.

The root mean square error (RMSE) provides a single metric that includes all

deviations (systematic and random) in the matchup sample. RTA effective layer tem-

peratures TL are averaged to obtain coarse layer values

TL =

∑
L(L) ln

(
Pℓ

Pℓ−1

)
TL

ln
(

PL

PL−1

) , (2.203)

where L(L) are the RTA layers that fall within the coarse layer L. Defining the de-

viation of a temperature profile retrieval from a correlative profile on nL ≃ 20 coarse

layers at a matchup location j as ∆TL,j ≡ T̂L,j − TL,j, the RMSE deviation is given by

RMSE(∆TL) =

√
1

nj

∑
nj

j=1 (∆TL,j)
2

L = 1, 2, . . . , nL , , (2.204)
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where nj is the matchup sample size. The measure of sample bias is calculated

simply as the mean difference

BIAS(∆TL) ≡ ∆T L =
1

nj

nj∑

j=1

∆TL,j . (2.205)

Variability is measured by the standard deviation, σ

STD(∆TL) ≡ σ (∆T L) =

√
1

nj

[∑
nj

j=1 (∆TL,j)
2 − (

∑nj
j=1

∆TL,j)
2

nj

]
, (2.206)

which from Eqs. (2.204) and (2.205) can be conveniently expressed in terms of the

RMSE and BIAS as

STD(∆TL) =

√
[RMSE(∆TL)]

2 − [BIAS(∆TL)]
2 . (2.207)

For computing vertical profile statistics of gas concentration EDRs (viz., H2O and

O3) on coarse-layers, both retrieval and truth profiles (in RTA layer abundances) are

summed over each coarse-layer and converted to mass abundances in g/cm2. For

H2O, the RTA layer abundances are denoted as qL, and the coarse-layer mass abun-

dances qL are calculated as

qL =
Mw

NA

∑

L(L)

qL , (2.208)

where Mw is H2O molecular mass, NA is Avogadro’s number, and L(L) is as above

in Equation (2.203), with the bottom partial layer Lb multiplied by the bottom-layer

(BLMULT) factor

FBL ≡ ps − Plb−1

Plb − Plb−1
, (2.209)

where lb denotes the bottom layer lower boundary.

Given coarse layer abundances, qL, the fractional deviation is taken to be the

absolute deviation divided by the observed (e.g., RAOB) value

∆qL,j ≡
q̂L,j − qL,j

qL,j
, L = 1, 2, . . . , nL . (2.210)

The denominator in Eq. (2.210) can result in large ∆qL,j in dry atmospheres (e.g., mid

to upper troposphere or polar regions) and thereby skew the statistics toward these

cases. Therefore, sounder science team cal/val convention has been to implement
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general weighted means (as opposed to simple arithmetic means) as the basis for

the statistics:

RMSE(∆qL) =

√∑nj

j=1WL,j (∆qL,j)
2

∑nj

j=1WL,j

, (2.211)

BIAS(∆qL) =

∑nj

j=1WL,j ∆qL,j∑nj

j=1WL,j

, (2.212)

where the water vapor weighting factor, WL,j, assumes one of three forms (W0, W1 or

W2)

WL,j =





1 , W0

qL,j , W1

(qL,j)
2 , W2 .

(2.213)

W0 (WL,j = 1) reduces Eqs. (2.211) and (2.212) to arithmetic means. To minimize

skewing impact of dry atmospheres, sounder science team convention has been to

use W2 for RMSE Eq. (2.211). Because JPSS Level 1 requirements for RMSE were

derived based upon statistics using W2 weighting, it is reasonable that validation re-

quirement assessments should also use this weighting (Nalli et al., 2013). It is also

suggested that BIAS calculations consistently use the W2 weighting (rather than W1)

to avoid confusion and allow compatible calculations of STD from

STD(∆qL) =

√
[RMSE(∆qL)]

2 − [BIAS(∆qL)]
2 . (2.214)

For ozone, given a correlative ozone sounding (e.g., from an ozonesonde), statis-

tics are calculated in a manner similar to the water vapor, namely Eqs. (2.211) and

(2.212), with W2 weighting recommended for RMSE and BIAS. Once coarse-layer

statistics are obtained, approximate “broad-layer” results are taken to be the aver-

ages of coarse-layers over the broad-layers.

