Joint Polar Satellite System (JPSS) Ground Project
Code 474
474-00042

Joint Polar Satellite System (JPSS) Cloud Effective Particle Size and Cloud Optical Thickness Algorithm Theoretical Basis Document (ATBD)

For Public Release

The information provided herein does not contain technical data as defined in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10. This document has been approved For Public Release to the NOAA Comprehensive Large Array-data Stewardship System (CLASS).

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Joint Polar Satellite System (JPSS)
VIIRS Cloud Effective Particle Size and Cloud Optical Thickness Algorithm Theoretical Basis Document (ATBD)

JPSS Electronic Signature Page

Prepared By:
Ray Godin
JPSS Data Products and Algorithms, EDR Lead
(Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Approved By:
Eric Gottshall
DPA Manager
(Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Goddard Space Flight Center
Greenbelt, Maryland

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Preface

This document is under JPSS Ground AERB configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Ground Project Configuration Management Office
NASA/GSFC
Code 474
Greenbelt, MD 20771
Change History Log

<table>
<thead>
<tr>
<th>Revision</th>
<th>Effective Date</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>04/22/2011</td>
<td>474-CCR-11-0057: This version baselines D43750, Cloud Effective Particle Size and Cloud Optical Thickness Algorithm Theoretical Basis Document ATDB (REF Y2393) Rev B, dated 03/24/2010, as a JPSS document, version Rev 4. This is the version that was approved for NPP launch. Per NPOESS CDFCB - External, Volume V – Metadata, doc number D34862-05, this has been approved for Public Release into CLASS. This CCR was approved by the JPSS Algorithm ERB on April 22, 2011.</td>
</tr>
<tr>
<td>A</td>
<td>04/23/2014</td>
<td>474-CCR-11-0230: This CCR was approved by the JPSS Algorithm ERB on December 14, 2011. Revised Section 3.3.1.1 and 5.0. 474-CCR-14-1596: This CCR was approved by the JPSS Algorithm ERB on April 23, 2014. Revised Section 3.3.2.1 and Figure 14 and 17.</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Under Contract No. F04701-02-C-0502

Revision/Change Record

<table>
<thead>
<tr>
<th>Revision</th>
<th>Document Date</th>
<th>Revision/Change Description</th>
<th>Pages Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7/24/2008</td>
<td>Delete MTF statements per SPCR ALG 1314, Incorporated ECR A-163</td>
<td>91 and 117</td>
</tr>
<tr>
<td>B</td>
<td>3/24/2010</td>
<td>Changes per SPCR 1564 for clear radiance modeling upgrade. Incorporate ECR A-284</td>
<td>39,43,54,125, 132</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>GLOSSARY OF ACRONYMS</td>
<td>xv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xviii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>1.2 SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>1.3 VIIRS DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>1.4 REVISIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.0 EXPERIMENT OVERVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1 OBJECTIVES OF CLOUD OPTICAL THICKNESS AND EFFECTIVE PARTICLE SIZE RETRIEVALS</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Cloud Optical Depth</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Cloud Effective Particle Size</td>
<td>5</td>
</tr>
<tr>
<td>2.2 BAND CHARACTERISTICS</td>
<td>5</td>
</tr>
<tr>
<td>2.3 RETRIEVAL STRATEGY</td>
<td>7</td>
</tr>
<tr>
<td>3.0 ALGORITHM DESCRIPTION</td>
<td>9</td>
</tr>
<tr>
<td>3.1 PROCESSING OUTLINE</td>
<td>9</td>
</tr>
<tr>
<td>3.2 ALGORITHM INPUT</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1 VIIRS Data</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.1 VIIRS Calibrated Brightness Temperatures and Reflectances</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.2 VIIRS Illumination and Viewing Geometry Parameters</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1.3 VIIRS Cloud Mask IP</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1.4 VIIRS Surface Albedo IP</td>
<td>12</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
3.2.1.5 VIIRS Surface Type IP ... 12

3.2.2 Off-line Data .. 12
3.2.2.1 Atmospheric Sounding .. 12
3.2.2.2 Spectral Library ... 12
3.2.2.3 Exo-Atmospheric Solar Spectral Irradiances 13
3.2.2.4 VIIRS Band Parameters ... 13
3.2.2.5 Cloud Top Height ... 13

3.3 THEORETICAL DESCRIPTION OF OPTICAL DEPTH AND EFFECTIVE PARTICLE SIZE RETRIEVALS .. 13

3.3.1 Physics of the Problem ... 13
3.3.1.1 Microphysical and Radiative Properties of Cirrus Clouds 14
3.3.1.2 Water Cloud Optical Properties ... 20
3.3.1.3 Optical Properties for Rayleigh Scattering 24
3.3.1.4 Aerosol Scattering ... 24
3.3.1.5 Correlated-\(k\) Distribution Approach 25
3.3.1.6 Single-Scattering Properties for Combined Cloud and Aerosol Particles, Rayleigh Molecules and Gases ... 27
3.3.1.7 Radiative Transfer Model ... 28

3.3.2 Mathematical Description of the Algorithms ... 44
3.3.2.1 Retrieval of Ice Cloud Parameters ... 44
3.3.2.2 Retrieval of Water Cloud Parameters 57

3.3.3 Algorithm Output .. 64
3.3.4 Variance and Uncertainty Estimates .. 65

3.4 ALGORITHM SENSITIVITY STUDIES ON RETRIEVALS OF OPTICAL THICKNESS ... 66

3.4.1 SNR Tests .. 67
3.4.1.1 Daytime Results ... 68
3.4.1.2 Nighttime Results .. 92
3.4.1.3 Recommendations ... 99

3.4.2 Error Budget Studies .. 100
3.4.2.1 Algorithm Specific Errors in the Cloud Module 100
3.4.2.2 Input Error Sources ... 100
3.4.2.3 Sensor Error Sources .. 101
3.4.2.4 Specified and Predicted Performance 101

3.5 ALGORITHM SENSITIVITY STUDIES ON RETRIEVALS OF EFFECTIVE PARTICLE SIZE .. 102

3.5.1 SNR Tests .. 103
3.5.1.1 Daytime Results ... 103

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
List of Figures

Figure 1. Transmittance Characteristics of Seven VIIRS Solar Channels centered at 0.672, 0.865, 1.24, 1.378, 1.61, 2.25 and 3.7 \(\mu m \). The atmospheric zenith transmittances are calculated from the LBLE model for three levels at 10 km, 5 km and the surface based on the US Standard Atmosphere at a 32° solar zenith angle.7

Figure 2. A High-Level Flow Chart describing the General Retrieval Strategy for Cloud Optical Thickness and Effective Particle Size.8

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 3. A High-Level Flow Diagram depicting the Processing Outline of the Data Flow of the VIIRS Channel Radiance in the Development of VIIRS Cloud EDR Retrieval Algorithms. ... 10

Figure 4. The Six Discretized Ice Crystal Size Distributions used in Generating Radiances and Algorithm Sensitivity Studies. ... 16

Figure 5. Phase Functions for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels. ... 22

Figure 6a. Single-Scattering Albedos for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels. .. 22

Figure 6b. Asymmetry Factors for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels. ... 23

Figure 7. Flow Diagram of the Computation of TOA Radiance for Application to Cloud Remote Sensing using VIIRS Channels. ... 32

Figure 8. Sun Satellite Geometry .. 34

Figure 9. Contour Plot of the 0.672\(\mu\)m Reflectance (above) and Radiance (below) for Various Combinations of Cirrus Cloud Optical Depths and Mean Effective Sizes for High-Sun Angle \(\theta_o=32^\circ\) and Nadir Viewing. ... 40

Figure 10. Contour Plot of the 3.7\(\mu\)m Total (Solar + Thermal) Reflectance (above) and Radiance (below) for the Same Combinations of Cirrus Cloud Optical Depths and Mean Effective Sizes for High-Sun Angle \(\theta_o=32^\circ\) and Nadir Viewing. 41

Figure 11. Contour Plot of the 0.672\(\mu\)m (above) and 3.7\(\mu\)m (below) Radiance Percentage Differences between LBLE and MODTRAN-DISORT. ... 42

Figure 12. Contour Plots of the 10.76\(\mu\)m MODTRAN-DISORT Radiance (above) and Differences between LBLE and MODTRAN-DISORT Radiance (below). 43

Figure 13. Flow Chart for the Cirrus Cloud Retrieval Program. ... 44

Figure 14. Flow Chart for the Nighttime IR Cirrus Retrieval Algorithm. 51

Figure 15. Display of the Correlation of MAS 0.681-1.617\(\mu\)m Reflectances Based on Radiative Transfer Calculations and MAS Data taken from FIRE-II IFO over Both Land and Water Surfaces. The calculations were performed for the six ice crystal size distributions presented in section 3.3.1.1 and for two water clouds with mean effective radii of 4 and 8 \(\mu\)m. The optical depth \((\tau)\) ranges from 0.5 to 64 for water cloud and 0.5-16 for ice cloud. Overlapped with the correlation curves are the MAS data obtained from FIRE-II-IFO on 5 December 1991. The

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
data for the water surface were collected at 1636 UTC over the northern Gulf of Mexico. The land surface data were collected at 1923 UTC over eastern Oklahoma.

Figure 16. Flow Chart for the solar Cirrus Retrieval Algorithm

Figure 17. Flow Chart for the Daytime IR Cirrus Single-Channel CTT Retrieval Algorithm

Figure 18. Flow Chart for the Water Cloud Retrieval Program

Figure 19. Flow Chart for the Solar Water Cloud Retrieval Algorithm

Figure 20. Flow Chart for the Nighttime IR Water Cloud Retrieval Algorithm

Figure 21. Display of the Correlation between the VIIRS 0.672 and 1.61 µm Reflectances (top) and between the 0.672 and 2.25 µm Reflectances (bottom) for Cirrus Clouds in US Standard Atmosphere, Sensor at Nadir.

Figure 22. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672–1.61 µm Correlation, Sensor at Nadir.

Figure 23. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672–2.25 µm Correlation, Sensor at Nadir.

Figure 24. Display of the 0.672-1.61 µm (top) and 0.672-2.25 µm (bottom) Reflectance Correlations for Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-Nadir.

Figure 25. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere, Sensor pointing Off-Nadir.

Figure 26. Display of the 0.672-1.61 µm (top) and 0.672-2.25 µm (bottom) Reflectance Correlations for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan.

Figure 27. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan.

Figure 28. Display of the 0.672-1.61 µm (top) and 0.672-2.25 µm (bottom) Reflectance Correlations for Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir.

Figure 29. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir.
Figure 30. Display of the 1.2-1.61 µm Reflectance Correlations for Cirrus Cloud in Sub-Arctic Atmosphere, Sensor at Nadir. ... 84

Figure 31. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Sub-Arctic Atmosphere, Sensor at Nadir. 85

Figure 32. Display of the 0.672-1.61 µm Reflectance Correlations for Cirrus Cloud in Desert Atmosphere, Sensor at Nadir. ... 87

Figure 33. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Desert Atmosphere, Sensor at Nadir. 88

Figure 34. Display of the 0.672-1.61 µm (top) and 0.672-2.25 µm (bottom) Reflectance Correlations for Water Cloud in US Standard Atmosphere, Sensor at Nadir. 90

Figure 35. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Water Cloud in US Standard Atmosphere, Sensor at Nadir. 91

Figure 36. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Nadir. 93

Figure 37. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-Nadir... 94

Figure 38. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan. ... 95

Figure 39. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in Tropical Atmosphere, Sensor at Edge-of-Scan. 98

Figure 40. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Water Cloud in US Standard Atmosphere for No-Noise Retrievals, Sensor at Nadir. .. 99

Figure 41. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61 µm Correlation, Sensor at Nadir. ... 105

Figure 42. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-2.25 µm Correlation, Sensor at Nadir. ... 106
Figure 43. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61\,\mu m Correlation, Sensor pointing Off-Nadir. .. 107

Figure 44. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61\,\mu m Correlation, Sensor at Edge-of-Scan. .. 108

Figure 45. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Tropical Atmosphere based on the 0.672-1.61\,\mu m Correlation, Sensor at Nadir. .. 110

Figure 46. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Sub-Arctic Atmosphere based on the 1.2-1.61\,\mu m Correlation, Sensor at Nadir. .. 111

Figure 47. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Desert Atmosphere based on the 0.672-1.61\,\mu m Correlation, Sensor at Nadir. .. 112

Figure 48. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Water Cloud Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61\,\mu m Correlation, Sensor at Nadir. .. 114

Figure 49. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_c=23.9\,\mu m$ (top), $41.5\,\mu m$ (middle) and $93\,\mu m$ (bottom), Sensor at Nadir. .. 119

Figure 50. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_c=23.9\,\mu m$ (top) and $41.5\,\mu m$ (bottom), Sensor at Nadir. .. 120

Figure 51. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_c=23.9\,\mu m$ (top), $41.5\,\mu m$ (middle) and $93\,\mu m$ (bottom), Sensor pointing Off-Nadir. .. 121

Figure 52. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_c=23.9\,\mu m$ (top) and $41.5\,\mu m$ (bottom), Sensor pointing Off-Nadir. .. 122

Figure 53. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_c=23.9\,\mu m$ (top) and $41.5\,\mu m$ (bottom), Sensor at Edge-of-Scan. .. 123
Figure 54. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top) and $41.5\mu m$ (bottom), Sensor at Edge-of-Scan. ... 124

Figure 55. Accuracy of Retrieval Effective Particle Size for the Cirrus Cloud IR Algorithm for Tropical Atmosphere for $D_e=23.9\mu m$ (top), $41.5\mu m$ (middle) and $93\mu m$ (bottom), Sensor at Nadir... 125

Figure 56. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for Tropical Atmosphere for $D_e=41.5\mu m$, Sensor at Nadir. 126
LIST OF TABLES

Table 1. VIIRS Baseline Bands and Bandwidths for the Cloud EDRs (indicated with “x”).6
Table 2. Mean Effective Size of the Six Ice Crystal Size Distributions..16
Table 3. Comparison of the 0.672µm Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sun-Sensor Geometries including High-Sun, Low-Sun, Nadir-Sensor and Off-Nadir-Sensor Configurations. ...35
Table 4. Comparison of the 3.7µm Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sun-Sensor Geometries including High-Sun, Low-Sun and Nadir-Sensor Configurations. ..36
Table 5. Comparison of the 10.76µm Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sensor Geometries including Nadir-Sensor and Off-Nadir-Sensor Configurations.37
Table 6. Coefficients (d_{nm}) to compute \(k_{15}/k_{12} \) from Optical Depth and Ice Cloud Effective Particle Size. ...47
Table 7. Coefficients (b_{mn}) to compute \(k_{15}/k_{12} \) from Optical Depth and Water Cloud Effective Droplet Radius. ...62
Table 8. Input Parameters for Each Scenario. ..68
Table 9. COP Quality Flag Specifications...131
Table 10. CTT Quality Flag Specifications..133
Table 11. Granule Quality Flags...133
Table A-1. System Specification for the Cloud Optical Thickness EDR.................................141
Table A-2. System Specification for the Cloud Effective Particle Size EDR.............................143

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
###GLOSSARY OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement</td>
</tr>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Basis Document</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very-High-Resolution Radiometer</td>
</tr>
<tr>
<td>BBR</td>
<td>Band-to-Band Registration</td>
</tr>
<tr>
<td>CBH</td>
<td>Cloud Base Height</td>
</tr>
<tr>
<td>CCL</td>
<td>Cloud Cover/Layers</td>
</tr>
<tr>
<td>Ci</td>
<td>Cirrus</td>
</tr>
<tr>
<td>CKD</td>
<td>Correlated K-Distribution</td>
</tr>
<tr>
<td>CLASS</td>
<td>Cross-chain LORAN Atmospheric Sounding System</td>
</tr>
<tr>
<td>COT</td>
<td>Cloud Optical Thickness</td>
</tr>
<tr>
<td>COP</td>
<td>Cloud Optical Properties</td>
</tr>
<tr>
<td>Cs</td>
<td>Cirrostratus</td>
</tr>
<tr>
<td>CSSM</td>
<td>Cloud Scene Simulation Model</td>
</tr>
<tr>
<td>CTH</td>
<td>Cloud Top Height</td>
</tr>
<tr>
<td>CTP</td>
<td>Cloud Top Parameters</td>
</tr>
<tr>
<td>CTT</td>
<td>Cloud Top Temperature</td>
</tr>
<tr>
<td>DAAC</td>
<td>Distributed Active Archive Center</td>
</tr>
<tr>
<td>DISORT</td>
<td>Discrete Ordinate Radiative Transfer Model</td>
</tr>
<tr>
<td>DMSP</td>
<td>Defense Meteorological Satellite Program</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>EB</td>
<td>Error Budget</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Record</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observation System</td>
</tr>
<tr>
<td>EPS</td>
<td>Effective Particle Size</td>
</tr>
<tr>
<td>FASCOD</td>
<td>Fast Atmosphere Signature Code</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time Domain Method</td>
</tr>
<tr>
<td>FIRE</td>
<td>First ISCCP Regional Experiment</td>
</tr>
<tr>
<td>GOM2</td>
<td>Geometric-Optics/integral-equation hybrid Method</td>
</tr>
<tr>
<td>HCS</td>
<td>Horizontal Cell Size</td>
</tr>
<tr>
<td>HITRAN</td>
<td>High-Resolution Transmission Molecular Absorption Database</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu dsp.cfm to verify that this is the correct version prior to use.
IFO Intensive Field Observation
IOP Intensive Observation Period
IP Intermediate Product
IPT Integrated Project Team
IR Infrared
IRR Imaging Infrared Radiometer
ISCCP International Satellite Cloud Climatology Project
ITSS Raytheon-Information Technology and Scientific Services
IWC Ice Water Content
LBLLE Line-by-Line Equivalent Radiative Transfer Model
LOWTRAN Low-Resolution Transmission Model
LUT Look-Up Table
MAS MODIS Airborne Simulator
MCR Multi-spectral Cloud Radiometer
MD MODTRAN-DISORT program
MODIS Moderate Resolution Imaging Spectroradiometer
MODTRAN Moderate-Resolution Atmospheric Transmittance and Radiance Model
MTF Modulation Transfer Function
NCAR National Center for Atmospheric Research
NOAA National Oceanic and Atmospheric Administration
NPOESS National Polar-orbiting Operational Environmental Satellite System
Pfaast Pressure –Layer Fast Algorithm for Atmospheric Transmittance
POES Polar-orbiting Operational Environmental Satellite
RMS Root Mean Square
SDR Sensor Data Record
SGP Southern Great Plains
SNR Signal-to-Noise Ratio
SRD Sensor Requirements Document
SUCCESS Subsonic Aircraft Contrail and Cloud Effects Special Study
TASC The Atmospheric Sciences Corporation
TBD To Be Determined
TBR To Be Resolved

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
This Algorithm Theoretical Basis Document (ATBD) describes the algorithms for retrieving the Cloud Optical Thickness (COT) and Effective Particle Size (EPS) using the Visible/Infrared Imager/Radiometer Suite (VIIRS) channel brightness temperatures and reflectances. Input parameters required by the algorithms also include other VIIRS derived quantities (cloud mask, surface albedo and surface type) and scenario parameters (e.g., sun-sensor geometry). The overall processing begins with the identification of cloud-contaminated pixels and the determination of the cloud phase associated with the cloudy pixel via the VIIRS cloud mask/phase program. Four basic retrieval techniques are developed: solar and infrared (IR) for both cirrus and water clouds. The solar approach uses the reflectance of VIIRS 0.672, 1.24 and 1.61 µm channels and follows the two-channel correlation technique (Nakajima and King, 1990) to retrieve the COT and EPS during daytime. The IR approach utilizes the radiance of VIIRS 3.7, 8.55 10.7625, and 12.013 µm channels and follows the two-channel cirrus technique (Ou et al. 1993) to infer the cloud top temperature and IR emissivity. The COT and EPS can then be determined on the basis of the theory and parameterizations of radiative transfer and cloud microphysics. A RTM based method has been added to determine clear radiances for overcast scenes. To carry out the algorithm sensitivity studies, we use a line-by-line equivalent (LBLE) radiative transfer model developed at the University of California at Los Angeles (UCLA) to generate radiance tables for various combinations of COT and EPS. Algorithm sensitivity studies are composed of signal-to-noise ratio (SNR) tests as well as the error budget (EB) studies. The SNR tests use the UCLA-LBLE-generated radiance tables covering measurement ranges of both COT and EPS. Randomly distributed noises are added to these radiances according to the system specification noise model. These simulated radiances are then applied to retrieval algorithms. For Error Budget (EB) studies, perturbation of the no-noise radiance tables for various error sources were carried out to simulate typical uncertainties in sensor parameters, surface characteristics, and atmospheric soundings. Using Litton-TASC’s Cloud Scene Simulation Model (CSSM) along with the perturbed radiance tables, cloud optical depth and associated reflectance/radiance fields are generated for several defined scenes. Error budgets are developed by applying these reflectance/radiance fields to retrieval algorithms. The methodologies and results of algorithm sensitivity studies on the retrieval of COT and EPS are documented herein, along with relevant practical considerations.
1.0 INTRODUCTION

1.1 PURPOSE

On May 5, 1994, President Clinton directed that the meteorological satellite programs operated separately by the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC) and the Department of Defense (DoD) be converged into a single satellite program. Currently, the operating NOAA satellite system belongs to the Polar-orbiting Operational Environmental Satellite (POES) program, and the operating DoD satellite system belongs to the Defense Meteorological Satellite Program (DMSP). The future converged system, the National Polar-orbiting Operational Environmental Satellite System (NPOESS), will provide a single national remote sensing capability to acquire, receive and disseminate global real-time weather data. The system will satisfy civil and national security operational requirements, and save more than $1 billion in government spending.

The Visible/Infrared Imager/Radiometer Suite (VIIRS) is being developed as part of the NPOESS platform to meet the operational requirements for the global remote sensing of atmospheric and surface properties. One of the prime applications of VIIRS channels is the remote sensing of cloud properties, including cloud cover/layers, cloud optical depth, cloud mean effective particle size, cloud top and base heights, cloud top temperature and pressure. These parameters are generally termed cloud Environmental Data Records (EDRs) in the NPOESS project.

This document is written to assist the sensor design and algorithm development particularly addressing the two NPOESS cloud EDRs: the Cloud Optical Thickness (COT) and Effective Particle Size (EPS). We present the theoretical basis for the solar and IR retrieval algorithms. We also describe the University of California at Los Angeles-Line-By-Line Equivalent (UCLA-LBLE) radiative transfer program that has been developed by our research group. LBLE was developed specifically for the purpose of simulating the clear and cloudy radiances for the algorithm development and sensitivity analyses using VIIRS channels.

1.2 SCOPE

This document covers the algorithm theoretical basis for the retrieval of the cloud optical thickness and effective particle size using VIIRS channel reflectances and radiances. Section 1 describes the purpose and scope of the document. Section 2 provides a scientific and historical background. The processing concept and algorithm description is presented in Section 3. Section 4 summarizes relevant assumptions and limitations. Finally, literature references used throughout the document are provided in Section 5.

1.3 VIIRS DOCUMENTS

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
VIIRS Error Budget Document (Y3249.V3).

1.4 REVISIONS

Y2393, Version 5, Revision 1, Cloud Effective Particle Size and Cloud Optical Thickness ATBD, May 2002.

Y2393, Version 5, Revision 2, Cloud Effective Particle Size and Cloud Optical Thickness ATBD, February 2004.

Y2393, Version 5, Revision 3, Cloud Effective Particle Size and Cloud Optical Thickness ATBD, April, 2004 Corrected erroneous equations, added missing algorithms, added omitted coefficients and added missing assumptions throughout ATBD. Added necessary detail for retrieval code implementation. Deleted Appendices E and F which contained error budgets.

Y2393, Version 5, Revision 4, Cloud Effective Particle Size and Cloud Optical Thickness ATBD – add detailed discussion of IR equations, closure issue in IR method, etc., August 2004

Y2393, Version 5, Revision 5, Cloud Effective Particle Size and Cloud Optical Thickness ATBD, add discussion of Quality Flags, June 2005

Y2393, Version 5, Revision 6, Cloud Effective Particle Size and Cloud Optical Thickness ATBD, add discussion of enhancement in IR algorithms in using M14 and M16 channels, March 2006
2.0 EXPERIMENT OVERVIEW

This section contains three major subsections. Subsection 2.1 describes the objectives of the cloud optical depth and effective particle size retrievals. Subsection 2.2 describes the characteristics of the VIIRS instrument. Subsection 2.3 addresses the cloud optical depth and effective particle size retrieval strategy.

2.1 OBJECTIVES OF CLOUD OPTICAL THICKNESS AND EFFECTIVE PARTICLE SIZE RETRIEVALS

Cloud optical thickness and effective particle size are two key NPOESS cloud EDRs. The objective of the cloud retrieval algorithms using the VIIRS cloud retrieval channels is to achieve comprehensive retrieval of the cloud optical thickness and effective particle size meeting the System Specification Requirements for these EDRs.

The importance of clouds in weather and climate processes has been recognized as a result of numerous observational and modeling studies. Cloud microphysics, phase, and particle shape and size distributions determine the cloud optical properties. These optical properties affect the emission, transmission, reflection and absorption of radiation by the cloud, and therefore modulate the balance of the atmospheric radiation budget. Clouds can be divided according to their particle phase into cirrus (ice) clouds and water (low) clouds. Both types of clouds are global in nature. Cirrus clouds occur primarily in the upper troposphere and the lower stratosphere, and are composed almost entirely of irregularly shaped, non-spherical ice crystals. Their global coverage is more than 30%. On the other hand, water clouds occur primarily in the middle and lower troposphere, and are composed of spherical water droplets. Their global coverage is more than 40%. Information on cirrus and water cloud parameters is critically important to the development of cloud forecast models, the upgrading of real-time global cloud analyses, the investigation of cloud feedbacks in global climate change, and the development of remote sensing of aerosols and surface parameters.

There are several well-documented and well-tested approaches to the satellite remote sensing of cloud optical thicknesses and effective particle sizes (e.g., King et al., 1996a, b; Minnis et al. 1998; Baum et al. 2000). All of these methods are based on the assumption of radiative transfer in plane-parallel clouds. These techniques exploit the spectral dependence of water and ice extinction of atmospheric radiation, using wavelengths at which absorption by water vapor and other gases is minimal, and at which the scattering and absorption by cloud particles are sensitive to the cloud particle size distribution. In the past, cirrus cloud parameters (optical depth, temperature, emissivity, etc.) have been inferred by using IR imaging and sounding channels (e.g., Szejwach, 1982; Arking and Child, 1985; Liou et al., 1990).