Carbon Trace Gas Validation

Unlike previous sounder systems (e.g., AIRS and IASI), the JPSS satellite sounder

EDR cal/val program has for the first time specified requirements for carbon trace

gases. Because NUCAPS has relatively limited degrees-of-freedom (DoF) for carbon

gases (DoF ≈ 1), JPSS requirements are defined for total column quantities as given

in Table 2.9.

In response to the JPSS requirements, an analogous validation hierarchy was

subsequently devised as follows (Nalli et al., 2020):
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Table 2.9: JPSS Level 1 Requirements for CrIS Infrared Carbon Trace Gas EDR

Measurement Uncertainty∗

CRIS TOTAL COLUMN TRACE GAS EDR∗

MEASUREMENT UNCERTAINTY REQUIREMENT

EDR Attribute Threshold Objective

Carbon Monoxide (CO) EDR

Precision 15% 3%

Accuracy ±5% ±5%

Carbon Dioxide (CO2) EDR

Precision 0.5% (2 ppmv) 1.05–1.4 ppmv

Accuracy ±1% (4 ppmv) NS

Methane (CH4) EDR

Precision 1% (≃20 ppbv) NS

Accuracy ±4% (≃80 ppmv) NS

∗Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final,

Version 2.10, 25 June 2014, NOAA/NESDIS.

1. Global Dynamical-Chemistry Model Comparisons. As in Section 2.8.1, com-

parisons NUCAPS carbon gas retrievals may be compared against global chem-

istry models for global Focus Days, and can be used as a “transfer-standard”

as above. Models suitable for trace gases include the NOAA CarbonTracker

(Jacobson et al., 2020), and the Copernicus Atmosphere Monitoring Service

(CAMS) (Inness et al., 2019).

2. Satellite EDR Intercomparisons. Also as in Section 2.8.1, intercomparisons

can be performed for global Focus Days against EDRs retrieved from other

satellite sensors, especially air quality and carbon missions, including the Tropo-

spheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5,

the NASA Orbiting Carbon Observatory (OCO-2), Greenhouse gases Observ-



NOAA
NOAA Unique Combined Atmospheric Processing System (NUCAPS)

Algorithm Theoretical Basis Document

Page 97 of 110

ing Satellite (GOSAT), and the Aura Microwave Limb Sounder (MLS). Note that

the JPSS requirements to validate total column quantities (as opposed to pro-

files) mitigates the need for applying averaging kernels in performing intercom-

parisons.

3. Surface-Based Network Matchup Assessments. Ground-based observa-

tions obtained periodically from surface-based observing networks provide inde-

pendent truth datasets with a global distribution reasonably representing global

latitude zones roughly analogous to sondes, including total column profiles from

the Total Carbon Column Observing Network (TCCON) Wunch et al. (2011),

and in situ vertical profiles obtained from the balloon-borne AirCore sampling

system (Karion et al., 2010; Membrive et al., 2017). Although sample sizes

are thus limited, these data nevertheless provide valuable independent “spot

checks” at collocated stations for given Focus Days, these supplementing large

datasets available from the model and satellite comparisons stated above.

4. Aircraft Campaign Data Assessments. At the top of the hierarchy are aircraft

campaigns that provide comprehensive sets of in situ vertical profile data from

ascents and descents of dedicated aircraft flying over specified regions. Exam-

ples of atmospheric composition campaigns suitable for IR sounder validation

include the Atmospheric Tomography (ATom) mission (Wofsy et al., 2018) and,

previously, the HIAPER Pole-to-Pole Observations (HIPPO) (Wofsy et al., 2011)

campaigns.