In particular, Ou et al. (1993a) developed a physical retrieval scheme using radiance data from AVHRR 3.7µm and 10.9µm channels to infer nighttime cirrus cloud parameters, including cloud temperature, optical depth, and mean effective ice crystal size, based on the theory of radiative

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
transfer and microphysics parameterizations. This retrieval scheme has been applied to the nighttime AVHRR data collected during the First International Satellite Cloud Climatology Project Regional Experiment—Intensive Field Observation (FIRE-I IFO). Validation of the cirrus cloud parameters from this program has been carried out using co-located in situ ice crystal size distribution from 2-D probe measurements and balloon-borne replicator data (Ou et al., 1995; 1998). The balloon-borne replicator data can provide a nearly continuous vertical record of ice crystal size distributions in a Lagrangian sense. For validation purposes, an analytical method has also been developed to derive the optical depth and mean effective ice crystal size from the replicator data taking into account the effects of different shapes and sizes.

Ou et al. (1996) developed a multiple threshold test scheme to detect cloud phase and multi-layer cirrus cloud systems using AVHRR data, based on the physical properties of the AVHRR channel radiances. This scheme has been applied to the AVHRR data collected over the FIRE-II IFO area during nine overpasses within seven observational dates. Results from the cloud typing program have been verified using co-located and coincident ground-based radar and lidar return images (e.g., Clothiaux et al., 1995), balloon-borne replicator data and National Center for Atmospheric Research (NCAR) Cross-chain Loran Atmospheric Sounding System (CLASS) humidity soundings on a case-by-case basis. Subsequently, the daytime IR retrieval program was modified for the retrieval of cirrus cloud parameters in multi-layer cloud systems. Validation of the multilayer cirrus cloud retrieval has been performed for two dates during FIRE-II IFO.

A number of studies on the determination of water cloud optical thicknesses and effective droplet radius during daytime have also been carried out using radiances from airborne visible and near-IR radiometers on aircraft (e.g., Hansen and Pollack, 1970; Twomey and Cocks, 1982 and 1989; Nakajima and King, 1990). The underlying principle on which these techniques are based is the fact that the reflection function of clouds at a non-absorbing channel in the visible wavelength region is primarily a function of the cloud optical thickness, whereas the reflection function at a water (or ice) absorbing channel in the near-infrared (e.g., 1.61µm channel) is primarily a function of cloud particle size (King et al., 1996). These studies have demonstrated the applicability of remote sensing methods to the determination of cloud optical and microphysical properties for water clouds using visible and near-IR channel reflectances. The principle of this two-channel correlation technique is now being applied to the development of an algorithm for the determination of cirrus microphysical and optical properties using the MAS 0.657 and 1.609µm channel reflectances (e.g., Rolland et al., 2000). Though initial success has been achieved for the retrieval of cloud optical and microphysical parameters using both IR and solar approaches, further algorithm sensitivity and validation studies are required in order to assess the accuracy and precision of these methods when applied to measurements on a global scale.

The cloud optical depth and effective particle size retrieval algorithms, together with the prospective VIIRS sensor, are being developed to meet Specification requirements for the respective cloud EDRs. Under the VIIRS sensor/algorithm development concept, these requirements are “flowed down” to the design of the most cost-effective sensor/algorithm
solution that meets these requirements. This is accomplished through a series of flowdown tests and error budget analyses, which effectively simulate sensor and algorithm performance over a range of environmental and operational scenarios. The error budgets are briefly described in Sections 3.4 and 3.5. They are described in much more detail in the Raytheon VIIRS Error Budget, Version 3 (Y3249), and in Ou et al. (2003).

2.1.1 Cloud Optical Depth

The SRD provides the following definition for Cloud Optical Depth:

Cloud optical depth is defined as the extinction (scattering + absorption) vertical optical thickness of all cloud layers in a vertical column of the atmosphere. Optical thickness (τ) is related to transmittance (t) by $t = \exp (-\tau)$. Optical thickness is wavelength dependent and is to be measured in at least two narrow bands centered at 450 nm (TBR) and 850 nm (TBR), with TBD nm bandwidth.

In the present retrieval algorithms, the retrieved cloud optical depth is defined as that at 0.55\(\mu\)m. Table A.1 in Appendix A summarizes the System Specification requirements for this parameter.

2.1.2 Cloud Effective Particle Size

The SRD provides the following definition for Cloud Effective Particle Size:

Effective cloud particle size is defined as the ratio of the third moment of the drop size distribution to the second moment, averaged over a layer of air within a cloud.

Table A.2 in Appendix A summarizes the System Specification requirements for this parameter.

2.2 BAND CHARACTERISTICS

VIIRS is currently being designed based on cost, NPOESS requirements of the sensor, and the specified threshold/objectives requirements. Table 1 lists the VIIRS bands and bandwidths. Bands used by the cloud EDR algorithms are marked with “x”. Figure 1 shows the wavelength locations of seven VIIRS visible and near-IR channels. The atmospheric zenith transmittances from altitudes 10, 5 and 0 km to the top of atmosphere are calculated from the UCLA-LBLE model based on the U.S. Standard Atmosphere. The solar zenith angle is 32°. Note that all these channels, except the channel at 1.378\(\mu\)m, are located at window wavelengths associated with very high atmospheric transmittance. During the period of the project, slightly shifted central wavelengths and band widths have been used for algorithm development and sensitivity studies. Because the differences for cloud and gaseous optical properties due to these band shifts are small, the results of algorithm studies using the shifted bands can be applicable to the bands specified in Table 1. Preliminary studies have been performed to verify this point. At present, VIIRS is designed to scan through nadir in a plane perpendicular to the velocity vector of the...
spacecraft, with the maximum scan extending up to 55° on either side with respect to the spacecraft nadir. At a nominal orbital altitude for the NPOESS platform of about 833km, this yields a swath width of 3000km centered on the satellite nadir ground track. Three of the VIIRS reflective channels (0.672, 1.24 and 1.61 µm) will be used in our solar cloud retrieval algorithm. One mid-wave IR channel (3.7 µm) and one long-wave IR channel (8.55, 10.7625 and 12.013 µm) will be used in the IR retrieval algorithm. Both the solar and IR channels are located in water vapor window regions.

Table 1. VIIRS Baseline Bands and Bandwidths for the Cloud EDRs (indicated with “x”).

<table>
<thead>
<tr>
<th>VIIRS BAND</th>
<th>λ (µm)</th>
<th>Bandwidth (µm)</th>
<th>Cloud Effective Particle Size</th>
<th>Cloud Optical Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.412</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>0.445</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>0.488</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>0.555</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>0.640</td>
<td>0.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>0.672</td>
<td>0.020</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>M6</td>
<td>0.746</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>0.865</td>
<td>0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>0.865</td>
<td>0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>1.240</td>
<td>0.020</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>M9</td>
<td>1.378</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>1.610</td>
<td>0.060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>1.610</td>
<td>0.060</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>M11</td>
<td>2.250</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>3.740</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>3.700</td>
<td>0.180</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>M13</td>
<td>4.050</td>
<td>0.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>8.550</td>
<td>0.300</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>M15</td>
<td>10.7625</td>
<td>1.000</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>I5</td>
<td>11.450</td>
<td>1.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>12.0125</td>
<td>0.950</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 1. Transmittance Characteristics of Seven VIIRS Solar Channels centered at 0.672, 0.865, 1.24, 1.378, 1.61, 2.25 and 3.7μm. The atmospheric zenith transmittances are calculated from the LBLE model for three levels at 10 km, 5 km and the surface based on the US Standard Atmosphere at a 32° solar zenith angle.

2.3 RETRIEVAL STRATEGY

A high-level flow diagram of the general approach to determining the COT and EPS parameters is provided in Figure 2. Input parameters required by these algorithms include other VIIRS derived quantities (e.g., cloud mask), VIIRS radiances and scenario parameters (e.g., sun/sensor geometry). The overall processing begins with the detection of cloud-contaminated pixels and the determination of their associated phase via the VIIRS cloud mask program. For each cloud phase, the retrieval algorithms contain two basic approaches: solar and infrared (IR). The solar approach uses the reflectances of the 1.61μm channel and either 0.672μm (non-snow/ice surface) or 1.24μm (snow/ice surface) channels for daytime retrieval of COT and EPS. It determines these cloud parameters by matching measured reflectances with those from the comprehensive
radiance look-up tables (LUTs), which are to be constructed using pre-computed radiances from the LBLE for a wide range of scenarios. The IR approach utilizes radiances of the VIIRS 3.7, 8.55, 10.7625 and 12.013 µm channels to infer cloud temperature and IR emissivity, from which the COT and EPS can be determined on the basis of the theory of radiative transfer and parameterizations.

Figure 2. A High-Level Flow Chart describing the General Retrieval Strategy for Cloud Optical Thickness and Effective Particle Size.
3.0 ALGORITHM DESCRIPTION

3.1 PROCESSING OUTLINE

The development of algorithms for the retrieval of cloud optical thickness (or optical depth) and effective particle size using the VIIRS channel reflectances/radiances involves a series of processing steps. As shown in Figure 3, the first step in the process involves defining scenarios to be used in algorithm sensitivity tests. These scenarios form the basis for defining the input parameters required by the radiative transfer model. The input parameters include climatic (or sounding) atmospheric profiles, sun-sensor geometries, cloud phases, surface properties, gaseous absorption properties and cloud radiative properties. In the algorithm development and sensitivity studies for the retrieval of cirrus and water cloud parameters, the LBLE radiative transfer model is used, which is described in section 3.3.1.7. The LBLE is the most advanced code for computing high spectral resolution radiance using a combination of the correlated-k distribution (CKD) method and the adding-doubling method. The results from the LBLE have been compared with those from MODTRAN, as described in section 3.3.1.7. It is shown that for larger cirrus cloud optical depths, the radiance from LBLE differs greatly from that of MODTRAN, mainly because MODTRAN assumes that the radiance is azimuthally independent.
Figure 3. A High-Level Flow Diagram depicting the Processing Outline of the Data Flow of the VIIRS Channel Radiance in the Development of VIIRS Cloud EDR Retrieval Algorithms.
A given specification for a scenario includes an atmospheric profile, solar and sensor geometry, band parameters, cloud phase and cloud top height. For each scenario, the LBLE is executed over a wide range of optical thicknesses and effective particle sizes. Results for each scenario and for each spectral band are stored in the format of radiance tables. These radiance tables are used throughout the algorithm sensitivity studies. Post-processing procedures have been developed to convert the numbers in radiance tables into appropriate forms for the cloud parameter retrieval algorithms. For the solar algorithm, the radiance values are converted into reflectance using the solar spectral irradiance at the top of atmosphere. For the IR algorithm, the radiances are converted into spectrally averaged intensities and brightness temperatures. In the algorithm sensitivity studies, radiances are further processed to simulate instrument noises or calibration errors. For example, in the signal-to-noise (SNR) sensitivity analyses, noises are added to radiances according to the sensor noise model. Synthetic retrievals are carried out using the set of converted solar reflectances or IR intensities. The results of the retrieval processes are then statistically analyzed to compute the metrics described in the SRD (accuracy and precision errors, etc.). The metrics are then compared with specification requirements to determine if the retrieval algorithms meet these requirements.

If some part of the metrics fails the threshold/objective test, we perform an iterative process. There are three options. Modify the algorithm to improve the performance. Define more scenarios to search for the exact limit of application of the algorithms. Last of all, use additional channel data to improve the algorithm behavior. Finally, we validate retrieval algorithms by applying airborne (e.g., MAS) or satellite (e.g., AVHRR and MODIS) imagery data to the algorithms. The data have similar channel characteristics to those of VIIRS. We will compare retrieval results using imagery data collected during various field campaigns with collocated in situ microphysical and ground-based radiation measurements.

3.2 ALGORITHM INPUT

The required input parameters for the retrieval of cloud optical thickness and effective particle size come from VIIRS and non-VIIRS sources and are summarized individually in the following paragraphs. The VIIRS data either come directly from the VIIRS processing stream or are generated from the radiative transfer model.

3.2.1 VIIRS Data

3.2.1.1 VIIRS Calibrated Brightness Temperatures and Reflectances

Brightness temperatures and reflectances are required for input into the IR and solar algorithms respectively.
3.2.1.2 VIIRS Illumination and Viewing Geometry Parameters

These include solar and sensor-viewing zenith and azimuthal angles with respect to the target normal. Information on the solar zenith angle determines whether daytime or nighttime algorithms will be used.

3.2.1.3 VIIRS Cloud Mask IP

The identification of cloudy/clear pixels and associated cloud phases may be obtained from the VIIRS cloud mask product. Cloud/clear information will be used to filter out clear pixels.

3.2.1.4 VIIRS Surface Albedo IP

These data are required for proper use of the solar reflectance LUTs. However, surface albedo is determined from an internally stored table with given the surface type from the VIIRS Cloud Mask. The VIIRS surface type IP may be added however, as future enhancement.

3.2.1.5 VIIRS Surface Type IP

This information determines whether the solar algorithm will use M5 (0.672 µm) reflectances (non-snow/ice surfaces) or M8 (1.24 µm) reflectances (snow/ice surfaces). In addition, surface albedo is derived from knowledge of the surface type. However, VIIRS surface type IP currently is not a required input to the COP code. Instead, surface type is taken from the VIIRS Cloud Mask.

3.2.2 Off-line Data

These data are necessary for pre-processing but are not required operationally.

3.2.2.1 Atmospheric Sounding

In the construction of reflectance LUTs, it is necessary to define the atmosphere using temperature, pressure and moisture profiles to compute the clear and cloudy radiances.

3.2.2.2 Spectral Library

This library contains spectral reflection and emission properties for various surface types and is used for the creation of the solar reflectance LUTs. These are the internally stored table described in Section 3.2.1.4 and 3.2.1.5.
3.2.2.3 Exo-Atmospheric Solar Spectral Irradiances

These are required to convert radiance to bi-directional reflectance factors for the reflectance LUT. The solar constant for each VIIRS cloud retrieval band is determined based on the solar irradiance spectrum used in MODTRAN V3.7.

3.2.2.4 VIIRS Band Parameters

These are required for the derivation of single-scattering properties of cloud particles and for the construction of reflectance LUTs.

3.2.2.5 Cloud Top Height

These are required for the construction of radiance LUTs for solar algorithms. The LUTs are generated by assuming cloud top heights at 10 km and cloud thickness of 1 km for ice and water clouds respectively.

3.3 THEORETICAL DESCRIPTION OF OPTICAL DEPTH AND EFFECTIVE PARTICLE SIZE RETRIEVALS

In section 3.3.1, we will discuss the physics of the problem, including the characteristics of cloud particle size distribution, radiative properties of clouds, the parameterization of atmospheric gaseous absorption, the modeling of radiative transfer within clouds and the inter-comparison of computed radiances from the LBLE and MODTRAN for both clear and cloudy atmospheres. In section 3.3.2, we focus on the mathematical description of the retrieval algorithms.

3.3.1 Physics of the Problem

Developing accurate and reliable cloud remote sensing programs requires that a detailed and accurate radiative transfer program be available for algorithm development and sensitivity studies. To simulate the atmospheric scattering/absorption effects accurately, it is essential that reliable phase functions and single-scattering properties for non-spherical ice crystals, spherical water droplets, molecules and aerosols be used. Single-scattering properties include the extinction coefficient (or efficiency), the single-scattering albedo and the asymmetry factor. It is also important to incorporate an efficient and accurate parameterization program for computing atmospheric gaseous absorption/emission coefficients. Section 3.3.1.1 presents the derivation of typical optical properties of cirrus clouds. We establish representative ice crystal size distributions by analyzing the observed ice crystal size distributions that have become available from field experiments in the mid-latitude region (e.g., FIRE-I IFO). The objective is to characterize the ice crystal size distribution in terms of sizes and shapes that are representative of cirrus for remote sensing applications. Also in section 3.3.1.1, we discuss the calculation of the scattering and absorption properties of ice crystals of various sizes and shapes based on the geometric-optics/integral-equation and finite-difference time domain methods. In sections
3.3.1.2, 3.3.1.3 and 3.3.1.4, we address the determination of optical properties of water droplets, molecules and aerosols, respectively. In section 3.3.1.5, we describe the parameterization of atmospheric gaseous absorption by way of the correlated-\(k\) distribution approach. Finally, in section 3.3.1.6, we explain how the single-scattering properties for combined cloud particles and gases are derived.

The LBLE radiative transfer model is employed to carry out the algorithm development and sensitivity studies. In Section 3.3.1.7, we describe the physical principles and model structure of the LBLE. We also present results of an inter-comparison between LBLE and MODTRAN-DISORT (MD). It is shown that, in general, the MD radiance for optically thick clouds differs from the LBLE radiance by more than 10 percent. This difference increases with increasing optical depths. The present retrieval program is closely coupled with the LBLE. If simulated VIIRS radiances were generated using the MD or other program with a similar philosophy for modeling multiple scattering, it is expected that the retrieved cloud EDRs would not meet the EDR specification requirements.

3.3.1.1 Microphysical and Radiative Properties of Cirrus Clouds

Analysis of the observed ice crystal size distributions

Development of the remote sensing algorithms for ubiquitous cirrus clouds requires comprehensive knowledge of two fundamental ice microphysics parameters: ice crystal size distribution and ice crystal shape. Both vary in space and time, and are associated with microphysical processes, including diffusional growth/shrinkage by water vapor deposition/sublimation, and aggregation by collision and coalescence between ice crystals. It is necessary to define representative ice crystal size distributions and shapes for the calculations of phase functions and other relevant single-scattering properties used in satellite remote sensing applications. In conjunction with our ongoing radiative transfer and satellite remote sensing studies involving cirrus clouds, we have analyzed six composite ice crystal size distributions that were obtained from aircraft observations presented by Heymsfield and Platt (1984), Takano and Liou (1989) and the FIRE-IIFO microphysical data. They are denoted as cold Ci, -60° C, Cs, FIRE-I IFO 1 Nov, FIRE-I IFO 2 Nov, and Ci Uncinus. Figure 4 shows the six ice crystal size distributions. The ice crystal sizes span from about 5 to 2000μm with shapes ranging from bullet rosettes, solid and hollow columns, plates to aggregates. We define a mean effective size to characterize ice crystal size distribution in the form:

\[
D_e = \frac{\int D^2 L n(L) dL}{\int D L n(L) dL}
\]

where \(D\) and \(L\) denote the width and the maximum dimension of a non-spherical ice crystal, respectively, and \(n(L)\) is the size distribution in terms of \(L\). The rationale for defining \(D_e\) to represent ice crystal size distribution is that the scattering of light is related to the geometric cross section, which is proportional to \(LD\). The preceding definition of the mean effective size is
applicable to irregular and complex ice crystal shape (Ou et al., 1995). This definition is consistent with that in the SRD. It is noted that the VIIRS EPS definition is for “water cloud droplets” only, because it mentioned “droplet size distribution”. It does not specifically define the effective particle size for non-spherical ice crystal size distribution, although a similar definition for ice crystal is suggested. Therefore, for ice crystal, we interpret that the third and second moments of the ice crystal size distribution to be the integration of the ice crystal size distribution weighted by the 3rd and 2nd powers of the characteristic lengths of ice crystal, respectively. Since the ice crystal is mostly in hexagonal columnal shape, this characteristic length can be either the maximum dimension (L) or the maximum width (D). Thus, referring to Eq. (1), the integral in the numerator is consistent with our interpretation of the third moment of the ice crystal size distribution, and the integral in the denominator is consistent with our interpretation of the second moment of the ice crystal size distribution. In the present algorithm development and sensitivity studies, effective particle size for ice crystals is defined as half of the mean effective size, because D_e is equivalent to a measure of diameter, while the effective particle size is equivalent to radius. At this point, sufficient information concerning ice crystal habit and percentage of individual habits for a given size distribution is not available. We propose ice crystal habit and associated aspect ratios on the basis of the in situ 2-D probe and replicator data. Following Takano and Liou (1989a), we have aggregated the size distributions into 5 bins: 10-30 μm with bin-center at 20 μm, 30-70 μm with bin center at 50 μm, 70–170 μm with bin-center at 120 μm, 170-430 μm with bin-center at 300 μm, and 430–1070 μm with bin center at 750 μm. The aspect ratios, L/D, used are 20/20, 50/40, 120/60, 300/100, and 750/160 (in units μm/μm). These roughly correspond to the observations reported by Auer and Veal (1970). We have evaluated the mean effective ice crystal size for the six size distributions, which are presented in Table 2.
Figure 4. The Six Discretized Ice Crystal Size Distributions used in Generating Radiances and Algorithm Sensitivity Studies.

Table 2. Mean Effective Size of the Six Ice Crystal Size Distributions.

<table>
<thead>
<tr>
<th>Ice crystal size distribution</th>
<th>Mean effective size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Ci</td>
<td>23.9</td>
</tr>
<tr>
<td>T = -60 °C</td>
<td>30.4</td>
</tr>
<tr>
<td>Cs</td>
<td>41.5</td>
</tr>
<tr>
<td>FIRE-I Nov. 1</td>
<td>75.1</td>
</tr>
<tr>
<td>FIRE-I Nov. 2</td>
<td>93.0</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Single-scattering properties for ice crystals

Unlike the scattering of light by spherical water droplets, which can be solved by the exact Mie theory, an exact solution for the scattering of light by hexagonal ice crystals covering all shapes (habits) and sizes does not exist in practical terms. Although several numerical methods have been developed to solve the problem of light scattering by non-spherical particles, they are usually applicable to size parameters \((ka,\text{ where } k \text{ is the wavenumber and } a \text{ is the semi-width of an ice crystal})\) smaller than approximately 20, as discussed by Liou and Takano (1994), Yang and Liou (1995) and the references cited therein. In the past two decades, significant research on solving light scattering by regular and complex ice crystals has been carried out by means of the geometric ray-tracing technique, commonly employed to identify the optical phenomena occurring in the atmosphere. In the limit of geometric optics, an incident wave may be considered as being composed of a bundle of rays that strike the ice crystal and undergo reflection and refraction along a straight line. The laws of geometric optics are applicable to the scattering of light by an ice crystal if its size is much larger than the incident wavelength. In those cases the geometric rays can be localized.

In recent years, we have developed a Monte Carlo/geometric ray-tracing method for the computation of the scattering, absorption and polarization properties of ice crystals with various regular and irregular structures. These structures include solid and hollow columns, single and double plates, dendrites, bullet rosettes and aggregates (Takano and Liou, 1995). The shape of these ice crystals are defined by appropriate geometric models and incident coordinate systems. The incident photons are traced with a hit-and-miss Monte Carlo method and followed by geometric reflection and refraction on the crystal boundary. Absorption can be accounted for by means of stochastic procedures. For some of the quasi-spherical ice particles, such as frozen droplets, we can approximate them by spheroids. In those cases, the scattering and absorption properties can be computed exactly (Takano et al., 1992).

In the geometric optic method, the extinction efficiency is set as 2. Thus the extinction coefficient is equal to twice the total cross sectional area per unit volume and is spectrally independent for a given ice crystal size distribution. The single-scattering albedo is parameterized in terms of the absorption coefficient \(k_i = 4\pi m_i/\lambda\) and the aspect ratio \(L/D\):

\[
\sigma = Q_s / Q_e = \sum_{n=0}^{4} b_n z^n \quad \text{where} \quad z = k_i a \frac{3\sqrt{3}(L/D)}{\sqrt{3} + 4(L/D)} \quad (2)
\]

The parameters \(Q_s\) and \(Q_e\) denote the scattering and extinction efficiencies, respectively. The scattering phase function is obtained from the phase matrix, which is determined using the Monte Carlo/Geometric ray-tracing method. We assume that ice crystals are randomly oriented.
For non-spherical ice crystals, the phase function contains a strong forward peak at 0° scattering angle. The forward scattered energy within 0°-5° scattering angle range produced by diffraction is four to five orders of magnitude greater than it is in the side and backscattered directions. To incorporate the forward peak contribution in multiple scattering, we consider an adjusted absorption and scattering atmosphere, such that the fraction of scattered energy residing in the forward peak, is removed from the scattering parameters. These parameters include the optical depth, single-scattering albedo and asymmetry factor. Thus the phase function is expressed as

\[P(\Theta) = (1 - f_D) P_G(\Theta) + f_D P_D(\Theta), \quad \text{where} \]

\[f_D = \frac{1}{2\sigma(1 - f_8)} \]

and \(f_D \) is the ratio of the diffracted light to the entire scattered light.

Geometric ray-tracing requires the principle of localization in which the particle size must be larger than the incident wavelength. In addition, it is assumed that the energy attenuated by the scatterer may be decomposed into equal extinction from diffraction and Fresnelian rays so that the extinction efficiency is equal to 2 regardless of the particle size parameter. To circumvent a number of shortcomings in the geometric-optics approach, we have developed a novel improvement by mapping the equivalent tangential electric and magnetic currents on the particle surface, obtained from geometric reflection and refraction, to far-field by means of the basic electromagnetic wave theory in two-dimensional (2-D) space (Yang and Liou, 1995). We have further extended the improved geometric-optics method in the 2-D case to three-dimensional (3-D) space, allowing arbitrary and random orientations of the ice crystals (Yang and Liou, 1996a). The improved geometric ray-tracing method is referred to as the geometric-optics/integral-equation hybrid method (GOM2).

For verification of the limitations of the geometric optics, we have also developed a finite-difference time domain (FDTD) technique pioneered by electrical engineers for the identification of irregular objects. It is a numerical technique for the solution of the Maxwell equations using appropriate absorbing boundary conditions. It is considered to be the "exact" numerical solution for light scattering by particles, as verified by the exact Mie results for long circular cylinders and spheres (Yang and Liou, 1996b). Because of numerical instability and required computer time, the FDTD method can only be applied to size parameters smaller than about 20. We show that the GOM2 method converges to the conventional ray-tracing method for size parameters larger than about 200. The conventional method breaks down when the size parameters of ice crystals are smaller than about 40-100, depending on whether the computations are for the cross sections or phase matrix. Moreover, based on comparison with the results computed from the FDTD method, the GOM2 technique is shown to be applicable to ice crystal size parameters as small as 15-20.
As pointed out previously, an exact solution for the scattering of light by hexagonal ice crystals covering all shapes and sizes does not exist in practical terms. However, by combining the GOM2 ($ka > 20$) and FDTD ($ka < 20$) methods, we have developed a unified theory for light scattering by ice crystals essentially for all sizes and shapes.

At this point, we have the theoretical tools to provide the basic scattering and absorption data required for a reliable simulation of the single-scattering properties of ice clouds. The unified theory for light scattering, along with representative ice crystal size distributions and shapes discussed in Section 3.3.1.1 are used to compute the phase function and single-scattering properties for all VIIRS cloud retrieval wavelengths listed in Table 1. The computations are quite extensive and require a careful selection of sizes and shapes. The influence of the mean effective size and variance on the single-scattering properties can both be examined with respect to the potential remote sensing of these parameters. Shown in Figure 5 are the phase functions for the six size distributions and for five VIIRS channels obtained from the Monte Carlo/Geometric ray tracing method. For the solar channels, the overall feature of phase function is not sensitive to the variation of size distribution because of the negligible absorption involved. The 22° and the 46° halos produced by two refracted rays are well illustrated for the phase functions for 0.672, 1.61 and 2.25µm channels, in addition to the forward diffraction peak. The magnitude of the forward scattering associated with diffraction varies with size distribution due to strong absorption. For scattering angles between about 150° and 160°, there is another peak for all sizes produced by rays undergoing double internal reflections. The magnitude of the side-scattering is larger for smaller ice crystals. For the thermal channels, the halos and the backscattering peaks all disappear due to strong absorption effects. Figures 6(a) and 6(b) show the single-scattering albedos and asymmetry factors associated with the six ice crystal size distributions and five VIIRS channels. In general, the single-scattering albedo decreases with increasing wavelengths, while the asymmetry factor increases with increasing wavelengths. For the solar channels, the single-scattering albedo decreases with increasing D_e, and is larger than 0.8. For the 10.7625µm channel, the single-scattering albedo varies between 0.4 and 0.5 due to particle absorption effects and increases with increasing D_e. The asymmetry factor increases with increasing D_e, implying that as D_e increases, more light is scattered in the forward direction.

As Section 3.3.1.1 stated the current 6 ice cloud models are derived from field experiments in the mid-latitude region, e.g., FIRE-I IFO. Ice crystals are also assumed to be randomly oriented and 100% solid hexagonal columns. Since the initial publication of this ATBD much advances in the ice cloud models had been reported by Baum (2005). The new models had also been adopted in the MODIS Collection 5 baseline. Due to these new advances, the original 6 ice cloud models for VIIRS reflectance LUTs are replaced with those of MODIS Collection 5. The new LUTs are considered to be globally more applicable which includes ice cloud models from the Tropical climate region and more realistic habit distributions. The habit distributions included in the MODIS Collection 5 are the following: for particle diameter, $D < 60$ microns, 100 % droxtals; 60 < $D<1000$, 15% 3-D bullet rosettes, 50% solid columns, 15% aggregates; 1000<$D<2500$, 45%
hollow columns, 45% solid columns, 10% aggregates; 2500<D<9500, 97% 3-D bullet rosettes, 3% aggregates.

The MODIS 13 ice cloud models designated by the effective particle radius are evenly spaced at: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 90 μm. As noted, the new ice cloud libraries affect the cloud retrievals in the following ways. First, the reflectance function library is a monotonic function of effective radius. Secondly, the new libraries will also allow for retrievals larger than the former maximum of 62 μm though this may only occur sparingly.

3.3.1.2 Water Cloud Optical Properties

Water cloud properties for VIIRS solar channels have been generated using the Mie scattering code for water droplets. For a single water droplet, the extinction and scattering efficiencies are obtained as

\[Q_e = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \left(|a_n|^2 + |b_n|^2 \right), \]

(4)

\[Q_s = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \Re(a_n + b_n), \]

(5)

where \(x = \frac{2 \pi}{\lambda} \) (the size parameter), and \(a_n \) and \(b_n \) are coefficients in the expansion for scattered waves. The phase function for a single water droplet is obtained from:

\[P(\Theta) = 4 \pi [i_1(\Theta) + i_2(\Theta)] / 2k^2 \sigma_s \]

(6)

where \(i_1 \) and \(i_2 \) are the square of the magnitude of the scattering functions, \(k \) is the wave number \((2 \pi / \lambda) \), and \(\sigma_s \) is the scattering cross section.

A gamma distribution is assumed for the droplet size distribution. Subsequently, the average extinction and scattering coefficients are obtained from:

\[\beta_{e,s} = \int_{r_1}^{r_2} Q_{e,s} \pi r^2 n(r) dr, \]

(7)

where \(n(r) \) is the droplet size distribution in terms of radius \(r \), and \(r_1 \) and \(r_2 \) are the minimum and maximum radius in the size distribution. The average single-scattering albedo is then obtained as:

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 5. Phase Functions for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels.

Figure 6a. Single-Scattering Albedos for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels.
Figure 6b. Asymmetry factors for the six size distributions and for the five VIIRS cloud retrieval channels.

Figure 6b. Asymmetry Factors for the Six Ice Cloud Particle Size Distributions and for the Five VIIRS Channels.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Finally, the average phase function is obtained from

\[P(\Theta) = \frac{4\pi}{k^2} \beta^2 \frac{1}{2} [i_1(\Theta, r) + i_2(\Theta, r)] n(r) dr , \]

(9)

For VIIRS IR channels, we use an analytic approximation developed by Chylek et al. (1995) which is accurate to within a few percent when compared to exact Mie computations. Chylek’s formulation is appropriate for wavelengths greater than 3\(\mu\)m. Comparing to Platnick’s data (King et al., 1996) at certain overlapping wavelengths, Chylek’s formulation seems to be in good agreement.

3.3.1.3 Optical Properties for Rayleigh Scattering

For very small size parameters (\(<< 1\)), the effect of particle size is small, and the scattered intensity is inversely proportional to the fourth power of wavelength. This scattering regime is referred to as Rayleigh scattering. The scattering of solar radiation by air molecules falls within the Rayleigh scattering regime, which must be accounted in the calculation of visible radiance.

In the Rayleigh scattering regime, single–scattering albedo is set to 1 (conservative scattering). Following the classical solution by Rayleigh (1918), the phase function for incident un-polarized solar radiation is:

\[P(\Theta) = \frac{3}{4} (1 + \cos^2 \Theta) \].

(10)

The Rayleigh optical depth for the Earth’s atmosphere is spectrally dependent, and can be computed according to the following parameterization (Hansen and Travis, 1974):

\[\tau = 0.008569 \lambda^{-4} (1 + 0.0113 \lambda^{-2} + 0.00013 \lambda^{-4}), \]

(11)

where \(\lambda\) is the wavelength. The above equation is derived for standard surface pressure of 1013.25 mb. For \(\lambda=0.55\)\(\mu\)m, the optical depth is about 0.0973.

3.3.1.4 Aerosol Scattering

The averaged extinction coefficient, single-scattering albedo and asymmetry factor for individual aerosol particles are obtained in the same manner as those parameters for water droplets. However, we use the Henyey-Greenstein phase function (Liou, 1992) for approximation:

\[p_{HG}(\Theta) = \frac{(1 - g^2)}{(1 + g^2 - 2g \cos \Theta)^{3/2}}, \]

(12)
where g is the asymmetry factor.

3.3.1.5 Correlated-\(k\) Distribution Approach

The gaseous absorption coefficient is a function of wavenumber, pressure, and temperature, and can be written in terms of line strength $S(T)$ and line shape function $f_i(\nu, p, T)$ in the form:

$$k(\nu, p, T) = \sum_i S_i(T) f_i(\nu, p, T)$$ \hspace{1cm} (13)

For a given absorption gas and spectral interval, $\Delta \nu$, we introduce the k-distribution function $h(k)$, which is the probability density function such that $h(k) dk$ is the fraction of $\Delta \nu$ within which the absorption coefficient is between k and $k + dk$. Thus the spectral-mean transmittance should depend on the k-distribution but is independent of the ordering of the absorption coefficients, $k(\nu)$, with respect to the wavenumber (Ambartzumian, 1936; Arking and Grossman, 1972). We may replace the wavenumber integration by integration over the k-space. Let the maximum and minimum absorption coefficient within $\Delta \nu$ be k_{max} and k_{min}. Setting $k_{\text{min}} \to 0$ and $k_{\text{max}} \to \infty$ for mathematical convenience, the spectral-mean transmittance as a function of path length, u, may be expressed by:

$$T_\nu(u) = \int_{\Delta \nu} e^{-k(\nu)u} \frac{d\nu}{\Delta \nu} = \int_0^\infty e^{-ku} h(k) dk,$$ \hspace{1cm} (14)

where $h(k)$ is normalized to 1 in the domain $(0, \infty)$. Equation 14 defines the k-distribution approach, which is exact for the case of a homogeneous atmosphere. We may further define a cumulative probability function in the form:

$$g(k) = \int_0^k h(k) dk,$$ \hspace{1cm} (15)

where $g(0) = 0$, $g(k \to \infty) = 1$, and $dg(k) = h(k) dk$. By definition, $g(k)$ is a monotonically increasing and smooth function in k space. It follows that the spectral-mean transmittance can now be expressed in terms of this cumulative probability function $g(k)$ in the form:

$$T_\nu(u) = \int_{\Delta \nu} e^{-k(\nu)u} \frac{d\nu}{\Delta \nu} = \int_0^u e^{-k(g)u} dg,$$ \hspace{1cm} (16)

where $k(g)$ is referred to as the equivalent k function, which is the inverse function of $g(k)$. Since $g(k)$ is a smooth and monotonically increasing function in k space, $k(g)$ must also be a smooth and monotonically increasing function in g space.
In order to apply the k-distribution method to a nonhomogeneous atmosphere, we shall consider this atmosphere defined by two heights, z_1, and z_2. The spectral-mean transmittance can be written in the form:

$$T_\sigma = \int \int \Delta \Delta - \exp[-\int k(\nu, p, T) \rho dz] \frac{d\nu}{\Delta \nu}$$

where ρ is the density of the absorber and we have introduced pressure and temperature dependence in the absorption coefficient. We wish to investigate the physical and mathematical conditions under which Equation 17 may be expressed in a form similar to Equation 16, namely:

$$T_\sigma = \int_{z_1}^{z_2} \exp[-\int k(g, p, T) \rho dz] dg$$

The method for calculating spectral-mean transmittance based on Equation 18 is referred to as the Correlated K-Distribution method (CKD). In essence, the physical implication of CKD is that only one g exists for a given ν at different heights.

Fu and Liou (1992) compared the distribution of the absorption coefficient in the wavenumber domain and in the cumulative probability (g) domain for the O$_3$ 9.6μm band at $p=25$mb and $T=220$K. They show that the absorption coefficient is a high-frequency oscillatory function of wavenumber but is smooth in the g-domain. Thus, the efficient integration in the g-domain replaces the cumbersome wavenumber integration, and the associated numerical integration can be carried out by evaluating the integral at only a few selected g values.

Evaluation of the spectral-mean transmittance in nonhomogeneous atmospheres requires coupled height and wavenumber integrations (Equation 17). Traditionally, these integrations have been separated by some approximations such that band models can be applied. In this sense, one-parameter scaling, two-parameter Curtis-Godson approximation (Liou, 1992) and three-parameter scaling are all based on the same philosophy. However, in the CKD approach, after transformation of the ν domain to the g domain, separate integrations of height and g are not necessary, because the height integration can be effectively carried out in g space under the correlated assumptions. The approach fundamentally differs from traditional band models and scaling approximations and appears to offer a direct solution to the intricate radiative transfer problem involving non-gray gaseous absorption.
3.3.1.6 Single-Scattering Properties for Combined Cloud and Aerosol Particles, Rayleigh Molecules and Gases

We divide a nonhomogeneous atmosphere into a number of layers, each of which is assumed to be homogeneous. For the case when attenuation by cloud particles, Rayleigh scattering and aerosols are occurring along with gaseous absorption, the total optical depth for each layer is:

$$\Delta \tau = \Delta \tau_c + \Delta \tau_r + \Delta \tau_a + \Delta \tau_g(g),$$

(19)

where $\Delta \tau_c$, $\Delta \tau_r$ and $\Delta \tau_a$ represent the optical depths due to cloud particles, Rayleigh molecules and aerosols, respectively; $\Delta \tau_g(g)$ is the optical depth contributed by the gaseous absorption for a given g (the cumulative probability), which can be expressed by:

$$\Delta \tau_g(g) = k(g, p, T) \rho \Delta z$$

(20)

where $k(g, p, T)$ is the equivalent k function (Fu and Liou, 1992), ρ is the density of the absorber, and Δz is the geometric thickness of the layer. In this case, $\Delta \tau = \Delta \tau_c + \Delta \tau_a^C$, where $\Delta \tau_c$ and $\Delta \tau_a^C$ are cloud scattering and absorption optical depths, respectively. In the same manner, $\Delta \tau = \Delta \tau_a^A + \Delta \tau_a^A$, where $\Delta \tau_a^A$ and $\Delta \tau_a^A$ are aerosol scattering and absorption optical depths, respectively. Thus the combined single-scattering albedo can be obtained by:

$$\sigma(g) = \frac{\Delta \tau_c + \Delta \tau_r + \Delta \tau_a}{\Delta \tau_c + \Delta \tau_r + \Delta \tau_a + \Delta \tau_g(g)}$$

(21)

Similarly, when the phase function is applied to the radiative transfer program, it is expanded in the form:

$$P(\Theta) = \sum_{l=0}^{N} \sigma_l P_l(\cos \Theta)$$

(22)

where $P_l(\cos \Theta)$ is the Legendre polynomial of order l, and σ_l is the expansion coefficient. The expansion coefficient for the composite phase function can be obtained by:

$$\sigma_l = \frac{\Delta \tau_c \sigma_l + \Delta \tau_r \sigma_l + \Delta \tau_a \sigma_l}{\Delta \tau_c + \Delta \tau_r + \Delta \tau_a}$$

(23)

where σ_l, σ_l^R, and σ_l^A denote the expansion coefficients for the individual phase function for cloud particles, Rayleigh molecules and aerosols, respectively. Since the phase function is independent of gaseous absorption, the combined σ_l is constant over a given spectral absorption band. Once the single-scattering properties have been defined for a given g for each level, monochromatic radiative transfer calculations may be carried out, and the radiance for each
spectral subinterval ($\Delta \nu = 50\text{cm}^{-1}$) can be obtained as the summation of the radiance component in the g-domain:

$$R = \sum_{i=1}^{30} R(g_i) \Delta g_i$$ \hspace{1cm} (24)

3.3.1.7 Radiative Transfer Model

Model structure and flow chart

The radiative transfer scheme is the adding-doubling method including full Stokes parameters developed by Takano and Liou (1989) for vertically inhomogeneous atmospheres. In an anisotropic medium, the single-scattering properties depend on the direction of the incoming light beam. Let the directions of the incoming and outgoing light beams be denoted by (μ', ϕ') and (μ, ϕ), respectively, where μ is the cosine of the zenith angle and ϕ the corresponding azimuthal angle. The scattering phase matrix P is a function of (μ, ϕ, μ', ϕ') and cannot be defined by the scattering angle Θ alone as in conventional radiative transfer. Moreover, the extinction and scattering cross sections vary with the direction of the incoming light beam (μ', ϕ').

Let the Stokes vector intensity $I=(I, Q, U, V)$. Following Liou (1992), the general equation governing the transfer of diffuse solar intensity may be written in the form:

$$\mu \frac{dI(\tau; \mu, \phi)}{d\tau} = I(\tau; \mu, \phi) - J(\tau; \mu, \phi)$$ \hspace{1cm} (25)

and the source function,

$$J(\tau; \mu, \phi) = \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} P(\mu, \phi; \mu', \phi') I(\tau; \mu', \phi') d\mu' d\phi'$$ \hspace{1cm} (26)

$$+ \frac{1}{4\pi} P(\mu, \phi; -\mu_0, \phi_0) \times \pi F_e \exp[-k(-\mu_0)\tau / \mu_0]$$

In Equation 26, μ_0 is the cosine of the solar zenith angle, ϕ_0 the corresponding azimuthal angle, and $-\mu_0$ denotes the downward solar incident direction. The first and second terms on the right-hand side represent contributions from multiple scattering and single scattering of the direct solar intensity, respectively.
The multiple scattering problem is solved by means of the adding-doubling principle for radiative transfer. We define the reflection matrix $R(\mu, \phi, \mu', \phi')$ and transmission matrix $T(\mu, \phi, \mu', \phi')$ for radiation from above in the forms:

$$I_{\text{out, top}}(\mu, \phi) = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 R(\mu, \phi; \mu'', \phi'') I_{\text{in, top}}(\mu'', \phi'') \mu'' d\mu'' d\phi''$$

(27)

$$I_{\text{out, bottom}}(\mu, \phi) = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 T(\mu, \phi; \mu'', \phi'') I_{\text{in, bottom}}(\mu'', \phi'') \mu'' d\mu'' d\phi''$$

(28)

Likewise, for radiation from below, the reflection and transmission matrices are defined by:

$$I_{\text{out, bottom}}(\mu, \phi) = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 R^*(\mu, \phi; \mu'', \phi'') I_{\text{in, bottom}}(\mu'', \phi'') \mu'' d\mu'' d\phi''$$

(29)

$$I_{\text{out, top}}(\mu, \phi) = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 T^*(\mu, \phi; \mu'', \phi'') I_{\text{in, top}}(\mu'', \phi'') \mu'' d\mu'' d\phi''$$

(30)

To proceed with the adding principle for the radiative transfer in an anisotropic medium, we shall utilize the reflection and transmission matrices defined in Equations 27 through 30 and consider an infinitesimal layer with a very small optical depth $\Delta \tau$, say 10^{-8}. Since the optical depth is so small, only single scattering takes place within the layer. From the fundamental equations for radiative transfer, the analytic solutions for reflected and transmitted intensities undergoing single scattering may be derived. Subject to the condition that $\Delta \tau \rightarrow 0$, we find:

$$R(\mu, \phi; \mu', \phi') \approx \frac{\Delta \tau}{4 \mu \mu'} \mathcal{P}(\mu, \phi; \mu', \phi')$$

(31)

$$T(\mu, \phi'; \mu', \phi') \approx \frac{\Delta \tau}{4 \mu \mu'} \mathcal{P}(\mu, \phi; -\mu', \phi')$$

(32)

$$R^*(\mu, \phi; \mu', \phi') \approx \frac{\Delta \tau}{4 \mu \mu'} \mathcal{P}(\mu, \phi; -\mu', \phi')$$

(33)

$$T^*(\mu, \phi; \mu', \phi') \approx \frac{\Delta \tau}{4 \mu \mu'} \mathcal{P}(\mu, \phi; \mu', \phi')$$

(34)

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Consider now two layers denoted by subscripts a and b, where layer a is on top of layer b. Let their optical depths be τ_a and τ_b. Following the conventional adding principle for radiative transfer in an isotropic medium, but with modifications to account for the dependence of the optical properties on the incoming direction, the procedure for computing the reflection and transmission matrices for the composite layer may be described by the following equations:

\[
Q_1 = R_a^* R_b
\]

\[
Q_a = Q_b Q_{a-1}
\]

\[
S = \sum_{n=1}^{M} Q_n
\]

\[
D = T_a + S \exp[-\tau_a / \mu_0] + ST_a
\]

\[
U = R_b \exp[-\tau_a / \mu_a] + R_b D
\]

\[
R_{a,b} = R_a + \exp[-\tau_a / \mu] U + T_a^* U
\]

\[
T_{a,b} = \exp[-\tau_b / \mu] D + T_b \exp[-\tau_a / \mu_0] + T_b D
\]

In these equations, the product of two functions implies an integration over the appropriate solid angle so that all possible multiple scattering contributions are accounted for. For example:

\[
R_a^* R_b(\mu, \phi; \mu', \phi') = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 R_a^* (\mu, \phi; \mu'', \phi'') R_b(\mu'', \phi''; \mu', \phi') \mu'' d\mu'' d\phi''
\]

The number M in Equation 37 is selected according to the convergence of the series, and varies from 5 to 12 in the present calculations. The exponential terms in the adding equations are the direct transmission through layer a or b without scattering. The total transmission for the combined layer is the sum of the diffuse transmission $T_{a,b}$ and the direct transmission $\exp[-(\tau_a + \tau_b) / \mu_0]$ in the direction of the solar zenith angle θ_0.

In numerical computations, it is economical to set $\tau_a = \tau_b$. This is referred to as the doubling method. We start with an optical depth $\tau \approx 10^{-8}$ and use Equations 31 through 34 to compute the reflection and transmission matrices. Equations 35 through 41 are subsequently employed to compute the reflection and transmission matrices for an optical depth of 2τ. The computations using these equations are repeated until the desired optical depth is obtained.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
We divide the model vertical domain into 51 layers ($\Delta p = 20\text{mb}$ for each layer except for the bottom layer, where $\Delta p = 13\text{mb}$). The doubling procedures are applied to each layer to obtain the layer reflection and transmission functions. Subsequently, the adding procedures are applied to the 51 layers to obtain the radiance at the top of atmosphere. For wavelengths between 3.5 and $5\mu\text{m}$, we take into account the thermal emission contributions in the solar flux transfer by adding the emission part $(1 - \sigma)\pi B_\nu(T)$, to the adding/doubling method in a manner described in Takano and Liou (1993), where σ is the single-scattering albedo and $B_\nu(T)$ is the Planck function for a given layer temperature T. The thermal emission part, although small, has not been accounted for previously in broadband solar flux calculations and could be a significant energy source in the upper part of the atmosphere.

The input parameters required to drive the LBLE solar radiation model include the solar insolation; spectral band wavenumbers of interest; solar and viewing zenith angles; the relative azimuthal angle; spectral surface albedos and emissivities; atmospheric temperature, humidity; and aerosol profiles; cloud phase; and cloud top and base altitudes. Figure 7 shows the flow diagram of the radiative transfer model developed for application to cloud remote sensing using VIIRS channel radiances. We first compile the spectral solar constant for 0.672, 1.24, 1.61, 2.25 and $3.7\mu\text{m}$ VIIRS channels. The LBLE includes the options of using the detailed solar irradiance data given by Thekaekara (1976) (solar constant=1353 W/m2), Kneizys et al., (1988) (LOWTRAN 7 solar constant=1380 W/m2) or Anderson et al. (1995) (MODTRAN solar constant) averaged over appropriate spectral resolutions. We then generate the gaseous absorption line parameters from the updated HITRAN-1996 database for 0.672, 1.61, 2.1, 3.7 and $10.7625\mu\text{m}$ VIIRS channels.
Figure 7. Flow Diagram of the Computation of TOA Radiance for Application to Cloud Remote Sensing using VIIRS Channels.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
The correlated k-coefficients for H$_2$O covering the spectral region from 2,000 to 21,000 cm$^{-1}$ (0.5-5 µm) are determined based on the methodology developed by Fu and Liou (1992) in which a number of temperatures and pressures are used. The correlated k-coefficients for the 2.0 and 2.7 µm CO$_2$ bands are also derived, in which overlaps between H$_2$O and CO$_2$ lines are accounted for by using the multiplication rule. Absorption due to O$_3$ and O$_2$ bands is also included in the model based on Beer’s Law (Liou, 1992). In addition, we have compiled the single-scattering properties of six typical aerosol types provided in d’Almeida et al. (1991) in connection with the LBLE model. In the present work, we use the rural aerosol model with 23 km visibility at the surface, which is the same as the default aerosol model in MODTRAN. At this point, the entire solar spectrum is divided into a total of 380 intervals, each of which is 50 cm$^{-1}$ wide. For each spectral interval, the inverse of the cumulative probability function $k(g)$ is evaluated at 30 g values, where $0<g<1$.

We then compute single-scattering parameters of air molecules, aerosol and cloud particles. We also construct the table of correlated-k coefficients. The resulting single-scattering parameters, cumulative k-distribution functions, phase functions and auxiliary data were combined as described in section 3.3.1.6 and input into the radiative transfer program.

Intercomparisons with results from MODTRAN

Over the years, a hierarchy of fast radiative transfer models have been developed by the Air Force Research Laboratory (previously the Air Force Geophysics Laboratory), including LOWTRAN 5-7 (Kneizys et al., 1988; Isaacs et al., 1986, 1987), FASCODE and MODTRAN. At present, MODTRAN is the most advanced narrow-band radiative transfer program for computing transmittances in cloudless atmospheres. MODTRAN covers the spectral range from 0 to 50,000 cm$^{-1}$ (~0.2-∞ µm) with flexible spectral resolution between 50 cm$^{-1}$ and 2 cm$^{-1}$ (Berk et al., 1989). The latest version of MODTRAN (version 3.7) maintains the capability of the older versions. Several atmospheric temperature, humidity, ozone and aerosol (haze) profiles are built into the radiative transfer model. The default atmospheric profiles include tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer, sub-arctic winter and the 1976 US Standard atmosphere. The default aerosol models include rural, maritime, urban, tropospheric (humidity dependent) and desert (wind dependent) models. Band model parameters based on HITRAN line data for twelve atmospheric molecular species (H$_2$O, CO$_2$, O$_3$, N$_2$O, CO, CH$_4$, O$_2$, NO, SO$_2$, NO$_2$, NH$_3$ and HNO$_3$) are included in the model (Kneizys et al., 1988).

Larsen (1994) replaced the two-stream multiple scattering computations in MODTRAN with a modified version of the Discrete Ordinate Radiative Transfer (DISORT) Model. DISORT is a state-of-the-art, user-friendly discrete ordinate algorithm for radiative transfer in vertically inhomogeneous, non-isothermal, plane-parallel media (Stamnes et al., 1988). It considers scattering, absorption, emission by particles as well as incident radiative sources at boundaries. Given cloud optical properties for each layer, DISORT can generate angular dependent radiance and radiative flux profiles within the cloud.
Although MODTRAN can produce spectrally high-resolution clear radiance with excellent accuracy and DISORT can generate reliable cloud radiance at any angle, the present combination of MODTRAN with DISORT (MD) is less than ideal. In the original MODTRAN multiple scattering program, azimuthally independent source functions are computed by the two-stream method. These source functions are then substituted into the integrated form of the radiative transfer equation to obtain the radiance distribution. Thus the resulting radiance distribution is also azimuthally independent. The MD program still follows this approach. That is, instead of using source functions from the two-stream radiative transfer scheme built into the MODTRAN, MD uses DISORT-generated azimuthally independent source functions to compute azimuthally independent radiance distribution. Effects of this model artifact can be seen from the following comparison of clear and cloudy radiances from the LBLE and the MODTRAN/MD.