Computation of Total Column Abundances. Both NUCAPS and AIRS perform

retrievals of trace gas concentrations carbon monoxide (CO) and methane (CH4) (as

well as H2O) in layer abundance space (molecules/cm2). Carbon dioxide (CO2), on

the other hand, is treated differently (for reasons explained elsewhere in this ATBD)

and is retrieved in mole fraction mixing ratios in ppm. Thus, for CO and CH4, the

column assessments are performed for total column quantities simply by integrating

the retrieved layer abundances, whereas for CO2 the assessments are performed for

simply column averages. As in Section 2.8.1, integrated total column abundances for

CO and CH4 are obtained based on Equation (2.194) and computed as

Σx(zs) ≈ FBL Nx,Lb
δzLb

+

Lb−1∑

L

Nx,L δzL , (2.215)

where zs is the surface altitude and the quantities Nx,L δzL are the NUCAPS retrieved

layer abundance for gas species x and RTA layer L, Lb is the bottom partial layer, and

FBL is the bottom-layer multiplier factor defined by Equation (2.209).
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TCCON data are provided in total column dry mole fractions (in ppm), xi, which

thus require conversions to total column abundances (molecules/cm2). Details on

the conversions, integration and application of the TCCON averaging kernels may be

found in the appendix of Nalli et al. (2020).

2.8.2. SNPP, NOAA-20 and Metop-A/B/C NUCAPS Validation

Validation of the operational NOAA operational sounder algorithms has been ongo-

ing and has proceeded in phases in response to changes in the CrIS/ATMS SDRs,

the EDR algorithm, and target satellite missions (Aqua, SNPP, NOAA-20 and Metop-

A/B/C satellites). Prior to the selection of NUCAPS as the operational algorithm, the

NPOESS-era SNPP Cross-track Infrared Microwave Sounder Suite (CrIMSS) was

first developed and validated (Divakarla et al., 2014). After the switch from SNPP

CrIMSS to NUCAPS, the SNPP CrIS nominal spectral resolution (NSR) NUCAPS al-

gorithm formally attained Validated Maturity in September 2014 (Zhou et al., 2016)

based upon global analyses detailed in Nalli et al. (2018a,b) and supported by ad-

ditional analyses performed by Sun et al. (2017). Changes to the SNPP CrIS SDRs

included the switch to full spectral resolution (FSR) mode in December 2014 along

with the switch to Side-2 in July 2019, both events requiring re-validation of the NU-

CAPS EDR products. The addition of the carbon trace gas (CO, CH4, CO2) to the suite

of JPSS program sounder EDRs then required their own updates and development,

followed by formal global validation for both SNPP and NOAA-20 (demonstrating com-

pliance with mission requirements without degrading the usual temperature, moisture

and O3 EDRs). The results of the carbon trace gas validation are now detailed in Nalli

et al. (2020).

JPSS has directly and indirectly funded a dedicated radiosonde program lever-

aging a number of collaborating institutions. Dedicated radiosondes are optimally

collocated and synchronous with SNPP overpasses at various selected sites. In addi-

tion, we have leveraged GCOS Reference Upper Air Network (GRUAN) RAOB sites.

Collocations of NUCAPS FORs with RAOBs are facilitated via the NOAA Products

Validation System (NPROVS) Reale et al. (2012). Based on this RAOB-satellite col-

location system, an EDR validation archive (VALAR) has been created whereby CrIS

SDR and ATMS temperature data record (TDR) granules in the vicinity of RAOB “an-

chor points” are acquired for running offline retrievals, thus allowing validation flexibil-

ity (e.g., enables ozone and trace gas validation) and ongoing algorithm optimization

and development.

Figure 2.15 shows JPSS-funded dedicated RAOB sites for the SNPP NUCAPS

temperature and moisture profile validation effort as of this writing through 2016.

These include U.S. DOE Atmospheric Radiation Measurement (ARM) sites (Tobin
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et al., 2006; Mather and Voyles, 2013) and the ship-based 2019 NOAA Aerosols and

Ocean Science Expedition (AEROSE) (Morris et al., 2006; Nalli et al., 2011). Addition-

ally, collaborative land-based sites-of-opportunity have included the Howard Univer-

sity Beltsville Campus (BEL) site in Beltsville, Maryland, and there are three GRUAN

sites that fortuitously collocate with NOAA-20 (and SNPP) overpasses Bodeker et al.