To compare the performance of the LBLE with the MD, we first compare the clear radiance generated by the two models. Figure 8 shows the geometry of the sun and the sensor with respect to the target along with the specification of angular parameters. In the planned NPOESS afternoon orbit, the sun is always to the west of the target, while the VIIRS sensor can be either to the east or to the west of the target. The angular parameters can be derived from simulated orbital information.

![Sun-Satellite Geometry](image)

Figure 8. Sun Satellite Geometry.

Table 3 shows the comparison of 0.672µm clear and haze radiances from the LBLE model (denoted as UCLA) and from the MODTRAN/MD model for various sun-sensor geometries,
including high-sun, low-sun, nadir-sensor, and off-nadir-sensor configurations. The terms “clear” and “haze” mean without and with the effects of background aerosols, respectively. In general, radiance from the LBLE model agrees with the MD radiance. For the high-sun cases (1, 3, 5), the differences are less than 10 percent. For the low-sun cases (2, 4, 6), the differences are larger but are still less than 15 percent. When the sun is low, reflection due to aerosol scattering is stronger, so that the error in the azimuthally independent MD radiance increases. Similarly, for the same solar zenith angle, the differences for the off-nadir cases (3-6) are generally larger than those for the nadir case (1 and 2) due to errors caused by the assumption of azimuthally independent scattering in the MD calculations. For the off-nadir cases, the differences are smaller for the sensor at forward-scattering angles (\(\Delta \phi > 90^\circ\)) than at back-scattering angles (\(\Delta \phi < 90^\circ\)).

Table 3. Comparison of the 0.672\(\mu\)m Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sun-Sensor Geometries including High-Sun, Low-Sun, Nadir-Sensor and Off-Nadir-Sensor Configurations.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sky</th>
<th>Clear</th>
<th>Haze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCLA</td>
<td>MODTRAN</td>
<td>% Diff.</td>
</tr>
<tr>
<td>1</td>
<td>(\theta_o = 32^\circ) & (\phi = 0^\circ)</td>
<td>1.44200</td>
<td>1.39506 (1.40846) (\dagger)</td>
</tr>
<tr>
<td>2</td>
<td>(\theta_o = 75^\circ) & (\phi = 0^\circ)</td>
<td>0.51353</td>
<td>0.49331 (0.50555)</td>
</tr>
<tr>
<td>3</td>
<td>(\theta_o = 32^\circ) & (\phi = 136^\circ)</td>
<td>1.57441*</td>
<td>1.481337</td>
</tr>
<tr>
<td>4</td>
<td>(\theta_o = 75^\circ) & (\phi = 168^\circ)</td>
<td>0.735682</td>
<td>0.677275</td>
</tr>
<tr>
<td>5</td>
<td>(\theta_o = 32^\circ) & (\phi = 0^\circ)</td>
<td>1.36383</td>
<td>1.302619</td>
</tr>
<tr>
<td>6</td>
<td>(\theta_o = 75^\circ) & (\phi = 0^\circ)</td>
<td>0.612285</td>
<td>0.596909</td>
</tr>
</tbody>
</table>

* : in W/m\(^2\)/sr ; \(@\) : Numbers in brackets are based on MODTRAN results from TASC
\(\dagger\) : Numbers in parentheses are based on DISORT 8-stream source functions

Table 4 shows the comparison of the 3.7\(\mu\)m clear and haze radiance from the LBLE and the MODTRAN/MD model for various sun-sensor geometries, including high-sun, low-sun, and

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
nadir-sensor configurations. The differences in the solar component are less than 15 percent. Differences in the thermal IR component are less than 0.4 percent. For total radiance, the differences are less than 4 percent, because the IR component dominates the total radiance. In addition, since the fraction of the solar component in the total radiance decreases as the solar zenith angle increases, the total radiance differences are less for the low-sun case than for the high-sun case. Finally, Table 5 shows the comparison of 10.76μm clear and haze radiances from the LBLE model and the MODTRAN/MD model for the nadir-sensor case. The differences are less than 5 percent for both clear and haze cases. Overall, it is demonstrated that the LBLE clear radiance compares reasonably well with the MD radiance, though small errors exist due to neglecting azimuthal dependence in the computation of the aerosol scattering component.

Table 4. Comparison of the 3.7μm Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sun-Sensor Geometries including High-Sun, Low-Sun and Nadir-Sensor Configurations.

<table>
<thead>
<tr>
<th>Component</th>
<th>Case No.</th>
<th>Sky</th>
<th>Clear</th>
<th>Haze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>1</td>
<td>θ₀ = 32°, θ = 0°</td>
<td>0.02327⁺, 0.02140 (0.02140) †</td>
<td>-8.04 (-8.04)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>θ₀ = 75°, θ = 0°</td>
<td>0.006321, 0.00540 (0.00540)</td>
<td>-14.57 (-14.57)</td>
</tr>
<tr>
<td>Thermal IR</td>
<td>3</td>
<td>θ₀ = 32°, θ = 0°</td>
<td>0.04354, 0.04340 (0.04350)</td>
<td>-0.32 (-0.09)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>θ₀ = 75°, θ = 0°</td>
<td>0.04354, 0.04340 (0.04350)</td>
<td>-0.32 (-0.09)</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>θ₀ = 32°, θ = 0°</td>
<td>0.06681, 0.06480 (0.06490)</td>
<td>-3.01 [-3.50]</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>θ₀ = 75°, θ = 0°</td>
<td>0.04986, 0.04940 (0.04890)</td>
<td>-0.92 (-1.93)</td>
</tr>
</tbody>
</table>

* : in W/m²/sr
†: Numbers in parentheses are based on DISORT 8-Stream source functions

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Table 5. Comparison of the 10.76µm Clear and Haze Radiances from the LBLE Model (UCLA) and the MODTRAN/MODTRAN-DISORT Model for Various Sensor Geometries including Nadir-Sensor and Off-Nadir-Sensor Configurations.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Clear</th>
<th>Haze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCLA</td>
<td>MODTRAN</td>
</tr>
<tr>
<td>1</td>
<td>7.90516</td>
<td>7.56000</td>
</tr>
<tr>
<td>2</td>
<td>7.86735</td>
<td>--------</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpsmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
We then compare the cirrus cloudy radiance generated by the two models. The 1976 US Standard Atmosphere is assumed. A cirrus cloud is prescribed to be at 9-10 km. Figure 9 shows the contour plot of 0.672µm reflectance and radiance for various combinations of cirrus cloud optical depths and mean effective sizes for a high-sun angle (θ = 32°) and nadir viewing. It is obvious that the radiance/reflectance depends strongly on optical depth but weakly on the mean effective size. For optical depths between 0 and 8, the reflectance varies between 0 and 0.5, and the radiance varies between 0 and 12 Wm⁻²sr⁻¹. The computed radiance range can help determine maximum and minimum values in the design of the VIIRS sensor measurement range. Figure 10 shows the contour plot of 3.7µm total (solar + thermal) reflectance and radiance for the same combination of cirrus cloud optical depths and mean effective sizes for a high-sun angle (θ = 32°) and nadir viewing. For small mean effective sizes, the radiance/reflectance is virtually independent of optical depth, but for larger mean effective sizes, the radiance/reflectance is nearly independent of mean effective size. For mean effective size less than 40µm, the total radiance varies between 0.04 and 0.08 Wm⁻²sr⁻¹. For mean effective size larger than 40µm, the total radiance varies between 0.01 and 0.06 Wm⁻²sr⁻¹.

Figure 11 shows contour plots of the 0.672µm and 3.7µm radiance percentage differences between LBLE and MD results. For the 0.672µm radiance, differences are generally independent of mean effective sizes, but increase with increasing optical depth. For optical depths greater than 4, the differences exceed 40 percent. For the 3.7µm radiance, differences are less than 10 percent for optical depths less than 2. However, for mean effective size larger than 50 µm, the differences increase with the optical depth. Figure 12 shows contour plots of the 10.76 µm MD radiance and the differences between LBLE and MD radiance. The radiance decreases with increasing optical depth. There is a weak dependence on the mean effective size. As in the cases of 0.672 µm and 3.7 µm, for optical depths greater than 2, the differences increase with optical depth up to about 30 percent. In summary, the above inter-comparison results of cirrus cloudy radiance show that MD radiances for optically thick clouds differ from the LBLE radiances by more than 10 percent in general. Although such inter-comparisons have been done only for one cirrus cloud scenario, we expect that similar patterns of differences between LBLE and MD radiance will show up for other cirrus and water cloud scenarios. The inherent problem of neglecting the azimuthal dependence of radiance will cause the resulting radiance for optically thick clouds to be in large error in every case.

The above intercomparison of LBLE and MD results leads to the following conclusions. The MD, or a program based on a similar philosophy of assuming azimuthally independent scattering, is not feasible to be used as the radiative transfer model for the development of retrieval algorithms for inferring cloud optical depth and effective particle size. This is simply because the MD is defective in the treatment of multiple scattering and has not been used in any previous algorithm development for the retrieval of cloud optical and microphysical parameters. In addition, because the development of the present retrieval programs is closely coupled with the physically based LBLE, retrievals of cloud optical depth and effective particle size are expected to meet the EDR specification requirements only if VIIRS radiances are realistic (i.e.,
simulated with the LBLE). In fact, having recognized that retrievals of the cloud parameters must be properly coupled with a reliable forward radiative transfer program, established cloud retrieval algorithm development teams (e.g., King et al. at NASA Goddard Space Flight Center, Minnis et al. at NASA Langley Research Center and Rossow et al. at NASA Goddard Institute of Space Science) all have developed their own radiative transfer programs based on sound physical principles for the purpose of algorithm development and sensitivity studies. Therefore, it appears both scientifically justified and commercially advantageous that the LBLE should be used as the only radiative transfer model for the development of retrieval algorithms for inferring cloud effective particle sizes and optical depths.
Figure 9. Contour Plot of the 0.672μm Reflectance (above) and Radiance (below) for Various Combinations of Cirrus Cloud Optical Depths and Mean Effective Sizes for High-Sun Angle (θ₀=32°) and Nadir Viewing.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu dsp.cfm to verify that this is the correct version prior to use.
Figure 10. Contour Plot of the 3.7µm Total (Solar + Thermal) Reflectance (above) and Radiance (below) for the Same Combinations of Cirrus Cloud Optical Depths and Mean Effective Sizes for High-Sun Angle ($\theta_o=32^\circ$) and Nadir Viewing.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Percentage Differences between MODTRAN and UCLA Radiative Transfer Codes ($\theta_0 = 32^\circ$, $\theta = 0^\circ$)

![Contour Plot](image)

Figure 11. Contour Plot of the 0.672μm (above) and 3.7μm (below) Radiance Percentage Differences between LBLE and MODTRAN-DISORT.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 12. Contour Plots of the 10.76µm MODTRAN-DISORT Radiance (above) and Differences between LBLE and MODTRAN-DISORT Radiance (below).
3.3.2 Mathematical Description of the Algorithms

3.3.2.1 Retrieval of Ice Cloud Parameters

Figure 13 shows the flow chart of the cirrus cloud retrieval program. Once the cirrus cloud pixels are identified, three retrieval programs are applied to nighttime and daytime data. For the nighttime retrieval, the IR cloud CTT retrieval program (C1), uses the VIIRS 8.6 and 12µm radiances to infer the cirrus cloud temperature, and the IR cloud COP retrieval program (C2) uses the VIIRS 10.76 mm radiances to retrieve visible optical depth and mean effective size. For the daytime retrieval, however, the solar ice cloud retrieval algorithm (C3), using the VIIRS 1.61 and either 0.672 or 1.24µm reflectances, is employed to infer cirrus cloud optical depth and mean effective size. With mean effective size as input, the k-ratio of M14 and M16 is calculated and input into the IR cloud CTT program (C1) to derive cloud-top temperatures.

Figure 13. Flow Chart for the Cirrus Cloud Retrieval Program.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Nighttime IR Cirrus Cloud Retrieval Algorithm

The retrieval program for deriving cirrus temperature, mean effective ice crystal size and optical depth from the upwelling radiance of VIIRS cloud retrieval channels follows the principles of the dual-IR-channel technique presented in Liou et al. (1990). The VIIRS 3.7, 8.6 μm, 10.76μm, and 12 μm radiances have been selected for use. A major advantage of using these three channels for cirrus retrievals is that the radiance of these window bands is less affected by the presence of water vapor than the other bands. The retrieval program is based on the numerical solution of three groups of equations, which are derived from radiative, radiative-microphysical, and microphysical parameterizations.

a. Radiative parameterizations

From the theory of radiative transfer, we may express the upwelling radiance at TOA for the 3.7μm, 8.6 μm, 10.8 μm, and 12 μm (VIIRS M12, M14, M15 and M16 respectively) channels over a cirrus cloudy atmosphere in terms of the cirrus cloud-top temperature, \(T_c \), and emissivities, \(\varepsilon_{1,2} \), as follows:

\[
R_i = (1 - \varepsilon_i) R_{ai} + \varepsilon_i B_i(T_c), \quad i = 12, 14, 15, 16 \tag{43}
\]

where \(R_{ai} \) denote the upwelling radiance reaching the cloud base for the two spectral bands and \(B_i(T_c) \) are the respective Planck functions at \(T_c \). The first term on the right-hand side of Equation 43 represents the contribution of the transmitted radiance from below the cloud. The second term denotes the emission contribution from the cloud itself. The emission by water vapor above the cirrus cloud has been neglected. The effects of cloud reflectivity, which are generally less than 3 percent of the incident radiance based on exact radiative transfer calculations, have also been neglected.

In order to solve Equation 43 for \(B_{16}(T_c) \) and \(k_{15}/k_{12} \), we relate \(B_{14}(T_c) \) with \(B_{16}(T_c) \), and \(B_{12}(T_c) \) with \(B_{15}(T_c) \), correlate \(\varepsilon_{14} \) vs. \(\varepsilon_{16} \) and \(\varepsilon_{15} \), and determine the clear radiance \(R_{ai} \). First, we compute the Planck functions \(B_i(T_c) \) for all four channels, taking into account the filter functions of these channels. Look-up tables of Planck function are built in 0.1K intervals within the range of \(T_c \) from 150 to 350 K.

Then, we investigate the relationship between the emissivities for the M14 and M16 channels. From radiative transfer calculations and following the approach proposed by Liou et al. (1990), we may parameterize cirrus emissivities for all four wavelengths in terms of the visible optical depth, \(\tau \), in the form:

\[
\varepsilon_i = 1 - \exp(-k_i \tau), \quad i = 12, 14, 15, 16 \tag{44}
\]
The exponential term represents the effective transmissivity. The parameters k_i represent the effective extinction coefficients for the two channels accounting for effects of multiple scattering. All k_i are smaller than 1 because the effect of multiple scattering is smaller with IR than visible. Thus the products $k_i \tau$ may be considered as the effective optical depth that would yield the same emissivity values for the pure absorption conditions at these wavelengths. By eliminating τ from Equation 43 for M14 and M16, and M12 and M15, we obtain

\[
(1 - \varepsilon_{14})^{1/k_{14}} = (1 - \varepsilon_{16})^{1/k_{16}}. \tag{45a}
\]

\[
(1 - \varepsilon_{12})^{1/k_{12}} = (1 - \varepsilon_{15})^{1/k_{15}}. \tag{45b}
\]

Equations 46(a) and 46(b) correlate $\varepsilon_{14} - \varepsilon_{16}$ and $\varepsilon_{12} - \varepsilon_{15}$ directly. A further combination of Equations 43 and 45a-b leads to:

\[
[(R_{16} - B_{16}(T_c))/(R_{a16} - B_{16}(T_c))] - [(R_{14} - B_{14}(T_c))/(R_{a14} - B_{14}(T_c))]^{k_{16}/k_{14}} = 0, \tag{46a}
\]

\[
[(R_{15} - B_{15}(T_c))/(R_{a15} - B_{15}(T_c))] - [(R_{12} - B_{12}(T_c))/(R_{a12} - B_{12}(T_c))]^{k_{15}/k_{12}} = 0. \tag{46b}
\]

b. Radiative-microphysical parameterizations

We investigate the dependence of k_{15}/k_{12} on the particle size distribution and optical depth based on radiative transfer calculations by using the six ice crystal size distributions given in Section 3.3.1.1. A reasonable range of optical depth for these size distributions has been used. As an initial approximation, we may take k_{12} and k_{15} as independent of the optical depth. However, for more accurate retrieval of cirrus cloud parameters, we need to consider the dependence of k_{15}/k_{12} on the optical depth. Generally, k_{15}/k_{12} decreases as D_e increases. For a small D_e (20µm), k_{15}/k_{12} is close to 2. This is primarily because the single-scattering albedo is larger for the 3.7µm wavelength (0.8) than that for the 10.76µm wavelength (0.4), which implies that more scattering is associated with the former wavelength. For $D_e > 100µm$, k_{15}/k_{12} approaches 1 for the following reasons. First, the extinction coefficients are approximately the same for the two wavelengths because of large-size parameters in which the geometric optics limit is valid. Second, the single-scattering albedos are also approximately the same for these wavelengths because substantial absorption occurs within large ice crystals. This implies that only the diffracted and externally reflected light contributes to the scattering processes. For obtaining the initial guesses, k_{15}/k_{12} can be expressed in terms of $1/D_e$ in the form:

\[
k_{15}/k_{12} = \sum_{n=0}^{2} b_n D_e^{-n} \tag{47}
\]
where the coefficients b_n are determined from a second-order least square method using the radiance tables. In the retrieval scheme, however, b_n are further expressed as third-order polynomial functions of τ:

$$b_n(\tau) = \sum_{m=0}^{3} d_{nm} \tau^m$$

(48)

where the coefficients d_{nm} are provided in Table 6.

Table 6. Coefficients (d_{nm}) to compute k_{15}/k_{12} from Optical Depth and Ice Cloud Effective Particle Size.

<table>
<thead>
<tr>
<th></th>
<th>US Standard Atmosphere</th>
<th>Tropical Atmosphere</th>
<th>Polar Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=2</td>
<td>m=3</td>
<td>0.4658</td>
<td>0.2034</td>
</tr>
<tr>
<td></td>
<td>m=2</td>
<td>-9.0524</td>
<td>-5.9222</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
<td>84.456</td>
<td>53.787</td>
</tr>
<tr>
<td></td>
<td>m=0</td>
<td>-314.37</td>
<td>-362.83</td>
</tr>
<tr>
<td>n=1</td>
<td>m=3</td>
<td>-0.0507</td>
<td>-0.0081</td>
</tr>
<tr>
<td></td>
<td>m=2</td>
<td>1.1868</td>
<td>0.3412</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
<td>-10.756</td>
<td>-3.4981</td>
</tr>
<tr>
<td></td>
<td>m=0</td>
<td>55.795</td>
<td>36.322</td>
</tr>
<tr>
<td>n=0</td>
<td>m=3</td>
<td>0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>m=2</td>
<td>-0.0081</td>
<td>-0.0026</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
<td>0.0653</td>
<td>0.0159</td>
</tr>
<tr>
<td></td>
<td>m=0</td>
<td>0.7551</td>
<td>0.9342</td>
</tr>
</tbody>
</table>

Based on Calipso Imaging Infrared Radiometer (IIR) data or radiative transfer simulations of M14 and M16 radiances, we found that k_{16}/k_{14} can be fitted with a 3rd order polynomial in terms of ice cloud effective particle Diameter (D_e) as in the following:

$$k_{16}/k_{14} = b_0 + b_1/D_e + b_2/D_e^2$$

(49)

Where $b_0 = 0.9316079$, $b_1 = 5.3303542$ [micron] and $b_2 = 76.3393021$ [micron^2]

For small D_e Calipso data are few and scattered. Therefore $k_{16}/k_{14} = 2.5$ corresponding to $D_e = 9$ micron is set for the maximum k-ratio value.

c. Microphysical parameterizations

A direct determination of D_e from the data that are available from the present satellite thermal infrared radiometers appears to be very difficult, if not impossible. However, we may relate D_e to

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
the cloud temperature through appropriate observations. Based on a large number of cirrus microphysical data collected by optical probes during flights over midlatitudes, Heymsfield and Platt (1984) have suggested that ice crystal size distribution can be represented by a general power form as follows:

\[
\begin{align*}
n(L) &= \begin{cases}
A_1 L^{b_1(\text{IWC})} & \text{if } L \leq L_0 \\
A_2 L^{b_2(\text{IWC})} & \text{if } L > L_0
\end{cases}
\end{align*}
\]

(50)

where \(L_0 = \left(\frac{A_2}{A_1} \right)^{\frac{1}{b_2-b_1}} \), \(\text{IWC} \) is the ice water content and \(A_{1,2} \) and \(b_{1,2} \) are temperature dependent empirical coefficients determined from the measured data. Heymsfield and Platt (1984) have shown that for a given temperature, values of \(A_{1,2} \), \(b_{1,2} \) and \(\text{IWC} \) may be parameterized in terms of temperature in the range of \(-20^\circ\text{C}\) to \(-60^\circ\text{C}\) (Liou, 1992). Based on this parameterization, the mean \(n(L) \) is also a function of temperature. Moreover, aircraft and laboratory measurements indicate that the width \(D \) and the length \(L \) of a hexagonal ice crystal are related (e.g., Auer and Veal, 1970) in which a parameterization relation can be developed for the two. Thus, with the functional form of \(n(L) \) determined, the temperature-dependent mean effective size \(\langle D_e \rangle \) can be obtained, where the bracket denotes the mean value for a given temperature. Subsequently, we perform a least squares polynomial fitting to relate \(\langle D_e \rangle \) to \(T_c \) in the form:

\[
\langle D_e \rangle = \sum_{n=0}^{3} c_n (T_c - 273)^n
\]

(51)

where \(T_c \) is in K, \(c_0 = 326.3 \), \(c_1 = 12.42 \), \(c_2 = 0.197 \) and \(c_3 = 0.0012 \). Equation 51 was used for cloud retrievals using AVHRR data (Ou et al., 1993; Rao et al., 1995).

The retrieved \(D_e \) based on Equation 51 may be in error due to uncertainties in \(A_{1,2} \), \(b_{1,2} \) and \(\text{IWC} \). To improve the accuracy of the retrieved mean effective size, we modify the value of \(D_e \) according to the following procedures. Let \(D_p \) be the modified value of \(\langle D_e \rangle \). We assume that \(D_p \) and \(\text{IWC} \) have the following relationship based on dimensional analysis:

\[
D_p \propto (\text{IWC})^{\frac{1}{3}}
\]

(52)

Observational evidence (Heymsfield and Platt, 1984) shows that:

\[
\langle D_p \rangle \propto \langle \text{IWC} \rangle^{\frac{1}{3}}
\]

(53)

where \(\langle \text{IWC} \rangle \) is the temperature-dependent mean value of \(\text{IWC} \), derived from observations. According to Liou (1992), \(\langle \text{IWC} \rangle \) can be parameterized in terms of \(T_c \) as follows:

\[
\langle \text{IWC} \rangle = \exp\{-7.6 + 4 \exp[-0.2443 \times 10^3(253 - T_c)^{2.445}]\} \quad \text{for } T_c < 253 \text{ K}
\]

(54)

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
The quantity IWC may be expressed by (Fu and Liou, 1993):

\[IWC = \frac{\tau}{[\Delta z(\alpha + \beta/D_e)]} \] (55)

where τ is the visible optical depth, Δz is the cloud thickness and α and β are empirical constants. Δz is assumed to be known and is equal to 1 km. Combining Equations 53 through 56, we obtain:

\[D_e = c \left\{ \frac{\tau}{[\Delta z(\alpha + \beta/D_e)<IWC>]} \right\}^{1/3} <D_e> \] (56)

where c is the combined proportional factor derived from the ratio of proportionality constants implied in Equations 52 and 53. Equation 56 is an implicit algebraic equation for D_e, which is also an implicit function of T_c and τ. It has been verified using the balloon-borne replicator data collected on November 26 and December 5, 1991 during the FIRE-II IFO (Ou et al., 1995).

The constant “c” and Δz are parameters needed to be specified. However, using climatology data we had arrived the following values for Δz at different ranges of Cloud top temperature (in Celsius):

\[\Delta z = 1.37 \text{ Km} \text{ for } T_c > -10^\circ \text{ C} \]
\[= 0.725 - 0.065^* T_c \text{ for } -10^\circ \text{ C} \geq T_c > -35^\circ \text{ C} \]
\[= 4.7 + 0.0456^* T_c \text{ for } -35^\circ \text{ C} \geq T_c > -70^\circ \text{ C} \]
\[= 1.508 \text{ Km} \text{ for } T_c \leq -70^\circ \text{ C} \]

With the above specification for Δz, constant $c = 1.0$

d. Clear radiances

Finally, in order to solve Eq. (46b) for $B_d(T_c)$, and Eq. (46a) for k_2/k_1, the upwelling radiances reaching the cloud base, R_{ai}, must be known. We may approximate these radiance values by using the radiance measured from satellites in clear conditions or we can accurately calculate them using a fast radiative transfer model as the Pfaast model, a Pressure Level Optical Depth (PLOD) developed by Scott Hannon (1996). However, under heavily cloudy conditions, the algorithm that depends on the presence of clear pixels would either fail or perform poorly because of insufficient clear pixels in the scene. Furthermore, the method relying on the presence of clear pixels will undoubtedly require some form of interpolation of clear pixels frequently from far away regions of the scene. This source of error is significant particularly if interpolation of Edge-of-scan clear pixels for cloudy pixels in the nadir region. To avoid this
error the Pfaast model originally developed for the MODIS Cloud Top Parameter algorithm is adopted for VIIRS cloud algorithms (see Appendix C for Pfaast details).

e. Solution Procedures

Figure 14 shows a schematic description of the solution procedures. Utilizing an estimated value of k_{16}/k_{14}, we solve Eq. (46a) for T_c using successive approximation method. Once the T_c is known, e_i and τ can be calculated by Equations (43) and (44). Then k_{15}/k_{12} is calculated by Eq. (46b). Finally, we use Eqs. (47) and (56) to obtain D_e,k and D_e,m, respectively, and determine the output value of D_e based on the weighted sum of the two D_e quantities. This completes one cycle of iteration. The final results, T_c, τ, and D_e are refined by updating the k_{16}/k_{14} with new D_e through Equation 49. Analyses show that due to the insensitivity of k_{16}/k_{14} in D_e, the final results are obtained in 2 iterations.
Figure 14. Flow Chart for the Nighttime IR Cirrus Retrieval Algorithm.

Solar Cirrus Cloud Retrieval Algorithm

During daytime, both a solar retrieval and a thermal-IR retrieval are performed. The solar algorithm (C3) must be run first such that the thermal IR k-ratio, k_{16}/k_{14} can be calculated from Equation 49. Then, the thermal-IR algorithm (C4) proceeds without the reflected solar contamination.

A generalized description of the solar cirrus cloud retrieval algorithm is as follows. For the daytime retrieval, the solar ice cloud retrieval program (C3) uses the VIIRS 1.61μm reflectance and either the 0.672μm (non-snow/ice surfaces) or 1.24μm (snow/ice surfaces) reflectance to infer the cirrus cloud optical depth and mean effective size. The retrieval program follows the principles of the dual-solar-channel technique presented in Nakajima and King (1990). Figure 15 illustrates the underlying principles behind the simultaneous determination of cirrus cloud optical depth and mean effective size from reflected solar radiation measurements. Preliminary calculations using the MAS 0.681, 1.617 and 2.139μm channels have been carried out. Radiative

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
transfer calculations were performed for the six ice crystal size distributions described in section 3.3.1.1 using the LBLE. The results are displayed in two-dimensional reflectance diagrams (0.681–1.617µm and 0.681–2.139µm) for optical depths ranging from 0.5 to 16. Also shown are the results for water clouds having mean effective radii of 4

Figure 15. Display of the Correlation of MAS 0.681-1.617µm Reflectances Based on Radiative Transfer Calculations and MAS Data taken from FIRE-II IFO over Both Land and Water Surfaces. The calculations were performed for the six ice crystal size distributions presented in section 3.3.1.1 and for two water clouds with mean effective radii of 4 and 8 µm. The optical depth (τ) ranges from 0.5 to 64 for water cloud and 0.5-16 for

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
ice cloud. Overlapped with the correlation curves are the MAS data obtained from FIRE-II-IPO on 5 December 1991. The data for the water surface were collected at 1636 UTC over the northern Gulf of Mexico. The land surface data were collected at 1923 UTC over eastern Oklahoma.

and 8µm, optical depths ranging 0.5 to 64 and MAS data obtained from FIRE-II-IPO on December 5, 1991. The top and bottom diagrams correspond to the cases for water and land surfaces, respectively. In the calculations, the effective surface albedos were determined from the MAS reflectances over clear pixels that were identified using a scheme similar to the one developed by Ou et al. (1996).

The preliminary calculations illustrate the information content of optical depth and mean effective size in the MAS 0.681, 1.617 and 2.139µm reflectances. The nearly horizontal or diagonal curves are constant-D_e contours for the six ice crystal size distributions, while the nearly vertical dotted lines are the constant-τ contours for the selected optical depths. The underlying surface was assumed to be Lambertian. The minimum value of the reflection function at each wavelength corresponds to the reflection function of the underlying surface at that wavelength in the absence of an atmosphere. Display of the 0.681 and 1.617µm reflectance correlation shows that if the mean effective radius of a water cloud (stratus and cumulus) is less than about 10 µm and if the mean effective size of an ice cloud is larger than about 20 µm, a clear distinction can be made between the two in the correlation domain. Also noted is that the 0.681µm reflectance depends more strongly on optical depth than on particle size. However, the 1.617 and 2.139µm reflectances are primarily functions of particle size rather than optical depth. From the diagrams, as the optical depth increases, the constant-D_e contour lines gradually approach asymptotic values.

The MAS data were obtained from the flight missions during FIRE-II IFO. The case over water was taken at 1636 UTC, 5 December 1991, when ER-2 was flying over the northern part of the Gulf of Mexico near the southern coastal region of Louisiana. The case over land was taken at 1923 UTC, 5 December 1991, when ER-2 was flying over eastern Oklahoma. The data points indicate that the detected cirrus clouds appear to contain small ice particles with optical depths less than about 6. Larger optical depths indicate the possibility of cirrus overlying low clouds.

Figure 16 shows an algorithm for retrieving the optical depth and mean effective size of cirrus clouds from comparisons of measured reflectances with entries in the library. We first prescribe the sun-sensor geometric parameters including solar zenith angle, sensor viewing zenith angle and relative azimuth angle for each pixel. In the algorithm sensitivity studies, the surface albedo was determined based on climatological data sets. We then select values for the mean effective ice crystal sizes and optical depths. Subsequently, we construct radiance tables for each combination of ice crystal mean effective size and optical depth and for each VIIRS channel used for cloud retrieval (1.61µm and either 0.672µm or 1.24µm). A series of numerical iteration procedures are set up to search for the simulated reflectances that best match the measured
reflectances (see Appendix B). In the algorithm, the “simulated” reflectances are precomputed using the LBLE and stored as LUTs. The numerical scheme is basically composed of minimizing the sum of the square of the “residual” for each channel. The “residual” is defined as the difference between the logarithm of simulated reflectance and the logarithm of the measured reflectance. This definition of the residual used for determining the best fit is typically defined as a least-squares fit (Twomey and Cocks, 1989). The retrieved cloud parameters consist of the combination of optical depth and effective particle size associated with the best-fit reflectances, yielding the minimal residual.

Figure 17 shows the flowchart for the daytime cirrus cloud COP (C3) for the retrieval of cloud top temperature. We first use C3 to determine the visible optical depth and effective particle size. Then we use C4 (as in C1) to determine the cloud-top temperature.
Flow Chart for Cirrus Solar Retrieval Algorithm

Determine Geometry and Surface Albedo for each Pixel:
\(\mu, \mu_0, \phi, Ag(\lambda) \)

Calculated libraries for
\(r_e = r_{e1}, r_{e2}, r_{e3}, \ldots, r_{en} \)
\(\tau = \tau_1, \tau_2, \tau_3, \ldots, \tau_m \)

Compute Reflectance Functions
\(r_{comp}(\lambda=0.672\ \mu m, \tau_m, r_{en}, \mu, \mu_0, \phi) \)
\(r_{comp}(\lambda=1.61\ \mu m, \tau_m, r_{en}, \mu, \mu_0, \phi) \)

Residual Definition:
\[
\begin{align*}
\{ \ln[r_{comp}(\lambda=0.672\ \mu m, \tau_m, r_{en}, \mu, \mu_0, \phi)] - \ln[r_{meas}(\lambda=0.672\ \mu m, \mu, \mu_0, \phi)] \}^2 \\
+ \{ \ln[r_{comp}(\lambda=1.61\ \mu m, \tau_m, r_{en}, \mu, \mu_0, \phi)] - \ln[r_{meas}(\lambda=1.61\ \mu m, \mu, \mu_0, \phi)] \}^2
\end{align*}
\]

Determine combination of \(\tau_m, r_{en} \) that minimizes residual

Figure 16. Flow Chart for the solar Cirrus Retrieval Algorithm
Thin Cirrus Overlying Sunglint Surfaces

Sun glint does not normally affect the cloud EDRs since clouds preclude any surface reflection. The sole exception is the case of thin cirrus clouds overlaying sun glint areas with no additional underlying clouds. This case will be indicated by the VIIRS Cloud Mask via the following checks:

- flags indicate the possibility of sun glint,
- flags indicate thin cirrus exists,
- other cloud flags have not been tripped.

The thin cirrus tests use M9 (1.378µm) and the thermal infrared bands, M15 (10.7625µm) and M16 (12.0125µm). These tests are not compromised by sun glint. When the special circumstance of only thin cirrus (no other clouds) over sun glint occurs, then cloud top temperature is determined using M15 (10.7625µm) alone instead of M12 (3.7µm) and M15 (10.7625µm) together. The cloud top temperature solution will degrade somewhat, but this is unavoidable given the specular reflection noise precluding the use of M12 observations during sun glint conditions.
3.3.2.2 Retrieval of Water Cloud Parameters

Once the water cloud pixels are identified, two retrieval programs are applied to nighttime and daytime data as shown in Figure 18. For the daytime retrieval, the solar water cloud retrieval algorithm (W1) uses the VIIRS 0.672µm (non-snow/ice surfaces), 1.24µm (snow/ice surfaces) and 1.61µm reflectance data to infer water cloud optical depth and mean effective radius (r_e). Unlike the ice cloud retrieval, there is no IR algorithm for water cloud retrievals during daytime. For this case, the Cloud Optical Properties (COP) unit does not return a value for cloud top temperature instead depending upon the Cloud Top Parameters (CTP) unit for generation of this parameter. For the nighttime retrieval, the IR water cloud retrieval algorithm (W2), using the VIIRS 3.7µm and 10.76µm radiances, along with microphysical parameterizations, is employed to infer the water cloud temperature, mean effective radius and visible optical depth.

Solar Water Cloud Retrieval Algorithm

A generalized description of the solar water cloud retrieval algorithm is as follows. Figure 19 shows an algorithm for retrieving the optical depth and mean effective size of water clouds from comparisons of measured reflection functions with entries in the library. We first prescribe the sun-sensor geometric parameters, including the solar zenith angle, the sensor viewing zenith angle and relative azimuth angle for each pixel. Operationally, surface albedo is obtained from an internal table given the surface type from the VIIRS Cloud mask. In the algorithm sensitivity studies, the surface albedo is determined from climatological data.
Figure 18. Flow Chart for the Water Cloud Retrieval Program.
Figure 19. Flow Chart for the Solar Water Cloud Retrieval Algorithm.

Subsequently, we construct reflectance arrays for each combination of water droplet effective radius, optical depth and for each VIIRS channel used for cloud retrieval (0.672, 1.24 and 1.61\(\mu\)m) at given surface, solar and sensor geometry conditions. A series of numerical iteration procedures, as described in Appendix B, are set up to search for the simulated reflectances in the arrays that best match the measured reflectances. In the algorithm, the “simulated” reflectances are pre-computed using the LBLE and stored as LUTs. The numerical scheme minimizes the sum of the square of the “residual” for each channel. The “residual” is defined as the difference between the logarithm of the simulated reflectance and the logarithm of the measured reflectance.

Nighttime IR Water Cloud Retrieval Algorithm

The retrieval program for inferring water cloud temperature, effective droplet radius and optical depth from the upwelling radiance of VIIRS cloud retrieval channels is similar to the cirrus cloud IR retrieval program. It also follows the principles of the dual-IR-channel technique presented in Liou *et al.* (1990). The VIIRS 3.7\(\mu\)m and 10.76\(\mu\)m radiances are used for retrieval. A major
advantage of using these two channels for water cloud retrievals is that the presence of water vapor has almost no effects on the radiance of these window bands.

a. Radiative parameterizations

From the theory of radiative transfer, we may express the upwelling radiance at TOA for the 3.7\(\mu \text{m} \) (M12) and 10.76\(\mu \text{m} \) (M15) channels over a water cloud atmosphere as

\[
R_i = R_{wi} + \mathcal{S}_i R'_i
\]

where \(R_{wi} \) and \(\mathcal{S}_i \) are the emitted radiance and the transmittance due to atmospheric water vapor and other gaseous species above the water cloud top, respectively; and \(R'_i \) is the atmospheric-corrected upwelling radiance at the cloud top. The second term in Eq. (57) represents the portion of the TOA radiance attributed to the transmitted upwelling radiance at the cloud top. A version of the radiative transfer program developed by Kratz (1995) has been used to compute the two atmospheric parameters. However, we use parameterization equations to determine \(R_{wi} \) and \(\mathcal{S}_i \). With those, it is then possible to derive \(R'_i \) from Eq. (63).

We then further express \(R'_i \) in terms of the water cloud mean temperature \(T_c \) and emissivities \(\varepsilon_{12} \) and \(\varepsilon_{15} \) as follows:

\[
R'_i = (1 - \varepsilon_i) R'_{ai} + \varepsilon_i B_i(T_c)
\]

where \(R'_{ai} \) denote the upwelling radiance reaching the cloud base for the two spectral bands, and \(B_i(T_c) \) are the respective Planck functions at \(T_c \). The first term on the right-hand side of Equation 64 represents the contribution of the transmitted radiance from below the cloud. The second term denotes the emission contribution from the cloud itself.

In order to solve Equation (58) for \(T_c \) and \(\varepsilon_i \) numerically, we can correlate \(\varepsilon_{12} \) and \(\varepsilon_{15} \), and relate \(B_{12}(T_c) \) with \(B_{15}(T_c) \). The clear radiance \(R_{a12} \) and \(R_{a15} \) are calculated using Pfaast fast RTM (Appendix C). First we compute the Planck functions \(B_{12}(T_c) \) and \(B_{15}(T_c) \), taking into account the filter functions of both channels, and produce values of both \(B_{12}(T_c) \) and \(B_{15}(T_c) \) in 0.1 K intervals within the range of \(T_c \) from 150 to 300K.

Then, we investigate the relationship between the emissivities for the two channels. From radiative transfer calculations and following the approach proposed by Liou et al. (1990), we may parameterize water emissivities at the 3.7 and 10.76\(\mu \text{m} \) wavelengths in terms of visible optical depths \(\tau \) in the form:

\[
\varepsilon_i = \alpha_i [1 - \exp(-k_i \tau / \cos \theta_{\text{sensor}})]
\]

\(i = 12, 15 \)
The exponential term represents the effective transmissivity. The parameters \(k_{12} \) and \(k_{15} \) represent the effective extinction coefficients for the two channels accounting for multiple scattering within water clouds and for the difference between visible and IR extinction coefficients. Both \(k_{12} \) and \(k_{15} \) are smaller than 1 because the effect of multiple scattering increases transmission. Thus the products \(k_i \tau \) may be considered as effective optical depth that would yield the same emissivity values for the non-scattering conditions at the 3.7 and 10.76\(\mu \)m wavelengths. A scaling factor \(\alpha_i \) has been added to Equation 66, which accounts for the scattering effects. For the 10.76\(\mu \)m band, \(\alpha_{15} \) is nearly 1 due to very small scattering for that band and is set to 1 in the science code. For 3.7\(\mu \)m, \(\alpha_{12} \) is a function of \(r_e \), and its value for a selected \(r_e \) can be obtained as the value of \(\varepsilon_i \) at very large \(\tau \) (~64). Using the \(\alpha_i \) values for the nine reference \(r_e \), we obtain a polynomial function of \(\alpha_i \) in terms of \(r_e^{-1} \) as follows:

\[
\alpha_i(r_e) = \sum_{n=0}^{3} m_n r_e^{-n}.
\]

where \(r_e \) is in \(\mu \)m, \(m_0 = 0.8658, m_1 = 2.9877, m_2 = -4.9921 \) and \(m_3 = 2.4863 \).

By eliminating \(\tau \) from Equation 66, we obtain

\[
(1 - \varepsilon_{12} / \alpha_{12})^{k_{12}} = (1 - \varepsilon_{15} / \alpha_{15})^{k_{15}}
\]

Equation 68 correlates \(\varepsilon_{12} \) and \(\varepsilon_{15} \) directly. A further combination of Equations 64 and 68 leads to:

\[
\left[1 - (R'_{a12} - R'_{a15}) / \alpha_{15}(R'_{a12} - B_{12}(T_c))\right]^{k_{15}} = \left[(R'_{a15} - B_{15}(T_c)) / R'_{a15} - B_{15}(T_c)\right]^{k_{12}}
\]

Error! Bookmark not defined. Substitution of Equation 58 into Equation 62 results in a nonlinear algebraic equation, with \(T_c \) as the only unknown:

\[
\left[R'_{a15} - B_{15}(T_c)\right] / \left[R'_{a15} - B_{15}(C)\right] = \left[R'_{a15} - B_{15}(T_c)\right] / \left[R'_{a15} - B_{15}(C)\right] = 0
\]

\(b. \) Radiative-microphysical parameterizations

We investigate the dependence of \(k_{15}/k_{12} \) on the particle size distribution and optical depth based on radiative transfer calculations by using nine water droplet size distributions given in Section 3.4. A reasonable range of optical depth (0.125-64) for these size distributions has been used. As an initial approximation, we may take \(k_{12} \) and \(k_{15} \) as independent of the optical depth. However, for more accurate retrieval of water cloud parameters, we need to consider the dependence of \(k_{15}/k_{12} \) on the optical depth. Generally, \(k_{15}/k_{12} \) decreases as \(r_e \) increases. For a small \(r_e \) (~2\(\mu \)m), \(k_{15}/k_{12} \) is close to 2.5. This is primarily because the single-scattering albedo is larger for the
3.7 µm wavelength (~0.8) than that for the 10.76 µm wavelength (~0.4), which implies that more scattering is associated with the former wavelength. For \(r_e > 16 \mu m \), \(k_{15}/k_{12} \) approaches 1 for the following reasons. First, the extinction coefficients are approximately the same for the two wavelengths because of large-size parameters in which the geometric optics limit is valid. Second, the single-scattering albedos are also approximately the same for these wavelengths because substantial absorption occurs within large water droplets. This implies that only the diffracted and externally reflected light contributes to the scattering processes. For obtaining the initial guesses, \(k_{15}/k_{12} \) can be expressed in terms of \(\ln(\tau) \) in the form:

\[
k_{15}/k_{12} = \sum_{n=0}^{3} d_n [\ln(\tau)]^n
\]

where the coefficients \(d_n \) are determined from a second-order least square method using the radiance tables. In the operational retrieval scheme, however, \(d_n \) are further expressed as third-order polynomial functions of \(\ln(r_e) \):

\[
d_n = \sum_{m=0}^{3} b_{mn} [\ln(r_e)]^m
\]

where the coefficients \(b_{mn} \) are provided in Table 7.

Table 7. Coefficients (\(b_{mn} \)) to compute \(k_{15}/k_{12} \) from Optical Depth and Water Cloud Effective Droplet Radius.

<table>
<thead>
<tr>
<th></th>
<th>(r_e < 12 \mu m)</th>
<th>(r_e \geq 12 \mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m = 2)</td>
<td>(m = 1)</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>0.0083</td>
<td>-0.0172</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>-0.0348</td>
<td>0.0393</td>
</tr>
<tr>
<td>(n = 1)</td>
<td>-0.1093</td>
<td>0.3897</td>
</tr>
<tr>
<td>(n = 0)</td>
<td>0.5188</td>
<td>-1.1634</td>
</tr>
</tbody>
</table>

c. Microphysical Parameterizations

We start with the familiar relationship between \(r_e, LWP \), and \(\tau \):

\[
r_e = \frac{3}{2} \frac{LWP}{\rho_i \tau},
\]

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Where r_e is the mean effective radius (µm), LWP is the liquid water path (gm / m²), ρ_l is the water density ($= 1$ gm /cm³), τ is the optical depth (A unit conversion factor of 1000 must be multiplied). LWP can be obtained from

$$LWP = LWC \times \Delta z,$$

(67)

Where LWC is the liquid water content (gm / m³), Δz is the cloud geometric thickness. We assume $\Delta z = 1$ km. Following Matveev (1984), the climatological mean water cloud LWC may be expressed as a function of temperature. Based on his results, we assume that LWC can be obtained based on the following relationship:

$$LWC = a + bT_c,$$

(68)

where $a = -1.284$ and $b=0.0055$, T_c is the cloud temperature (K).

d. Solution procedures

Figure 20 shows a schematic description of the solution procedures. Using the VIIRS 3.7 and 10.7625µm channel data, we first obtain an estimate of mean water cloud temperature based on the 10.76 mm brightness temperature, and effective droplet size from Eq. (66). Then we compute k_{15}/k_{12} and α_{12} based on Eqs. (64) and (60), respectively, and substitute these parameters into Eq. (63) to obtain cloud-top temperature by a numerical iterative method. Afterward, the visible optical depth is obtained from Eq. (59), and the effective droplet radius is obtained from Eq. (66).
64

3.3.3 Algorithm Output

Effective particle size and optical depth are output for all clouds and illumination conditions. Additionally, cloud temperature is retrieved whenever the IR algorithms are used which includes ice clouds (day and night) and water clouds at night. During daytime, water cloud temperature is not retrieved from these algorithms. It will instead be estimated from the Cloud Top Parameters unit.

Figure 20. Flow Chart for the Nighttime IR Water Cloud Retrieval Algorithm.
3.3.4 Variance and Uncertainty Estimates

Retrieval errors can be caused by instrumental characteristics including noise and calibration errors. Algorithm sensitivity studies on the EDR uncertainty due to instrumental noises have been performed by adding random noises to the simulated radiances according to the sensor noise model. Results of these studies are presented in sections 3.4 and 3.5. A summary of these studies are given as follows.

Algorithm sensitivity studies have been carried out separately for cirrus clouds using solar and IR algorithms and for water clouds using solar algorithms. These studies are designed to investigate whether the algorithms meet the threshold and objective requirements specified in VIIRS SRD (Appendix A) given reasonable assumptions about the uncertainty of input radiance. The key requirements for the retrieved optical depth and effective particle size are the measurement range, measurement accuracy and precision errors. Other requirements are less relevant than these. According to the specification of the SRD, for optical depth, the threshold requirement for the measurement range is between 0 and 10. The threshold requirement for measurement accuracy is the greater of 10 percent or 0.05 optical depth; and the objective requirement for measurement accuracy is the greater of 5 percent or 0.025 (suggested value). Also, the threshold requirement for precision error is the greater of 5 percent or 0.025 optical depth, and the objective requirement is the greater of 2 percent or 0.02 (suggested value). For effective particle size, the threshold requirement for the measurement range is between 0 and 50\(\mu m\). The threshold requirement for the measurement accuracy is the greater of 10 percent or 4\(\mu m\); and the objective requirement is the greater of 5 percent or 2\(\mu m\). The threshold requirement for the measurement precision is the greater of 5 percent or 2\(\mu m\); while the objective requirement is 2 percent. We demonstrate that these threshold and objective values for the measurement range, accuracy and precision errors are met.

A few values of the measurement requirements above are to be determined by the contractor. For optical depth, we suggest the objective value for the measurement range is between 0.1 and 64, and between 0.1 and 12 for the retrieval of daytime and nighttime water clouds, respectively; and between 0.1 and 10 for the retrieval of both daytime and nighttime cirrus clouds. The lower limit of the range should be 0.1 instead of 0 for both threshold and objective. The originally set lower bound 0 corresponds to clear, while 0.1 represents an adequate lower limit based on research results (e.g., Ou et al., 1995). Moreover, water cloud optical depths cover most of this range. Established research-grade solar algorithms (e.g., King et al., 1996) address the range between 0.5 and 64 for water cloud retrieval. In addition, based on Ou et al. (1993, 1995) and Rao et al. (1995), the measurement range of the optical depth of both daytime and nighttime cirrus cloud is between 0.1 and 10. Nighttime retrievals for water clouds are more difficult to achieve, and the anticipated measurement range based on IR techniques is about 1 to 12.

We also suggest the objective value for the measurement precision of optical depth is the greater of 2 percent and 0.02. Based on Figure 10 of the MODIS-ATBD, Version 6 (King et al., 1996), for water cloud optical depth larger than 5, the retrieval error of the solar algorithm is generally
less than 2 percent. On the other hand, Rao et al. (1995) show that for ice cloud optical depth larger than 1, the retrieval errors for optical depth are less than 2 percent, and for optical depth less than 1, the retrieval errors are less than 0.02 optical depth.

For cloud effective particle size, we suggest that the objective requirements for the measurement range are between 5 and 62.5µm for cirrus clouds, and between 2 and 32µm for water clouds. We specify the lower limit of the measurement range to be 1 µm instead of 0µm, because particles with size smaller than 1µm are generally classified as aerosols. It has been demonstrated that the IR algorithm can address the ice crystal mean effective size \(D_e\) range between 23 and 124µm (Ou et al., 1993, 1995; Rao et al., 1995). Because the definition of the effective particle size implies radius, the above \(D_e\) range corresponds to a range of effective particle radius between 11.5 and 62µm. With available in situ contrail size distributions and associated single-scattering properties based on the unified light-scattering theories for ice crystals (Liou et al., 1998), the lower limit of retrievable ice crystal effective particle size can be extended down to 5µm. On the other hand, established research-grade solar algorithms address the measurement range between 2 and 32µm for water clouds. Nighttime retrievals for water clouds are more difficult to achieve, and the anticipated measurement range based on the IR techniques is expected to be from 4 to 16µm.

3.4 ALGORITHM SENSITIVITY STUDIES ON RETRIEVALS OF OPTICAL THICKNESS

The algorithm sensitivity studies were carried out using the results generated by the radiative transfer model for seven separate scenarios. These scenarios form the basis for defining the input parameters required by the radiative transfer model. They are:

5. Cirrus cloud in Sub-Arctic Atmosphere, sensor pointing at nadir.
6. Cirrus cloud in Desert Atmosphere, sensor pointing at nadir.

For scenarios 1 through 4, synthetic retrievals for both daytime and nighttime conditions were carried out for combinations of input cirrus optical depths and effective particle sizes. For scenario 7, only synthetic retrievals for daytime conditions were carried out.
The LBLE described in Section 3.3.1.7 was used to generate simulated radiance. The input parameters for each scenario are given in Table 8. For all scenarios, the solar zenith angle is fixed at 32°, the nominal date is 1 May and the location is 40° North based on the Raytheon VIIRS orbital simulation. Parameters specified include the atmospheric profile, sun-sensor geometry, retrieval channel characteristics (including central wavelength, band-width and response function), cloud type, altitude and thickness, as well as surface albedo and emissivity. The radiative transfer calculations are performed for a wide range of selected visible optical depths and mean effective sizes. For cirrus clouds, the optical depths are: 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 12. The mean effective sizes are: 23.9, 30.4, 41.5, 71 and 93 µm. For water clouds, the optical depths are: 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 16, 24, 32, 48 and 64. The mean droplet radii are: 2, 3, 4, 6, 8, 12, 16, 24 and 30 µm. Many radiance values are thus produced, and they are further processed to create data sets that are appropriate for the parameter retrieval algorithms and algorithm sensitivity analyses.

This section addresses results of the algorithm sensitivity analysis for Cloud Optical Depth using the cirrus and water cloud IR and solar retrieval algorithms. The results of these algorithm sensitivity analyses follow.

3.4.1 SNR Tests

The SNR tests address the impact of SNR on both pixel-level and image-level retrievals. The pixel-level retrievals are performed for a single pixel assuming various combinations of cloud optical depth and effective particle size. The imagery-level retrievals are performed for pixels aggregated (averaged) to VIIRS SRD horizontal cell size (HCS). The required HCS is a function of EDR parameter; threshold and objective values are stated. In this report, only the pixel-level SNR tests are addressed. The test results are presented separately for the solar algorithm and IR algorithms. To create data sets to support the pixel level SNR test, noise based on the system specification noise model is added directly to the radiance contained in the radiance tables and then retrievals are performed using the noise-added data in the tables. To guarantee sample sizes are sufficient to support tests, noise is randomly added to each radiance value 32 times. In effect, 32 noise perturbed radiance tables are created. Retrievals are performed using each of the 32 noise-added tables and the no-noise table. The results of the retrieval process are then statistically analyzed to compute the metrics described in the SRD (accuracy, precision, etc.).
Table 8. Input Parameters for Each Scenario.