(2016). Likewise, Figure 2.16 shows ozonesonde sites for the NOAA-20 NUCAPS IR

Figure 2.15: Geographic histograms of NOAA-20 dedicated and GRUAN reference

RAOB collocations NUCAPS EDR validation, including ARM sites, collaborative part-

ner sites (BEL), collocated GRUAN reference sites, and the 2019 AEROSE campaign.

ozone profile validation, which include Southern Hemisphere Additional Ozonesonde

(SHADOZ) (Thompson et al., 2004) and Ozone and Ultraviolet Radiation Data Centre

(WOUDC) network sites, along with unique ship-based dedicated ECC ozonesondes

launched during the 2019 AEROSE cal/val campaigns.

Result Highlights

Coarse-layer and broad-layer uncertainties (using the methodologies described in

Section 2.8.1) for the operational NUCAPS algorithm for NOAA-20 (offline v2.5.2.2)

and Metop-A/B/C are highlighted here. To minimize mismatch error in the statisti-

cal analyses, stringent space-time collocation criteria were employed, along with a

geographic zonal and land/sea surface area weighting scheme has been employed.

This latter scheme provides proportionately greater weight to tropical ocean RAOB

collocations and lesser weight to high-latitude land-based collocations, which is in

accordance with the JPSS global requirements.
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Figure 2.16: Geographic histograms of NOAA-20 ozonesonde collocations used for

NOAA-20 NUCAPS IR ozone profile EDR validation, including SHADOZ, WOUDC

sites, and NOAA-20 dedicated ozonesondes launched from ship-based intensive

campaigns.

Global profile error statistics for NUCAPS NOAA-20 AVTP and AVMP versus ded-

icated RAOBs (Fig. 2.15) are given in Figures 2.17 and 2.18, respectively. The right

plots show the bias statistics given by the coarse-layer means with ±1σ variability

about the mean given by the error bars. The JPSS Level 1 specification requirements

are defined in terms of RMSE statistics shown with dashed lines in the left plots. The

corresponding broad-layer results are shown with asterisks. Results of NOAA-20 NU-

CAPS IR ozone profile EDRs versus global ozonesondes (Fig. 2.16) are summarized

in Fig. 2.19, which shows coarse- and broad-layer profile statistics. When one ac-

counts for the uncertainties inherent in the radiosonde and ozonesonde data along

with the mismatch errors, the NOAA-20 NUCAPS AVTP/AVMP/O3 retrievals, as sum-

marized in these figures, are considered to have reached Validated Maturity; results

of the carbon trace gases have been published in Nalli et al. (2020).

NUCAPS is a NOAA/STAR “enterprise algorithm” that not only runs on SNPP

and NOAA-20, but also the EUMETSAT Metop satellite series (Metop-A/B/C). Be-

cause these satellites are in a different orbit, we do not have dedicated sonde data

for validation. However, we can use global numerical model comparisons (Hierar-

chal Method #1) as a transfer-standard to compare against similar global analyses
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Figure 2.17: Coarse- and broad-layer statistical uncertainty assessment of the NOAA-

20 NUCAPS AVTP EDR (offline v2.5.2.2 operational emulation) versus collocated

dedicated/reference RAOBs (Figure 2.15) for retrievals accepted by the quality flag

within space-time collocation criteria. The left and right plots show the RMSE and

bias (±1σ variability) results, respectfully. NUCAPS IR+MW (clear to partly cloudy)

and MW-only (cloudy) performances are given in blue and magenta respectively, with

collocation sample size for each coarse layer given in the right margins.

for SNPP/NOAA-20. Global statistics for NUCAPS Metop-A/B/C versus collocated

ECMWF are shown in Figures 2.20 and 2.21.
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Figure 2.18: As Figure 2.17 except for AVMP.
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Figure 2.19: As Figure 2.17 except for IR ozone profile.
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Figure 2.20: As Figure 2.17 except for Metop-A/B/C versus global ECMWF model

collocations.
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Figure 2.21: As Figure 2.18 except for Metop-A/B/C versus global ECMWF model

collocations.
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