<table>
<thead>
<tr>
<th>SET #</th>
<th>USSCir-n1*</th>
<th>USSCir-i*</th>
<th>USSCir-eos</th>
<th>TCir-n</th>
<th>SACir-n</th>
<th>DesCir-n</th>
<th>USSWat-n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Standard (1)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tropical (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-arctic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Skin Temperature</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MODTRAN Default (uses sfc air temp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerosol Model</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MODTRAN Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sensor Geometry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nadir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Nadir</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge-of-Scan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cloud Height</td>
<td>9-10 km</td>
<td>9-10 km</td>
<td>9-10 km</td>
<td>14-15 km</td>
<td>9-10 km</td>
<td>9-10 km</td>
<td>1-2 km</td>
</tr>
</tbody>
</table>

3.4.1.1 Daytime Results

Cirrus Cloud in US Standard Atmosphere, Sensor Pointing at Nadir

Figure 21 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61μm and 0.672–2.25μm for the selected six ice crystal size distributions and 14 optical depths. These diagrams clearly illustrate the information content of optical depth and mean effective size in the

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
0.672, 1.61 and 2.25μm reflectances. Display of the 0.672 and 1.61μm reflectance correlation shows that if the mean effective size of an ice cloud is larger than about 24μm but less than about 124μm, an accurate retrieval of ice crystal mean effective size can be achieved. Based on a similar argument, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 0.672μm reflectance mainly depends on the optical depth, while the 1.61 and 2.25μm reflectances are primarily functions of mean ice crystal size for optically thick ice clouds. Consequently, data for these three channels can be utilized to determine both optical depth and mean effective ice crystal size. The validity of such correlations has been examined using the MAS data obtained from the flight missions during FIRE-II IFO. Limited comparisons between MAS data points and computed results show that most of the data points fall inside the correlative mesh of optical depth vs. mean effective size.

Figure 22 show the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrievals of combinations of all possible optical depths and mean effective sizes using the display of the 0.672 and 1.61μm reflectance correlation. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., < 0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves and are close to zero. The extremely small values of accuracy and precision errors indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths in this case.
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 21. Display of the Correlation between the VIIRS 0.672 and 1.61μm Reflectances (top) and between the 0.672 and 2.25μm Reflectances (bottom) for Cirrus Clouds in US Standard Atmosphere, Sensor at Nadir.

Accuracy of Optical Depth (Daytime)

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
To examine the effects of adding the VIIRS 2.25\(\mu\)m channel for the retrieval of cirrus cloud parameters, Figure 23 show the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean effective sizes using the display of the 0.672 and 2.25\(\mu\)m reflectance correlation. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements. For larger optical depths, both the accuracy and precision errors are close to zero for a variety of surface conditions, different geometries, and different cloud types. Figure 23 is similar to Figure 22. Thus we expect all retrievals using the 0.672-2.25\(\mu\)m correlations will produce similar results as those using the 0.672-1.61\(\mu\)m correlations. For the rest of the algorithm studies on the solar retrieval algorithm, we will only show results using the 0.672-1.61\(\mu\)m correlation.

Figure 22. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672–1.61\(\mu\)m Correlation, Sensor at Nadir.
Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-nadir

Figure 24 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61µm and 0.672–2.25µm for the selected ice crystal size distributions and optical depths. The sensor zenith angle is 40°, and the relative azimuth angle is 136°. Like Figure 21, these diagrams illustrate the information content of optical depth and mean effective size in the 0.672, 1.61 and 2.25µm reflectances. However, both the 1.61 and 2.25µm surface albedos are changed from 0.05 in Figure 21 to 0.25 to simulate the land surface condition. Thus, the shape of the correlation mesh in Figure 24 is different than that in Figure 21. This change of the shape of the correlation mesh does not affect the retrieval accuracy and precision. Display of the 0.672 and 1.61µm reflectances correlation shows that if the mean effective size of an ice cloud is larger than about 24µm but less than about 124µm, an accurate retrieval of ice crystal mean effective size can be achieved. Based on a similar argument, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 0.672µm reflectance mainly depends on the optical depth, while the 1.61 and 2.25µm reflectances are primarily functions of mean ice crystal size for optically thick ice clouds. Consequently, data for these three channels can be utilized to determine both optical depth and mean effective ice crystal size.

Accuracy of Cloud Optical Depth

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 23. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672–2.25 μm Correlation, Sensor at Nadir.
Figure 24. Display of the 0.672-$1.61\mu m$ (top) and 0.672-$2.25\mu m$ (bottom) Reflectance Correlations for Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-Nadir.

Figure 25 show the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean
effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths for the off-nadir sensor position.

Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan

Figure 26 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61µm and 0.672–2.25µm for the selected ice crystal size distributions and optical depths. The sensor is assumed to be pointing at edge-of-scan. Like Figure 21, these diagrams illustrate the information content of optical depth and mean effective size in the 0.672, 1.61 and 2.25µm reflectances. However, both the 1.61 and 2.25µm surface albedos are changed from 0.05 in Figure 21 to 0.25 to simulate the land surface condition. Thus, the shape of the correlation mesh in Figure 26 is different than that in Figure 21. This change of the shape of the correlation mesh does not affect the retrieval accuracy and precision. Display of the 0.672 and 1.61µm reflectance correlation shows that if the mean effective size of an ice cloud is larger than about 24µm but less than about 124µm, an accurate retrieval of ice crystal mean effective size can be achieved. Likewise, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 0.672µm reflectance mainly depends on the optical depth, while the 1.61 and 2.25µm reflectances are primarily functions of mean ice crystal size for optically thick ice clouds. Consequently, data for these three channels can be utilized to determine both optical depth and mean effective ice crystal size.

Figure 27 shows the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths in the edge-of-scan case.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 25. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Cirrus Solar Algorithm for US Standard Atmosphere, Sensor pointing Off-Nadir.
Figure 26. Display of the 0.672-1.61\(\mu\)m (top) and 0.672-2.25\(\mu\)m (bottom) Reflectance Correlations for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 27. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Cirrus Cloud in Tropical Atmosphere with Sensor at Nadir

Figure 28 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61µm and 0.672–2.25µm for the selected ice crystal size distributions and optical depths. The sensor is assumed to be pointing at nadir. Like Figure 21, these diagrams illustrate the information content of optical depth and mean effective size in the 0.672, 1.61 and 2.25µm reflectances. However, both the 1.61 and 2.25µm surface albedos are changed from 0.05 in Figure 21 to 0.25 to simulate the land surface condition. Thus, the shape of the correlation mesh in Figure 28 is different than that in Figure 21. This change of the shape of the correlation mesh does not affect the retrieval accuracy and precision. Display of the 0.672 and 1.61µm reflectance correlation shows that if the mean effective size of an ice cloud is larger than about 24µm but less than about 124µm, an accurate retrieval of ice crystal mean effective size can be achieved. Likewise, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 0.672µm reflectance mainly depends on the optical depth, while the 1.61 and 2.25µm reflectances are primarily functions of mean ice crystal size for optically thick ice clouds. Consequently, data for these three channels can be utilized to determine both optical depth and mean effective ice crystal size.

Figure 29 shows the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 28. Display of the 0.672-1.61μm (top) and 0.672-2.25μm (bottom) Reflectance Correlations for Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 29. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Cirrus Cloud in Sub-Arctic Atmosphere with Sensor at Nadir

Figure 30 shows the two-dimensional correlation for the reflectance pair: 1.2–1.61 µm for the selected ice crystal size distributions and optical depths. The sensor is assumed to be pointing at nadir. Like Figure 21, these diagrams illustrate the information content of optical depth and mean effective size in the 1.2 and 1.61 µm reflectances. However, the 1.2 and 1.61 µm surface albedos are changed from 0.05 in Figure 21 to 0.164 and 0.0 respectively to simulate the ice/snow surface condition. Thus, the shape of the correlation mesh in Figure 30 is different than that in Figure 21. This change of the shape of the correlation mesh does not affect the retrieval accuracy and precision. Display of the 1.2 and 1.61 µm reflectance correlation shows that if the mean effective size of an ice cloud is larger than about 24 µm but less than about 124 µm, an accurate retrieval of ice crystal mean effective size can be achieved. Likewise, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 1.2 µm reflectance mainly depends on the optical depth, while the 1.61 µm reflectance is primarily a function of mean ice crystal size for optically thick ice clouds. Consequently, data for these two channels can be utilized to determine both optical depth and mean effective ice crystal size.

Figure 31 shows the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths.
Figure 30. Display of the 1.2-1.61μm Reflectance Correlations for Cirrus Cloud in Sub-Arctic Atmosphere, Sensor at Nadir.
Figure 31. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Sub-Arctic Atmosphere, Sensor at Nadir.
Cirrus Cloud in Desert Atmosphere with Sensor at Nadir

Figure 32 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61μm for the selected ice crystal size distributions and optical depths. The sensor is assumed to be pointing at nadir. Like Figure 21, these diagrams illustrate the information content of optical depth and mean effective size in the 0.672 and 1.61μm reflectances. However, both the 0.672 and 1.61μm surface albedos are changed from 0.05 in Figure 21 to 0.40 and 0.64, respectively, to simulate the land surface condition. Thus, the shape of the correlation mesh in Figure 32 is different than that in Figure 21. This change of the shape of the correlation mesh does not affect the retrieval accuracy and precision. Display of the 0.672 and 1.61μm reflectance correlation shows that if the mean effective size of an ice cloud is larger than about 24μm but less than about 124μm, an accurate retrieval of ice crystal mean effective size can be achieved. Likewise, if the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. Also noted is that the 0.672μm reflectance mainly depends on the optical depth, while the 1.61μm reflectances are primarily functions of mean ice crystal size for optically thick ice clouds. Consequently, data for these two channels can be utilized to determine both optical depth and mean effective ice crystal size.

Figure 33 shows the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrieval combinations of all possible optical depths and mean effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirements for most selected values of optical depth. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths.
Figure 32. Display of the 0.672-1.61\,\mu m Reflectance Correlations for Cirrus Cloud in Desert Atmosphere, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontend/dsp.cfm to verify that this is the correct version prior to use.
Figure 33. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Cirrus Cloud in Desert Atmosphere, Sensor at Nadir.

Water Cloud in US Standard Atmosphere, Sensor at Nadir

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 34 shows the two-dimensional correlations for the reflectance pairs: 0.672–1.61µm and 0.672–2.25µm for the selected water droplet effective radii and optical depths. The sensor is assumed to be pointing at nadir. These diagrams illustrate the information content of optical depth and droplet effective radius in the 0.672, 1.61 and 2.25µm reflectances. Both the 1.61 and 2.25µm surface albedos are set at 0.05 as in Figure 21 to approximately simulate the ocean surface condition. Thus, the shape of the correlation mesh in Figure 34 is similar to that in Figure 21. This similarity in the shape of the correlation mesh causes the retrieval accuracy and precision to be close to those for cirrus clouds in US Standard Atmosphere with sensor pointing at nadir. Display of the 0.672 and 1.61µm reflectance correlation shows that if the droplet effective radius of a water cloud is larger than about 4µm but less than about 30µm, an accurate retrieval of water droplet effective radius can be achieved.

The curves of 2 and 3µm partially overlap those of 4 and 6µm. Therefore, if the droplet effective size is less than 4µm, the retrieved optical depths may be in error, because the retrieval scheme will take the data as from a cloud of 5 and 6µm. If the optical depth of an ice cloud is larger than about 0.5 but less than 12, an accurate retrieval of optical depth can also be obtained. It is noted that the 0.672µm reflectance mainly depends on the optical depth, while the 1.61 and 2.25µm reflectances are primarily functions of mean droplet radius for optically thick water clouds. Consequently, data from these three channels can be utilized to determine both optical depth and droplet effective radius.

Figure 35 show the accuracy and precision of retrieved optical depths as functions of optical depth. These results are based on retrievals of combinations of all possible optical depths and mean effective sizes. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of retrieved optical depths meets both the threshold and objective requirements for most selected values of optical depth. The precision of retrieved optical depths meets both the threshold (greater of 5 percent or 0.025) and objective (greater of 2 percent or 0.02) requirements for most selected values of optical depth. For very small optical depths (e.g., <0.5), both the accuracy and precision errors are close to threshold and objective requirements, but for larger optical depths, both the accuracy and precision errors are well below the threshold and objective curves. The small values of accuracy and precision errors again indicate that the solar algorithm is highly accurate and very stable in retrieving optical depths for water clouds for the US Standard Atmosphere with the sensor pointing at nadir.
Figure 34. Display of the 0.672-1.61μm (top) and 0.672-2.25μm (bottom) Reflectance Correlations for Water Cloud in US Standard Atmosphere, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 35. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the Solar Algorithm for Water Cloud in US Standard Atmosphere, Sensor at Nadir.
3.4.1.2 Nighttime Results

Cirrus Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 36 shows the accuracy and precision of retrieved optical depths from the nighttime IR algorithm as a function of optical depth. These results are based on retrieval combinations of optical depths between 0.125 and 7 and of mean effective sizes between 20 and 100 µm. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of the retrieved optical depths meets the threshold requirement for optical depths up to 6. The accuracy does not meet the threshold for optical depths larger than 6, mainly because the exponential relationship between IR emissivity and optical depth. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large error in optical depth. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirement for optical depths up to 7. Precision becomes less satisfactory for larger optical depths, because the sensitivity of emissivity toward optical depth is reduced due to the exponential relationship between the emissivity and optical depth.

Figure 37 shows the accuracy and precision of retrieved optical depths from the nighttime IR algorithm as a function of optical depth. These results are based on retrieval combinations of optical depths between 0.125 and 7 and of mean effective sizes between 20 and 100 µm. The straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of the retrieved optical depths meets the threshold requirement for optical depths up to 7. The accuracy does not meet the threshold for optical depths larger than 7, mainly due to the exponential relationship between IR emissivity and optical depth. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large error in optical depth. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirement for optical depths up to 5. Precision becomes less satisfactory for larger optical depths, because sensitivity of emissivity toward optical depth is reduced due to the exponential relationship between the emissivity and optical depth.
Figure 36. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Nadir.
Figure 37. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-Nadir.
Figure 38. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan

Figure 38 shows the accuracy and precision of retrieved optical depths from the nighttime IR algorithm as a function of optical depth. These results are based on retrieval combinations of optical depths between 0.125 and 5 and of mean effective sizes between 20 and 100\(\mu\)m. The straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of the retrieved optical depths meets the threshold requirement for optical depths up to 3. The accuracy does not meet the threshold for optical depths larger than 3, mainly due to the exponential relationship between the IR emissivity and the optical depth. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large error in optical depth. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirement for optical depths up to 3. Precision becomes less satisfactory for larger optical depths, because sensitivity of emissivity toward optical depth is reduced due to the exponential relationship between the emissivity and optical depth.

Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir

Figure 39 shows the accuracy and precision of retrieved optical depths from the nighttime IR algorithm as a function of optical depth. These results are based on retrieval combinations of optical depths between 0.125 and 8 and of mean effective sizes between 20 and 100\(\mu\)m. The straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of the retrieved optical depths meets the threshold requirement for optical depths up to 8. The accuracy does not meet the threshold for optical depths larger than 8, mainly because the exponential relationship between the IR emissivity and the optical depth. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large error in derived optical depth. These results are based on retrievals of combinations of optical depths between 0.125 and 7 for the mean effective size of 41.5\(\mu\)m. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirement for optical depths up to 8. Precision becomes less satisfactory for larger optical depths, because sensitivity of emissivity toward optical depth is reduced due to the exponential relationship between the emissivity and optical depth.

Water Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 40 shows the accuracy and precision of retrieved optical depths from the nighttime IR algorithm as a function of optical depth for the no-noise case. These results are based on retrievals of combinations of optical depths between 0.125 and 10 and of effective particle sizes between 2 and 12\(\mu\)m. Two straight lines denote threshold (greater of 10 percent or 0.05) and objective (greater of 5 percent or 0.025) values. The accuracy of the retrieved optical depths meets the threshold requirement for optical depths up to 5. For optical depths larger than 5, the IR emissivity becomes less sensitivity to the optical depth. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large...
error in optical depth. The precision of retrieved optical depths meets the threshold (greater of 5 percent or 0.025) requirement for optical depths up to 3. Precision becomes less satisfactory for larger optical depths, because of lack of sensitivity of emissivity toward optical depth.
Figure 39. Accuracy (top) and Precision (bottom) of Retrieved Optical Depths from the IR Algorithm for Cirrus Cloud in Tropical Atmosphere, Sensor at Edge-of-Scan.
3.4.1.3 Recommendations

- For daytime retrievals, the VIIRS noise model is generally suitable for retrieving cloud optical depth using the 1.61\(\mu\)m and either the 0.672\(\mu\)m (non-snow/ice surface) or 1.2\(\mu\)m (snow/ice surface) channels.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
For nighttime retrievals using the IR algorithm, the VIIRS noise model is generally suitable for retrieving cloud optical depth using the 3.7 and 10.7625 µm channels.

3.4.2 Error Budget Studies

3.4.2.1 Algorithm Specific Errors in the Cloud Module

Algorithm specific errors, otherwise referred to as “intrinsic errors”, for the cloud module are discussed below. We define intrinsic errors as errors internal to the algorithms, related to algorithm assumptions or simplifications. Table 8.2-1 of the Error Budget Document gives various intrinsic error sources and their impacts on the retrievals. At this time, only truth retrieval errors are considered. Most of the other intrinsic errors have not been included in the EBs.

3.4.2.2 Input Error Sources

There are a number of input parameters to the cloud algorithms. We have attempted to quantify the impact of errors in these input data sources on retrieval accuracy. Our approach has been to develop partial derivatives that quantify the change in a metric value (e.g., measurement accuracy metric, precision metric or uncertainty metric) to a small perturbation in the input parameter. These partial derivatives are then multiplied by a “standard error”, which captures the anticipated RMS error in that input parameter. The product of the partial derivative with the standard error gives an estimate of an input parameter’s contribution to the error budget for a given EDR. These error budgets have been developed by applying the retrieval algorithms to scenes. In general, these scenes cover approximately a 100km x 100km area. The spatial distribution of clouds within the area is determined through the use of TASC’s Cloud Scene Simulation Model (CSSM). Processing of CSSM data yields a 2-D distribution of visible cloud optical thickness at 0.1km spatial resolution for a cloud layer. We assert an atmospheric scenario which includes sensor geometry, surface characteristics, atmospheric profiles and cloud base height, cloud top height and effective particle size. These atmospheric characteristics are used to develop RT look-up tables (LUTs) for the scenario of VIIRS channel radiances as a function of cloud effective particle size and optical depth. These RT LUTs are used to create radiance images for the scene for each VIIRS channel used by the cloud algorithms, by associating a radiance value from the LUT with the optical depth value associated with each 0.1km data point. The 0.1km data are aggregated to the VIIRS pixel size. Perturbations to radiances, such as BBR, MTF, geolocation and calibration are applied to the 0.1km prior to aggregation. Perturbations to scenario parameters are effected by re-computing the radiance LUTs. The perturbed radiances are then applied to the scene. The unperturbed radiances are used to develop so-called truth retrievals. The retrievals using the perturbed radiances are used to compute SRD metrics and the partial derivatives. This methodology was used to develop EBs for all cloud EDRS, except CBH and CCL. The techniques used for the CBH and CCL EDRs are described in their respective sections.
Table 8.3-1 of the Error Budget Document provides a general list of input parameters used by the cloud algorithms. A given retrieval algorithm may not use all input parameters. The input parameters are divided into three groups: surface parameters, atmospheric profiles and EDRs and SDRs. Note that error contributions for the VCM and Cloud Phase algorithms will be introduced once these models have been tuned for the new bands. Previous experience with these models suggests that the impact on the error budgets should be small.

3.4.2.3 Sensor Error Sources

Several attributes of the sensor were assumed throughout the cloud EDR EBs. These are listed below:

- Sensor Noise Model
- MTF Model: 5
- Band-to-Band Registration (BBR): 0.2 pixel shift
- Geolocation: 0.2 pixel shift
- Absolute Radiometric Calibration (ARA): 0.4% IR channels, 2% solar channels
- Pixel sizes: nadir (753m, 1160m and 1600m)

The BBR and geolocation errors and MTF model were applied to the 0.1km radiance data prior to aggregation.

3.4.2.4 Specified and Predicted Performance

The Error Budgets for COT are divided into four areas consistent with the specification and with the four algorithms used to produce this EDR: daytime water cloud, daytime ice cloud, nighttime ice cloud and nighttime water cloud. The specified and predicted performances based on Error Budget analyses for these four cloud types are provided in Section 6.7.3 of the Error Budget Document (Raytheon Document Y3249.V3) and in Ou et al. (2003).
3.5 ALGORITHM SENSITIVITY STUDIES ON RETRIEVALS OF EFFECTIVE PARTICLE SIZE

The sensitivity studies on the retrievals of effective particle size were carried out using the cloud optical properties retrieval algorithm under development at UCLA. The algorithm sensitivity studies were carried out using the results generated by the radiative transfer model for seven separate scenarios. These scenarios form the basis for defining the input parameters required by the radiative transfer model. They are:

(4) Cirrus cloud in Tropical Atmosphere, sensor at nadir.
(5) Cirrus cloud in Sub-Arctic Atmosphere, sensor at nadir.
(6) Cirrus cloud in Desert Atmosphere, sensor at nadir.

For scenarios 1 through 5, synthetic retrievals for both daytime and nighttime conditions were carried out for combinations of input cirrus optical depths and effective particle sizes. For scenario 7, only synthetic retrievals for daytime conditions were carried out.

The LBLE radiative transfer model described in section 3.3.1.7 was used to generate simulated radiances. The input parameters for each scenario have been given in Table 8. For all scenarios, the solar zenith angle is fixed at 32°, the nominal date and location are based on the VIIRS simulated orbit on 1 May at 40° North. For a given specification of atmospheric profile, sun-sensor geometry, retrieval channel characteristics (including central wavelength, bandwidth and response function), cloud type, altitude and thickness, as well as surface albedo and emissivity, the radiative transfer calculations are performed for a wide range of selected visible optical depths and mean effective ice crystal sizes or water droplet radii. For cirrus clouds, the optical depths chosen are: 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 12. The mean effective sizes chosen are: 23.9, 30.4, 41.5, 71, and 93µm. For water clouds the optical depths selected are: 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 16, 24, 32, 48, and 64. The mean droplet radii selected are: 2, 3, 4, 6, 8, 12, 16, 24 and 30µm. Many radiance values are thus produced, and they are further processed to create data sets that are appropriate for the parameter retrieval algorithms and algorithm sensitivity tests.
This section addresses results of the algorithm sensitivity analyses for cloud effective particle sizes using the cirrus and water cloud IR and solar retrieval algorithms, which use VIIRS bands at 3.7 and 10.7625 µm for IR algorithms and bands at 0.672, 1.24 and 1.61 µm for solar algorithms, respectively. In the present work, the cirrus cloud retrieval algorithm retrieves mean effective size as defined in Equation 1. The ice crystal mean effective size is in the dimension of width (equivalent to the dimension of diameter for a sphere, a cylindrical column or a circular plate), while according to the VIIRS SRD, the cloud effective particle size is defined in the dimension of radius (or half of the diameter for a sphere, a cylindrical column or a circular plate). We thus define the effective particle size for ice clouds to be half of the ice crystal mean effective size. Therefore the uncertainty of cloud effective particle size is also half of that for the ice crystal mean effective size. The water cloud retrieval algorithm retrieves effective droplet radius. We define the effective particle size for water clouds to be equal to the effective droplet radius. Illustrative results of these algorithm sensitivity analyses follow.

3.5.1 SNR Tests

The SNR tests address the impact of SNR on both pixel-level and image-level retrievals. The pixel-level retrievals are performed for a single pixel assuming various combinations of cloud optical depth and effective particle size. The imagery-level retrievals are performed for pixels aggregated (averaged) to the VIIRS SRD horizontal cell size (HCS). The required HCS is an EDR parameter; threshold and objective values are stated. The test results are presented separately for the solar and IR algorithms. To create data sets to support the pixel level SNR test, noise based on the System Specification noise model is added directly to the radiance contained in the radiance tables, and then retrievals are performed using the noise-added data in the tables. To guarantee sample sizes are sufficient to support tests, noise is randomly added to each radiance value 32 times. In effect, 32 noise perturbed radiance tables are created. Retrievals are performed using each of the 32 noise-added tables and the no-noise table. The results of the retrieval process are then statistically analyzed to compute the metrics described in the SRD (accuracy, precision, etc.).

3.5.1.1 Daytime Results

Cirrus Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 41 shows the accuracy and precision of retrieved mean effective size as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100 µm). Two lines denote threshold (greater of 10 percent or 4 µm) and objective (greater of 5 percent or 2 µm) values. The accuracy of retrieved mean effective sizes meets both the threshold and objective requirements across the range of mean effective size. The accuracy is about the same magnitude across the range of mean effective size. The precision of retrieved mean effective sizes meets the threshold requirement for the full range of mean effective sizes. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.
Figure 42 show the accuracy and precision of retrieved effective particle size as a function of mean effective size using the 0.672-2.25\(\mu\)m correlation. These results are based on retrieval combinations of all possible optical depths and mean effective sizes using the 0.672 and 2.25\(\mu\)m reflectance correlation. Two straight lines denote threshold (greater of 10 percent or 4\(\mu\)m) and objective (greater of 5 percent or 2\(\mu\)m) values. The accuracy of retrieved effective particle sizes meets both the threshold and objective requirements for most selected values of effective particle sizes. The precision of retrieved effective particle sizes meets the threshold (greater of 5 percent or 2\(\mu\)m) requirements for mean effective particle sizes between 25 and 70\(\mu\)m. For larger optical depths, both the accuracy and precision errors are close to zero. Figures 41 and 42 illustrate the superiority of the 1.61\(\mu\)m reflectance to the 2.25\(\mu\)m reflectance with respect to EPS retrieval. For the rest of the algorithm studies on the solar retrieval algorithm, we will only show results using the 0.672-1.61\(\mu\)m correlation.

Cirrus Cloud in US Standard Atmosphere, Sensor pointing Off-Nadir

Figure 43 shows the accuracy and precision of retrieved mean effective sizes as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100\(\mu\)m). Two lines denote threshold (greater of 10 percent or 4\(\mu\)m) and objective (greater of 5 percent or 2\(\mu\)m) values. The accuracy of retrieved mean effective size meets both the threshold and objective requirements for the range of mean effective sizes. The accuracy is about the same magnitude across the range of mean effective size. The precision of retrieved mean effective size meets both the threshold and objective requirements for the full range of mean effective sizes. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.

Cirrus Cloud in US Standard Atmosphere, Sensor at Edge-of-Scan

Figure 44 shows the accuracy and precision of retrieved mean effective size as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100\(\mu\)m). Two lines denote threshold (greater of 10 percent or 4\(\mu\)m) and objective (greater of 5 percent or 2\(\mu\)m) values. The accuracy of retrieved mean effective sizes meets both the threshold and objective requirements for the range of mean effective sizes. The accuracy is about the same magnitude across the range of mean effective size. The precision of retrieved mean effective sizes meets the threshold requirement for the full range of mean effective sizes. The precision of retrieved mean effective sizes meets the objective requirement for mean effective sizes between 20 and 80\(\mu\)m. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 41. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61µm Correlation, Sensor at Nadir.
Figure 42. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-2.25\(\mu\text{m}\) Correlation, Sensor at Nadir.
Figure 43. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61 μm Correlation, Sensor pointing Off-Nadir.
Figure 44. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61µm Correlation, Sensor at Edge-of-Scan.
Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir

Figure 45 shows the accuracy and precision of retrieved mean effective size as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100µm). Two lines denote threshold (greater of 10 percent or 4µm) and objective (greater of 5 percent or 2µm) values. The accuracy of retrieved mean effective sizes meets both the threshold and objective requirements for the range of mean effective sizes. The accuracy error increases somewhat with larger particle sizes. The precision of retrieved mean effective sizes meets the threshold requirement for the full range of mean effective sizes. The precision of retrieved mean effective sizes meets the objective requirement for mean effective sizes between 40 and 100µm. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.

Cirrus Cloud in Sub-Arctic Atmosphere, Sensor at Nadir

Figure 46 shows the accuracy and precision of retrieved mean effective size as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100µm). Two lines denote threshold (greater of 10 percent or 4µm) and objective (greater of 5 percent or 2µm) values. The accuracy of retrieved mean effective size meets both the threshold and objective requirements for the range of mean effective size. The accuracy is about the same magnitude across the range of mean effective size. The precision of retrieved mean effective size meets both the threshold and objective requirements for the full range of mean effective sizes. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.

Cirrus Cloud in Desert Atmosphere, Sensor at Nadir

Figure 47 shows the accuracy and precision of retrieved mean effective size as a function of mean effective size. These results are based on retrieval combinations of all possible optical depths (0 to 10) and mean effective sizes (20 to 100µm). Two lines denote threshold (greater of 10 percent or 4µm) and objective (greater of 5 percent or 2µm) values. The accuracy of retrieved mean effective sizes meets both the threshold and objective requirements for the range of mean effective size. The accuracy is about the same magnitude across the range of mean effective size. The precision of retrieved mean effective sizes meets the threshold requirement for the full range of mean effective sizes. The precision of retrieved mean effective sizes meets the objective requirement for mean effective sizes between 40 and 100µm. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving mean effective sizes.
Figure 45. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Tropical Atmosphere based on the 0.672-1.61\(\mu\)m Correlation, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 46. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Sub-Arctic Atmosphere based on the 1.2-1.61\(\mu\)m Correlation, Sensor at Nadir.
Figure 47. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Cirrus Solar Algorithm for Desert Atmosphere based on the 0.672-1.61\(\mu\)m Correlation, Sensor at Nadir.
Water Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 48 shows the accuracy and precision of retrieved droplet effective radius as functions of droplet effective radius. These results are based on retrieval combinations of all possible optical depths (0 to 64) and mean effective sizes (4 to 30µm). For accuracy, the horizontal lines denote threshold (greater of 10 percent or 4µm) and objective (greater of 5 percent or 2µm) values. The accuracy of retrieved droplet effective radius meets both the threshold and objective requirements for the range of droplet effective radius. For precision, the horizontal line denotes threshold (greater of 5 percent or 2µm), and the sloped line denotes objective (2 percent). The precision of retrieved droplet effective radius meets the threshold requirement for the full range of droplet effective radius. The small accuracy and precision errors indicate that the solar algorithm is reasonably accurate and stable in retrieving droplet effective radius.
Figure 48. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the Water Cloud Solar Algorithm for US Standard Atmosphere based on the 0.672-1.61 \(\mu m \) Correlation, Sensor at Nadir.
3.5.1.2 Nighttime Results

Cirrus Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 49 shows the accuracy of retrieved mean effective ice crystal sizes from the nighttime IR algorithm as a function of optical depth for three mean effective sizes (23.9, 41.5 and 93 µm). Horizontal lines denote threshold (greater of 10 percent or 4 µm) and objective (greater of 5 percent or 2 µm) values. The accuracy of the retrieved mean effective ice crystal size for $D_e=23.9 \mu m$ meets the threshold and objective requirements for optical depths up to 7 and 5 respectively. The accuracy of the retrieved mean effective ice crystal size for $D_e=41.5 \mu m$ meets the threshold and objective requirements for optical depths up to 5 and 3 respectively. The accuracy of the retrieved mean effective ice crystal size for $D_e=93 \mu m$ meets the threshold requirement for optical depths up to 3. The accuracy does not meet the threshold for optical depths larger than 6, mainly due to the indirect effects of the exponential relationship between the IR emissivity and the optical depth. As the emissivity approaches unity, small errors in the retrieved emissivity will be amplified in the retrieved optical depth, and thus the accuracy of the retrieved mean effective size, which depends on the accuracy of the retrieved optical depth, is affected. On the other hand, as the emissivity approaches zero, errors in the retrieved cloud-top temperature increase. Therefore, the accuracy of the retrieved mean effective size, which depends on the accuracy of the retrieved cloud temperature, becomes worse for smaller optical depths. Moreover, the range of optical depths for which the threshold and objective requirements are met becomes smaller for larger ice crystal mean effective size. This is because as the mean effective size increases, the sensitivity of 3.7 µm radiance to mean effective size decreases.

Figure 50 shows the precision of retrieved mean effective ice crystal sizes from the nighttime IR algorithm as a function of optical depth for two mean effective sizes (23.9 and 41.5 µm). The horizontal lines denote threshold (greater of 5 percent or 2 µm) and objective (2 percent) values. The precision of the retrieved mean effective ice crystal size for $D_e=23.9 \mu m$ meets the threshold and objective requirements for optical depths between 1 and 7, and between 5 and 7, respectively. The precision of the retrieved mean effective ice crystal size for $D_e=41.5 \mu m$ meets the threshold for optical depths between 2 and 7.

Cirrus Cloud in US Standard Atmosphere with Sensor pointing Off-Nadir

Figure 51 shows the accuracy of retrieved mean effective size from the nighttime IR algorithm as a function of optical depth for three mean effective sizes (23.9, 41.5 and 93 µm). The horizontal lines denote threshold (greater of 10 percent or 4 µm) and objective (greater of 5 percent or 2 µm) values. The accuracy of the retrieved mean effective ice crystal size for $D_e=23.9 \mu m$ meets the threshold and objective requirements for optical depths less than 10 and between 1 and 5, respectively. The accuracy of the retrieved mean effective ice crystal size for $D_e=41.5 \mu m$ meets the threshold and objective requirements for optical depths up to 4 and 3, respectively. Accuracy meets the threshold requirement for $D_e=93 \mu m$ and optical depths between 0.5 and 2. As the emissivity approaches unity, small errors in the retrieved emissivity will be amplified in the...
retrieved optical depth, and thus the accuracy of the retrieved mean effective size, which depends on the accuracy of the retrieved optical depth, is also amplified. On the other hand, as the emissivity approaches zero, errors in the retrieved cloud-top temperature increases. Therefore, the uncertainty of the retrieved mean effective size, which depends on the accuracy of the retrieved cloud temperature, becomes larger for smaller optical depths. Moreover, the range of optical depths for which the threshold and objective requirements are met becomes smaller for larger ice crystal mean effective size. This is because as the mean effective size increases, the sensitivity of 3.7μm radiance to mean effective size decreases. Figure 52 shows the precision of retrieved mean effective ice crystal sizes from the nighttime IR algorithm as a function of optical depth for two mean effective sizes (23.9 and 41.5μm). The horizontal lines denote threshold (greater of 5 percent or 2μm) and objective (2 percent) values. The precision of the retrieved mean effective ice crystal size for $D_e=23.9\mu m$ meets the threshold requirement for optical depths between 1 and 10. The precision of the retrieved mean effective ice crystal size for $D_e=41.5\mu m$ meets the threshold for optical depths between 1 and 8. Precision errors generally decrease with increasing optical depth.

Cirrus Cloud in US Standard Atmosphere with Sensor at Edge-of-Scan

Figure 53 shows the accuracy of retrieved mean effective size from the nighttime IR algorithm as a function of optical depth for three mean effective sizes (23.9, 41.5 and 93μm). The horizontal lines denote threshold (greater of 10 percent or 4μm) and objective (greater of 5 percent or 2μm) values. The accuracy of the retrieved mean effective ice crystal size for $D_e=23.9\mu m$ meets the threshold and objective requirements for optical depths from 1 to 10. The accuracy of the retrieved mean effective ice crystal size for $D_e=41.5\mu m$ meets the threshold requirements for optical depths between 1 and 8. As the emissivity approaches unity, small errors in the retrieved emissivity will be amplified in the retrieved optical depth, and thus the accuracy of the retrieved mean effective size, which depends on the accuracy of the retrieved optical depth, is also amplified. On the other hand, as the emissivity approaches zero, errors in the retrieved cloud-top temperature increase. Therefore, the uncertainty of the retrieved mean effective size, which depends on the accuracy of the retrieved cloud temperature, becomes larger for smaller optical depths. Moreover, the range of optical depths for which the threshold and objective requirements are met becomes smaller for larger ice crystal mean effective size. This is because as the mean effective size increases, the sensitivity of 3.7μm radiance to mean effective size decreases. Figure 54 shows the precision of retrieved mean effective ice crystal sizes from the nighttime IR algorithm as a function of optical depth for two mean effective sizes (23.9 and 41.5μm). The horizontal lines denote threshold (greater of 5 percent or 2μm) and objective (2 percent) values. The precision of the retrieved mean effective ice crystal size for $D_e=23.9\mu m$ meets the threshold requirement for optical depths between 1 and 6. The precision of the retrieved mean effective ice crystal size for $D_e=41.5\mu m$ meets the threshold for optical depths between 0.5 and 4. Precision errors generally decrease with increasing optical depth.
Cirrus Cloud in Tropical Atmosphere, Sensor at Nadir

Figure 55 shows the accuracy of retrieved mean effective size from the nighttime IR algorithm as a function of optical depth for three mean effective sizes (23.9, 41.5 and 93 µm). The horizontal lines denote threshold (greater of 10 percent or 4 µm) and objective (greater of 5 percent or 2 µm) values. The accuracy of the retrieved mean effective ice crystal size for $D_e=23.9\mu$m meets the threshold and objective requirements for optical depths up to 10. The accuracy of the retrieved mean effective ice crystal size for $D_e=41.5\mu$m also meets the threshold and objective requirements for optical depths up to 10. The accuracy of the retrieved mean effective ice crystal size for $D_e=93\mu$m meets the threshold and objective requirements for optical depths up to 6. Accuracy error increases for larger optical depth, mainly due to the indirect effects of the exponential relationship between the IR emissivity and the optical depth. As the emissivity approaches unity, small errors in the retrieved emissivity will be amplified in the retrieved optical depth, and thus the accuracy of the retrieved mean effective size, which depends on the accuracy of the retrieved optical depth, is affected. On the other hand, as the emissivity approaches zero, errors in the retrieved cloud-top temperature increases. Therefore, the accuracy error of retrieved mean effective size, which depends on the accuracy of the retrieved cloud temperature, becomes larger for smaller optical depths. Moreover, the range of optical depths for which the threshold and objective requirements are met becomes smaller for larger ice crystal mean effective size. This is because as the mean effective size increases, the sensitivity of 3.7 µm radiance to mean effective size decreases. Accuracy for the tropical atmosphere is better than that for the US Standard Atmosphere, because the radiances are more sensitive to the cloud temperature and optical depth.

Figure 56 shows the precision of retrieved mean effective ice crystal sizes from the nighttime IR algorithm as a function of optical depth for one size (41.5 µm). The horizontal lines denote threshold (greater of 5 percent or 2 µm) and objective (2 percent) values. The precision of the retrieved mean effective ice crystal size for $D_e=41.5\mu$m meets the threshold for optical depths between 1 and 8. Precision error is minimized for the 2-6 optical depth range. This is possibly because for intermediate optical depth, the precision error for cloud temperature and for optical depth are both small, leading to smaller precision errors.

Water Cloud in US Standard Atmosphere, Sensor at Nadir

Figure 57 shows the accuracy and precision of retrieved droplet effective radius size from the nighttime IR algorithm as a function of optical depth for the no-noise case. These results are based on retrievals of combinations of effective droplet radii between 2 and 12 µm. The straight line denotes threshold (greater of 10 percent or 4 µm). The accuracy of the retrieved mean effective radius meets the threshold requirement for optical depths up to 8. For optically thick clouds, the IR emissivity approaches one, so that a small error in the retrieved emissivity can lead to a large error in optical depth. The precision of retrieved mean effective radius meets the threshold (greater of 5 percent or 2 µm) requirement for optical depths up to 6. Precision becomes
less satisfactory for larger optical depths, because of a lack of emissivity sensitivity toward optical depth.

3.5.1.3 Recommendations

- For daytime retrievals, the VIIRS noise model is generally suitable for retrieving cloud effective particle size using the 0.672 and 1.61μm channels.

- For nighttime retrievals using the IR algorithm, the VIIRS noise model is generally suitable for retrieving cloud effective particle size using the 3.7 and 10.7625μm channels.
Figure 49. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top), $41.5\mu m$ (middle) and $93\mu m$ (bottom), Sensor at Nadir.
Figure 50. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top) and $41.5\mu m$ (bottom), Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 51. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top), $41.5\mu m$ (middle) and $93\mu m$ (bottom), Sensor pointing Off-Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 52. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top) and $41.5\mu m$ (bottom), Sensor pointing Off-Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 53. Accuracy of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e=23.9\mu m$ (top) and 41.5\mu m (bottom), Sensor at Edge-of-Scan.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 54. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for US Standard Atmosphere for $D_e = 23.9\mu m$ (top) and $41.5\mu m$ (bottom), Sensor at Edge-of-Scan.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Figure 55. Accuracy of Retrieval Effective Particle Size for the Cirrus Cloud IR Algorithm for Tropical Atmosphere for $D_e=23.9\mu m$ (top), $41.5\mu m$ (middle) and $93\mu m$ (bottom), Sensor at Nadir.
Figure 56. Precision of Retrieved Effective Particle Size from the Cirrus Cloud IR Algorithm for Tropical Atmosphere for $D_e=41.5\mu m$, Sensor at Nadir.
Figure 57. Accuracy (top) and Precision (bottom) of Retrieved Effective Particle Size from the IR Algorithm for Water Cloud, US Standard Atmosphere, No-Noise Retrievals, Sensor at Nadir.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
3.5.2 Error Budget Studies

3.5.2.1 Algorithm Specific Errors in the Cloud Module

Algorithm specific errors, otherwise referred to as “intrinsic errors”, for the cloud modules are discussed below. We define intrinsic errors as errors internal to the algorithms, related to algorithm assumptions or simplifications. Table 8.2-1 of the Error Budget Document gives various intrinsic error sources and their impacts on the retrievals. At this time, only truth retrieval errors are considered. Most of the other intrinsic errors have not been included in the EBs.

3.5.2.2 Input Error Sources

There are a number of input parameters to the cloud algorithms. We have attempted to quantify the impact of errors in input data sources on retrieval accuracy. Our approach has been to develop partial derivatives that quantify the change in a metric value (e.g., accuracy) to a small perturbation in the input parameter. These partial derivatives are then multiplied by a “standard error”, which captures the anticipated rms error in that input parameter. The product of the partial derivative with the standard error gives an estimate of an input parameter’s contribution to the error budget for a given EDR. These error budgets have been developed by applying the retrieval algorithms to scenes. In general, these scenes cover approximately a 100km x 100km area. The spatial distribution of clouds within the area is determined through the use of TASC’s Cloud Scene Simulation Model (CSSM). Processing of CSSM data yields a 2-D distribution of visible cloud optical thickness at 0.1km spatial resolution for a cloud layer. We assert an atmospheric scenario which includes sensor geometry, surface characteristics, atmospheric profiles, cloud base height, cloud top height and effective particle size. These atmospheric characteristics are used to develop LUTs for the scenario of VIIRS channel radiances as a function of cloud effective particle size and optical depth. The LUTs are used to create radiance images for the scene for each VIIRS channel used by the cloud algorithms, by associating a radiance value from the LUT with the optical depth value associated with each 0.1km data point. The 0.1km data are aggregated to the VIIRS pixel size. Perturbations to radiances, such as BBR, MTF, geolocation and calibration are applied to the 0.1km prior to aggregation. Perturbations to scenario parameters are affected by re-computing the radiance LUTs. The perturbed radiances are then applied to the scene. The unperturbed radiances are used to develop so-called truth retrievals. The retrievals using the perturbed radiances are used to compute SRD metrics and the partial derivatives.

Table 7.3-1 of the Error Budget Document provides a general list of input parameters used by the cloud algorithms. A given retrieval algorithm may not use all input parameters. The input parameters are divided into three groups: surface parameters, atmospheric profiles and EDRs and SDRs.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
3.5.2.3 Sensor Error Sources

Several attributes of the sensor were assumed throughout the cloud EDR EBs. These are listed below:

- Sensor Noise Model: 3
- MTF Model: 5
- Band-to-Band Registration (BBR): 0.2 pixel shift
- Geolocation: 0.2 pixel shift
- Absolute Radiometric Calibration (ARA): 0.4% IR channels (down to a temperature of 270K; errors become larger for low temperatures), 2% solar channels
- Pixel sizes: nadir (753m, 1160m and 1600m)

The BBR and geolocation errors and MTF model were applied to the 0.1km radiance data prior to aggregation.

3.5.2.4 Specified and Predicted Performance

The Error Budgets for EPS are divided into four areas consistent with the specification and with the four algorithms used to produce this EDR: daytime water cloud, daytime ice cloud, nighttime ice cloud and nighttime water cloud. The specifications and predicted performances based on Error Budget Analyses for these four cloud types are provided in Section 6.6.3 of the Error Budget Document (Raytheon Document Y3249.V3) and in Ou et al. (2003).

3.6 PRACTICAL CONSIDERATIONS

3.6.1 Numerical Computation Considerations

The retrieval algorithms shall be convertible into operational code that is compatible with a 20 minute maximum processing time. This maximum processing time is allocated not only to the cloud retrieval, but also to the retrieval of other VIIRS EDRs. The estimated processing time of this retrieval system is given as follows. For off-line processing, the generation of radiance tables would take a few CPU hours for all the cloud-retrieval channels and for each scenario. For on-line processing, the solar algorithm (<1 millisecond per retrieval) will be faster than the IR algorithm (~10 times longer than the solar algorithm).

In regard to the data storage, the following storage estimates are based on the simulated VIIRS orbit information. The sensor scanning rate is assumed to be 0.677 sec/scan. In one circular orbit (North Pole to North Pole), there are 8900 scan lines. Thus the period of the sensor is 0.677 x 8900 = 6025 sec or 100.4 minutes. With 3000 pixels in each scan line, the total pixel number in one day’s flight is 3000 x 8900 x 1440 (min/day) / 100.4 (min/orbit) ~3.8 x 10^8 pixels.

Check the JPSS MIS Server at https://jpsmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
The cloud effective particle size has values ranging between 0 to 100\(\mu\)m for cirrus clouds, and between 0 to 50\(\mu\)m for water clouds (droplet effective radius). The parameter value can be scaled by 10 to achieve necessary accuracy. Thus, it takes 10 bits to store the integer part of the parameter. Thus the data storage required per day is approximately \(3.8 \times 10^8\) pixels \(\times\) 10 bits / pixel = \(3.8 \times 10^9\) bits = 475 Mbytes.

The cloud optical depth has values ranging between 0 to 10 for cirrus clouds, and between 0 to 64 for water clouds. The parameter value can be scaled by 10 to achieve necessary accuracy. Thus, it takes 6 bits to store the integer part of the parameter. The data storage required per day is approximately \(3.8 \times 10^8\) pixels \(\times\) 6 bits / pixel = \(2.28 \times 10^9\) bits = 285 Mbytes.

3.6.2 Programming and Procedural Considerations

For the solar retrieval algorithms, comprehensive LUTs of reflectances as functions of sun-sensor geometry, surface albedo, atmospheric sounding, cloud EPS and COT will be developed for retrieval of cloud properties. For IR retrieval algorithms, parameterization of extinction ratio in terms of EPS and COT for all possible atmospheric conditions will be executed.

3.6.3 Quality Assessment and Diagnostics

The assessment of the quality of retrievals will fall into four categories: Sensor Parameters; Environmental Scenario; Cloud Scenario; and Ancillary Data. Experience gained through simulations, and eventually by validation, will be captured and used to assess the quality of retrievals and provide guidance to the users of these products in the form of data quality flags. A list of parameters or situations that may influence data quality follows.

- **Sensor Parameters.** The qualities of sensor data include:
 - Sensor noise.
 - Radiance calibration.
 - Geolocation.
 - MTF.
 - Band-to-Band registration.

- **Environmental Scenario.** Particulars of the environmental scenario that may affect retrieval accuracy include:
 - Values of Environmental Parameters.
 - Atmospheric inversion.

- **Cloud Scenario.** The qualities or values of other cloud parameters that may affect retrieval accuracy include:

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
- Cloud optical depth.
- Cloud effective particle size.
- Existence of multi-layer clouds. Multi-layer clouds are difficult to identify and have an impact on radiance measurements. Therefore, they will affect retrievals when a single layer cloud is assumed in the radiative transfer analysis or retrieval algorithm.

Ancillary Data
- In general, the quality of ancillary data affects the quality of retrievals.

The assessment of the quality of the retrievals is communicated through a set of Quality Flags. The values of these flags indicate the quality of the retrieved results. These flags were selected based on input from the user communities. The details of these flags can also be found in the “NPPEDRPR_V1.7_A3.doc” at NGST Eroom:

https://collab2.st.northropgrumman.com/eRoom/npoess/SystemEngineering/0_a959b

In brief, the quality flags for Cloud Optical Properties IP can be summarized in Table 9-10 as follow:

Table 9. COP Quality Flag Specifications

<table>
<thead>
<tr>
<th>Quality Flag – Byte 0</th>
<th>Bit Field</th>
<th>Description/Source</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>qf_cop_set</td>
<td>0</td>
<td>Overall pixel level flag</td>
<td>1: cop quality flag is set; 0: not</td>
</tr>
<tr>
<td>qf_cot_ice</td>
<td>1</td>
<td>Ice cot out of bound Day: (0.1-10) Night: (0.5-10)</td>
<td>1: out of bound; 0: not</td>
</tr>
<tr>
<td>qf_cot_water</td>
<td>2</td>
<td>Water cot out of bound Day: (0.1-64) Night: (0.1-12)</td>
<td>1: out of bound; 0: not</td>
</tr>
<tr>
<td>qf_de_ice</td>
<td>3</td>
<td>ice eps out of bound (1-50 micron)</td>
<td>1: out of bound; 0: not</td>
</tr>
<tr>
<td>qf_de_water</td>
<td>4</td>
<td>Water eps out of bound (1-50 micron)</td>
<td>1: out of bound; 0: not</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Byte</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>qf_phs</td>
<td>5-7</td>
<td>Cloud phase</td>
<td>COT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_NOT_EXE 0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_CIRRUS 0x20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_OPQ_ICE 0x40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_WATER 0x60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_MIXED 0x80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COP_PHASE_MUL_LYR 0xA0</td>
</tr>
<tr>
<td>qf_residual_day_water</td>
<td>0</td>
<td>Iteration convergence</td>
<td>1: convergent; 0: not</td>
</tr>
<tr>
<td>qf_residual_day_ice</td>
<td>1</td>
<td>Iteration convergence</td>
<td>1: convergent; 0: not</td>
</tr>
<tr>
<td>qf_excl_day_water</td>
<td>2</td>
<td>water cot > 1 at daytime</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td>qf_excl_day_ice</td>
<td>3</td>
<td>ice cot > 1 at daytime</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td>qf_excl_night_water</td>
<td>4</td>
<td>water cot > 1 at nighttime</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td>qf_excl_night_ice</td>
<td>5</td>
<td>ice cot > 1 at nighttime</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td>qf_sunglint</td>
<td>6</td>
<td>sun glint region</td>
<td>1: in sunglint; 0: not</td>
</tr>
<tr>
<td>qf_confidence</td>
<td>7</td>
<td>probably/confidently cloudy</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td>Byte 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qf_degraded_Ice_cot_gt_ten</td>
<td>0</td>
<td>Degraded condition at ice</td>
<td>1: yes; 0: not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cloud cot >10</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. CTT Quality Flag Specifications

<table>
<thead>
<tr>
<th>Quality Flag – Byte 0</th>
<th>Bit Field</th>
<th>Description/Source</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>qf_ctt_water</td>
<td>0</td>
<td>water ctt out of bound (250-300 Kelvin)</td>
<td>1: out of bound; 0: not</td>
</tr>
<tr>
<td>qf_ctt_ice</td>
<td>1</td>
<td>Ice ctt out of bound (213-253 Kelvin)</td>
<td>1: out of bound; 0: not</td>
</tr>
<tr>
<td>qf_residual_night_water</td>
<td>2</td>
<td>IR ice ctt convergence</td>
<td>1: convergence; 0: not</td>
</tr>
<tr>
<td>qf_residual_night_ice</td>
<td>3</td>
<td>IR ice ctt convergence</td>
<td>1: convergence; 0: not</td>
</tr>
<tr>
<td>qf_residual_ir_day_ice</td>
<td>4</td>
<td>IR ice ctt convergence</td>
<td>1: convergence; 0: not</td>
</tr>
</tbody>
</table>

Table 11. Granule Quality Flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description/Source</th>
<th>Units/Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>qf_granuleQF_good</td>
<td>uint16</td>
<td>converged / retrieved-pixels in percent</td>
<td>Including one digit after decimal point</td>
</tr>
<tr>
<td>qf_granuleQF_degrade</td>
<td>uint16</td>
<td>(nonconverged + out of bound + sunglint) / retrieved-pixels in percent</td>
<td>Including one digit after decimal point</td>
</tr>
</tbody>
</table>

3.6.4 Exception Handling

Clear and cloud-edge pixels identified by the cloud mask will not be used for cloud retrievals. Pixels with corrupted data will be scanned and filtered out.

3.7 Algorithm Validation

Although the above algorithm sensitivity studies have demonstrated the applicability of remote sensing methods to the determination of cloud optical and microphysical properties, more experimental studies are required in order to assess the robustness and accuracy of these methods when applied to measurements on a global scale. Validation efforts are required in order to assess these methods, since many factors affect the successful retrieval of these parameters when

Check the JPSS MIS Server at https://ipsmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
applied to real data in a realistic atmosphere (e.g., Ou et al., 1995). The following is a list of available data for validation.

\textit{a. MODIS data}
MODIS (Moderate Resolution Imagining Spectroradiometer) is a scanning spectro-radiometer on board the polar orbiting TERRA (EOS/AM-1) satellite which was launched in December 1999. It possesses 36 channels ranging from 0.412\(\mu\text{m}\) to 14.24\(\mu\text{m}\). In accordance with cirrus detection and retrieval, the 0.645\(\mu\text{m}\) band (channel 1), 0.858\(\mu\text{m}\) band (channel 2), 1.240\(\mu\text{m}\) band (channel 5), 1.375\(\mu\text{m}\) band (channel 26), 1.640\(\mu\text{m}\) band (channel 6), 2.13\(\mu\text{m}\) band (channel 7), 11.03\(\mu\text{m}\) band (channel 31), 12.02\(\mu\text{m}\) band (channel 32) and the 13.64\(\mu\text{m}\) band (channel 34) will be used. Channels 1, 2, 5, 6 and 7 have 500m resolution while the others have 1 km resolution. Level 1-B data are presently available.

\textit{b. AVHRR data}
The AVHRR (Advanced Very-High Resolution Radiometer) scanning radiometer exists on board the NOAA 10, 14 and 15 satellites collecting data from five channels: 0.63\(\mu\text{m}\), 0.90\(\mu\text{m}\), 3.7\(\mu\text{m}\), 10.9\(\mu\text{m}\) and 12.0\(\mu\text{m}\).

\textit{c. ARM data}
A vertically pointing 35GHz Doppler radar along with a multi-pulsed lidar is operational at the Southern Great Plains Atmospheric Radiation Measurement (SGP ARM) site located in northern Oklahoma. Backscattered radiation from the radar can resolve cloud information in the vertical direction up to a height of 20km. Three Intensive Observation Periods (IOP) were made in conjunction with the overpass of an AVHRR instrument and in-situ measurements from aircraft: April 2-22, 1997; September 15-October 4, 1997; and April 27-May 17, 1998. In addition, surface polarization diversity lidar measurements in the 1998 IOP were made. Future IOP’s are expected to take place in coordination with MODIS overpasses.

\textit{d. Microphysical data}
In order to obtain a realistic representation of the particle size and shape observed in natural ice clouds, the mean effective size must be obtained. This parameter can be thought of as the number density weighted volume of the ice crystals divided by their number density weighted perpendicular cross sections averaged over the entire vertical column. During the Cloud IOP’s at the SGP ARM site, the University of North Dakota Citation and King Air performed in-situ microphysical measurements. These data are essential in the computation of the LUTs and for the validation of values retrieved from satellite observations.

Check the JPSS MIS Server at \url{https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm} to verify that this is the correct version prior to use.
4.0 ASSUMPTIONS AND LIMITATIONS

4.1 ASSUMPTIONS

There are several assumptions involved in the theoretical development of retrieval algorithms for cloud effective particle size and optical depth:

- For the retrieval of ice cloud parameters, representative ice crystal size distributions are based on *in situ* observations obtained during field experiments over mid-latitude areas. Ice crystals are assumed to be randomly oriented, and the ice crystal habits considered are solid columns and plates.

- For the retrieval of water cloud parameters, a gamma function is assumed to be the typical droplet size distribution, with water droplets assumed to be spherical in shape.

- Radiative transfer within the cloud is assumed to be plane-parallel.

4.2 LIMITATIONS

There are also a few limitations of the current algorithms:

- The solar and IR algorithms are applicable to a single-layer cirrus or water cloud. Use of these algorithms with multi-layer clouds will result in larger error than that for single-layer clouds.

- These algorithms do not adequately address mixed phase clouds which occur frequently around the globe. In that, the algorithm treats mixed phase clouds as ice clouds.

- The IR algorithms do not address situations in which the clear radiance is less than the cloudy radiance, which is prevalent during polar winter.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
5.0 REFERENCES

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APPENDIX A. SYSTEM SPECIFICATION REQUIREMENTS

This Appendix describes the threshold and objective requirements for cloud effective particle size and optical depth. The following tables are adopted from the VIIRS System Specification Document.

Cloud Optical Thickness (IORD Name: **Cloud Optical Depth/Transmissivity**)

Cloud optical depth is defined as the extinction (scattering + absorption) vertical optical thickness of all cloud layers in a vertical column of the atmosphere. Optical thickness (τ) is related to transmittance (t) by $t = \exp(-\tau)$. Optical thickness is wavelength dependent and is to be measured in at least two narrow bands centered at 450 nm (TBR) and 850 nm (TBR), with TBD nm bandwidth. Table A-1 shows the system specification requirement relevant to the retrieval of cloud optical depth.

Units: Dimensionless

Table A-1. System Specification for the Cloud Optical Thickness EDR.

<table>
<thead>
<tr>
<th>Requirement Number</th>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSV0235</td>
<td>EDR CLOPTH Moderate HCS worst case:</td>
<td>25 km</td>
</tr>
<tr>
<td>SSV0236</td>
<td>EDR CLOPTH Fine HCS at nadir:</td>
<td>5 km</td>
</tr>
<tr>
<td>SSV0237</td>
<td>EDR CLOPTH Horizontal Reporting Interval:</td>
<td>HCS</td>
</tr>
<tr>
<td>SSV0238</td>
<td>EDR CLOPTH Horizontal Coverage:</td>
<td>Global</td>
</tr>
<tr>
<td>SSV0240</td>
<td>EDR CLOPTH Measurement Range day water cloud:</td>
<td>0.1 to 64 units of τ</td>
</tr>
<tr>
<td>SSV0241</td>
<td>EDR CLOPTH Measurement Range day ice cloud:</td>
<td>0.1 to 10 units of τ</td>
</tr>
<tr>
<td>SSV0242</td>
<td>EDR CLOPTH Measurement Range night ice cloud:</td>
<td>0.5 to 10 units of τ</td>
</tr>
<tr>
<td>SSV0244</td>
<td>EDR CLOPTH Moderate Measurement Accuracy day water cloud, OD \leq 1:</td>
<td>0.28 units of τ</td>
</tr>
<tr>
<td>SSV0787</td>
<td>EDR CLOPTH Moderate Measurement Accuracy day ice cloud, OD \leq 1:</td>
<td>0.08 units of τ</td>
</tr>
<tr>
<td>SSV0788</td>
<td>EDR CLOPTH Moderate Measurement Accuracy night ice cloud, OD \leq 1:</td>
<td>0.16 units of τ</td>
</tr>
<tr>
<td>SSV0789</td>
<td>EDR CLOPTH Moderate Measurement Accuracy day water cloud, OD > 1:</td>
<td>10.00%</td>
</tr>
<tr>
<td>SSV0790</td>
<td>EDR CLOPTH Moderate Measurement Accuracy day ice cloud, OD > 1:</td>
<td>5.00%</td>
</tr>
<tr>
<td>SSV0791</td>
<td>EDR CLOPTH Moderate Measurement Accuracy night ice cloud, OD > 1:</td>
<td>10.00%</td>
</tr>
<tr>
<td>SSV0245</td>
<td>EDR CLOPTH Moderate Measurement Precision day water cloud, OD \leq 1:</td>
<td>0.100 units of τ</td>
</tr>
<tr>
<td>SSV0793</td>
<td>EDR CLOPTH Moderate Measurement Precision day ice cloud, OD \leq 1:</td>
<td>0.023 units of τ</td>
</tr>
<tr>
<td>SSV0794</td>
<td>EDR CLOPTH Moderate Measurement Precision night ice cloud, OD \leq 1:</td>
<td>0.025 units of τ</td>
</tr>
<tr>
<td>SSV0795</td>
<td>EDR CLOPTH Moderate Measurement Precision day water cloud, OD > 1:</td>
<td>4.00%</td>
</tr>
<tr>
<td>SSV0796</td>
<td>EDR CLOPTH Moderate Measurement Precision day ice cloud, OD > 1:</td>
<td>3.00%</td>
</tr>
<tr>
<td>SSV0797</td>
<td>EDR CLOPTH Moderate Measurement Precision night ice cloud, OD > 1:</td>
<td>5.00%</td>
</tr>
<tr>
<td>SSV0246</td>
<td>EDR CLOPTH Fine Measurement Uncertainty day water cloud, OD \leq 1:</td>
<td>0.30 units of τ</td>
</tr>
<tr>
<td>SSV0799</td>
<td>EDR CLOPTH Fine Measurement Uncertainty day ice cloud, OD \leq 1:</td>
<td>0.10 units of τ</td>
</tr>
<tr>
<td>SSV0800</td>
<td>EDR CLOPTH Fine Measurement Uncertainty night ice cloud, OD \leq 1:</td>
<td>0.16 units of τ</td>
</tr>
<tr>
<td>SSV0801</td>
<td>EDR CLOPTH Fine Measurement Uncertainty day water cloud, OD > 1:</td>
<td>10.00%</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Requirement Parameters

<table>
<thead>
<tr>
<th>Requirement Number</th>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSV0802</td>
<td>EDR CLOPTH Fine Measurement Uncertainty day ice cloud, OD > 1:</td>
<td>10.00%</td>
</tr>
<tr>
<td>SSV0803</td>
<td>EDR CLOPTH Fine Measurement Uncertainty night ice cloud, OD > 1:</td>
<td>10.00%</td>
</tr>
<tr>
<td>SSV0247</td>
<td>EDR CLOPTH Measurement Long Term Stability</td>
<td>2 %</td>
</tr>
<tr>
<td>SSV0249</td>
<td>EDR CLOPTH Swath Width</td>
<td>3000 km</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
Cloud Effective Particle Size

Effective cloud particle size is defined as the ratio of the third moment of the droplet size distribution to the second moment, averaged over a layer of air within a cloud. Table A-2 shows the system specification requirement relevant to the retrieval of cloud effective particle size.

Units: µm

Table A-2. System Specification for the Cloud Effective Particle Size EDR.

<table>
<thead>
<tr>
<th>Requirement Number</th>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSV0217</td>
<td>EDR CLEFFP Moderate HCS worst case:</td>
<td>25 km</td>
</tr>
<tr>
<td>SSV0218</td>
<td>EDR CLEFFP Fine HCS at nadir:</td>
<td>5 km</td>
</tr>
<tr>
<td>SSV0219</td>
<td>EDR CLEFFP HRI:</td>
<td>HCS</td>
</tr>
<tr>
<td>SSV0221</td>
<td>EDR CLEFFP Vertical Reporting Interval</td>
<td>Up to 4 layers</td>
</tr>
<tr>
<td>SSV0222</td>
<td>EDR CLEFFP Horizontal Coverage</td>
<td>Global</td>
</tr>
<tr>
<td>SSV0223</td>
<td>EDR CLEFFP Vertical Coverage</td>
<td>0 to 20 km</td>
</tr>
<tr>
<td>SSV0224</td>
<td>EDR CLEFFP Measurement Range</td>
<td>0 to 50 µm</td>
</tr>
<tr>
<td>SSV0228</td>
<td>EDR CLEFFP Moderate Measurement Accuracy, day water cloud, OD ≤ 1:</td>
<td>5.5 µm</td>
</tr>
<tr>
<td>SSV0771</td>
<td>EDR CLEFFP Moderate Measurement Accuracy, day ice cloud, OD ≤ 1:</td>
<td>8 µm</td>
</tr>
<tr>
<td>SSV0772</td>
<td>EDR CLEFFP Measurement Accuracy, day water cloud, OD > 1:</td>
<td>2 µm</td>
</tr>
<tr>
<td>SSV0773</td>
<td>EDR CLEFFP Measurement Accuracy, day ice cloud, OD > 1:</td>
<td>3.5 µm</td>
</tr>
<tr>
<td>SSV0774</td>
<td>EDR CLEFFP Moderate Measurement Accuracy, night ice cloud, OD > 1:</td>
<td>4 µm</td>
</tr>
<tr>
<td>SSV0775</td>
<td>EDR CLEFFP Moderate Measurement Accuracy, night water cloud, OD > 1:</td>
<td>4 µm</td>
</tr>
<tr>
<td>SSV0229</td>
<td>EDR CLEFFP Moderate Measurement Precision, day water cloud, OD ≤ 1:</td>
<td>1 µm</td>
</tr>
<tr>
<td>SSV0776</td>
<td>EDR CLEFFP Moderate Measurement Precision, day ice cloud, OD ≤ 1:</td>
<td>1.5 µm</td>
</tr>
<tr>
<td>SSV0777</td>
<td>EDR CLEFFP Moderate Measurement Precision, day water cloud, OD > 1:</td>
<td>1 µm</td>
</tr>
<tr>
<td>SSV0778</td>
<td>EDR CLEFFP Moderate Measurement Precision, day ice cloud, OD > 1:</td>
<td>1.5 µm</td>
</tr>
<tr>
<td>SSV0779</td>
<td>EDR CLEFFP Moderate Measurement Precision, night ice cloud, OD > 1:</td>
<td>2 µm</td>
</tr>
<tr>
<td>SSV0780</td>
<td>EDR CLEFFP Moderate Measurement Precision, night water cloud, OD > 1:</td>
<td>2 µm</td>
</tr>
<tr>
<td>SSV0230</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, day water cloud, OD ≤ 1:</td>
<td>5.5 µm</td>
</tr>
<tr>
<td>SSV0781</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, day ice cloud, OD ≤ 1:</td>
<td>12 µm</td>
</tr>
<tr>
<td>SSV0782</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, day water cloud, OD > 1:</td>
<td>2.5 µm</td>
</tr>
<tr>
<td>SSV0783</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, day ice cloud, OD > 1:</td>
<td>4 µm</td>
</tr>
<tr>
<td>SSV0784</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, night ice cloud, OD > 1:</td>
<td>4 µm</td>
</tr>
<tr>
<td>SSV0785</td>
<td>EDR CLEFFP Fine Measurement Uncertainty, night water cloud, OD > 1:</td>
<td>4 µm</td>
</tr>
<tr>
<td>SSV0231</td>
<td>EDR CLEFFP Measurement Long Term Stability</td>
<td>2 %</td>
</tr>
<tr>
<td>SSV0233</td>
<td>EDR CLEFFP Swath Width</td>
<td>3000 km</td>
</tr>
</tbody>
</table>

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
APPENDIX B. ITERATIVE MATCHING OF REFLECTANCE PAIRS

This section presents an iterative numerical method for the optimal matching of the computed and measured reflectance pair (0.672–1.61 µm).

Let the reflectances \(r(\lambda=0.672 \text{µm}) \) be \(r_1 \), and \(r(\lambda=1.61 \text{µm}) \) be \(r_2 \). Also, let a series of \(D_e \) and \(\tau \) values be chosen: \(D_{e1}, D_{e2}, \ldots, D_{eN} \), and \(\tau_1, \tau_2, \ldots, \tau_m, \ldots, \tau_M \), where \(N \) and \(M \) are the total number of selected mean effective sizes and optical depths, respectively. The superscript numeral within the parentheses indicates iteration number. The superscript sign, “+” or “−“, indicates computed reflectances greater or less than that measured, respectively. We denote the subscripts ‘comp’ and ‘meas’ as the computed and measured values, respectively. Thus, radiance tables of \(r_{1\text{comp}}(n, m) \) and \(r_{2\text{comp}}(n, m) \) for all combinations of \((D_{en}, \tau_m) \) are obtained from LBLE.

We start by searching for the index \(m^{(0)} \), so that:

\[
 r_1^{-0(0)} < r_{1\text{meas}} \leq r_1^{+0(0)} \tag{B.1}
\]

where:

\[
 r_1^{-0(0)} = r_{1\text{comp}}(3, m^{(0)}) \quad ; \quad r_1^{+0(0)} = r_{1\text{comp}}(3, m^{(0)} + 1)
\]

The \(D_e \) index, \(n \), is set to 3 as an initial guess. The iteration will find the correct index regardless of the guess. A value near the middle of the index range saves computation for most cases. Once \(m^{(0)} \) is determined, we obtain \(\tau^{(0)} \) as:

\[
 \tau^{(0)} = \tau^{(0)}_{m^{(0)}} + \frac{\tau^{(0)}_{m^{(0)}+1} - \tau^{(0)}_{m^{(0)}}}{r_1^{+0(0)} - r_1^{-0(0)}} (r_{1\text{meas},i} - r_1^{-0(0)}) \tag{B.2}
\]

Then by using the index \(m^{(0)} \), we search for the index \(n^{(0)} \), so that:

\[
 r_2^{-0(0)} < r_{2\text{meas}} \leq r_2^{+0(0)}, \tag{B.3}
\]

where:

\[
 r_2^{-0(0)} = r_{2\text{comp}}(n^{(0)} + 1, m^{(0)}); \quad r_2^{+0(0)} = r_{2\text{comp}}(n^{(0)} + 1, m^{(0)})
\]

With \(n(0) \) determined, we obtain \(D_e^{(0)} \) as:

\[
 D_e^{(0)} = D_{e,n^{(0)}} + \frac{D_{e,n^{(0)}+1} - D_{e,n^{(0)}}}{r_2^{-0(0)} - r_2^{+0(0)}} (r_{2\text{meas},i} - r_2^{+0(0)}) \tag{B.4}
\]
We then go back and search for the index \(m^{(1)}\), so that:

\[
 r_1^{-1} < r_{\text{meas}}^{(1)} \leq r_1^{+1}
\]

where:

\[
 r_1^{-1} = r_{1\text{comp}}(n^{(0)}, m^{(1)}) + \frac{r_{1\text{comp}}(n^{(0)} + 1, m^{(1)}) - r_{1\text{comp}}(n^{(0)}, m^{(1)})}{D_{e,n^{(0)}} + D_{e,n^{(0)}}} [D_e^{(0)} - D_{e,n^{(0)}}]
\]

\[
 r_1^{+1} = r_{1\text{comp}}(n^{(0)}, m^{(1)} + 1) + \frac{r_{1\text{comp}}(n^{(0)} + 1, m^{(1)} + 1) - r_{1\text{comp}}(n^{(0)}, m^{(1)} + 1)}{D_{e,n^{(0)}} + D_{e,n^{(0)}}} [D_e^{(0)} - D_{e,n^{(0)}}]
\]

Once \(m^{(1)}\) is determined, we obtain \(\tau^{(1)}\) as:

\[
 \tau^{(1)} = \tau_m^{(1)} + \frac{\tau_{m^{(1)} + 1}^{(1)} - \tau_m^{(1)}}{r_1^{+1} - r_1^{-1}} (r_{\text{meas},i} - r_1^{-1})
\]

Then by using the index \(m^{(1)}\), we search for the index \(n^{(1)}\), so that:

\[
 r_2^{-1} < r_{2\text{meas}}^{(1)} \leq r_2^{+1}
\]

where:

\[
 r_2^{-1} = r_{2\text{comp}}(n^{(1)} + 1, m^{(1)}) + \frac{r_{2\text{comp}}(n^{(1)} + 1, m^{(1)} + 1) - r_{2\text{comp}}(n^{(1)} + 1, m^{(1)})}{\tau_{m^{(1)} + 1} - \tau_m^{(1)}} [\tau^{(1)} - \tau_m^{(1)}]
\]

\[
 r_2^{+1} = r_{2\text{comp}}(n^{(1)} + 1, m^{(1)} + 1) + \frac{r_{2\text{comp}}(n^{(1)} + 1, m^{(1)} + 1) - r_{2\text{comp}}(n^{(1)} + 1, m^{(1)})}{\tau_{m^{(1)} + 1} - \tau_m^{(1)}} [\tau^{(1)} - \tau_m^{(1)}]
\]

With \(n^{(1)}\) determined, we obtain \(D_e^{(1)}\) as:

\[
 D_e^{(1)} = D_e + \frac{D_{e,n^{(1)} + 1} - D_{e,n^{(1)}}}{r_2^{-1} - r_2^{+1}} (r_{\text{meas},i} - r_2^{+1})
\]

The iteration continues until convergence.
APPENDIX C. CALCULATION OF CLEAR RADIANCES USING PFAAST FAST RTM FOR OVERCAST SCENES FOR IR RETRIEVALS

This section describes the Pfaast fast Radiative Transfer Model (RTM) used to calculate the clear radiances needed for the retrievals of the cloud optical thickness, effective particle size and cloud top temperature for the night time condition and the cloud top temperature for the day time ice cloud condition, respectively shown in Figures 14 and 18. Pfaast is a regression based RTM for the calculation of the layer-to-space transmittance. Assuming small scattering and reflection effects, the clear radiances for the VIIRS cloud IR bands can be calculated from the transmittance profile as in the following:

\[R = \varepsilon S B(T_s) \tau_Z(L) + \sum_{i=1}^{L} B(T_i)(\tau_Z(i-1) - \tau_Z(i)) \]

Where:
- \(R \) = TOA clear Radiance,
- \(\varepsilon S \) = spectral emissivity of the surface
- \(B(T_s) \) = Planck radiance function at surface temperature \(T_s \)
- \(\tau_Z(i) \) = Transmittance from pressure level “i” to Space
- \(L \) = Pressure level on the ground

The version of Pfaast adopted for VIIRS applications consists of 42 pressure levels. These pressure levels (in mb) are given as:

0.1, 0.2, 0.5, 1.0, 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 50, 60, 70, 85, 100, 115, 135, 150, 200, 250, 300, 350, 400, 430, 475, 500, 570, 620, 670, 700, 780, 850, 920, 950, 1000, 1025, 1050.

Equation C.1 shows clearly that clear sky radiances for M12, M14, M15 and M16 can be calculated given input of surface emissivity, surface temperature and atmospheric profiles in temperature and moisture (shown later in Equation C.5). At the present, a static database for the spectral surface emissivity is used. The values in the database are taken from the MODIS/UCSB emissivity library. As equation C.1 shows the clear radiance composes of two parts, one from the surface and the other from the atmosphere. For the window IR bands of interest to VIIRS cloud algorithms the major part of the clear radiance comes from the surface. As such, a more accurate surface emissivity data would likely increase the accuracy in

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
clear radiance prediction. The need for such more accurate surface emissivity will be evaluated during the calibration/validation phase of the program. As for the atmospheric profiles GDAS NCEP prediction products are used.

As shown in Equation C.1 the prediction of clear radiance is in effect a prediction of the level-to-space total transmittance. The level-to-space transmittance for each pressure level is regression-based and modeled as in the following:

$$-\ln(\tau_{\text{eff}}) = \sum_{i=1}^{N} c_i Q_i$$ \hspace{1cm} \text{C.2}

Where

$$\tau_{\text{eff}}(l) = \frac{\tau_Z(l)}{\tau_Z(l-1)}$$ \hspace{1cm} \text{C.3}

$$\tau_Z(l) = \text{transmittance at pressure level } "l"$$

$$C_i = \text{regression coefficient associated with Predictor } "i"$$

$$Q_i = \text{Predictor } "i"$$

Predictors For Fixed Gas

In the modeling of transmittance the form of the predictors vary depending on the global and seasonal variability of the absorbing gases. For gases such as CO$_2$ the global and seasonal variation is small and therefore considered to be “fixed”. In the case of fix gas, the predictors are defined in the following:

$$a, a^2, aT_r, aT_r^2, T_r, T_r^2, aT_Z, aT_Z/T_r$$

$$T_Z = \sum_{i=2}^{L} P(i)(P(i) - P(i-1))T_r (i-1)$$ \hspace{1cm} \text{C.4}

where:

$$a$$ is the Secant of sensor zenith angle,

$$P(i)$$ is the atmospheric pressure (in mb) at level “i”, and $$T_r = T_{\text{profile}}/T_{\text{reference}}$$.
T_{profile} is the atmospheric temperature profile for a given pixel and Reference is the reference temperature profile from the US Standard 76 atmosphere.

Predictors for Variable gases

For the absorbing water vapor, however, the global and seasonal variations are large and the predictors used for fixed gas cannot be used. To account for the variability the amount of the water vapor is introduced in the predictors. For water vapor, the predictors used in Pfaast are as follow:

\[\sqrt{W_{a}dT}, \sqrt{W_{a}}, W_{a}, W_{z}a, (W_{a})^{2}, W_{a}dT, (W_{a})^{3}, W_{z}a, (W_{a})^{4}, (W_{z}a)^{2}, \]

Where:

\[W = W_{profile}/W_{reference}; \]

\[dT = T_{profile} - T_{reference} \]

\[W_{z} \] is the pressure weighted water path given by:

\[W_{z}(l) = \frac{\sum_{i=1}^{l} P(i)(P(i) - P(i-1))W_{profile}(i)}{\sum_{i=1}^{l} P(i)(P(i) - P(i-1))W_{reference}(i)} \] \hspace{1cm} C.5

W_{profile} is the atmospheric moisture profile (in gm/kg) for a given pixel and Reference is the reference moisture profile from the US Standard 76 atmosphere.

Ozone is also included as a variable gas although the absorption effects on the cloud Window IR bands, i.e. M12, M14, M15 and M16 are very small. Because the effects are so small a pixel-level O$_3$ profile such as the moisture profile is not input to Pfaast. However, the US Standard 76 profile is used as the input to estimate the small effect.

Finally the total transmittance with contributions from fixed and variable gases is given by:

\[\tau_{z} (total) = \tau_{z,eff}\text{ (Fixed)} * \tau_{z,eff}\text{ (water)} * \tau_{z,eff}\text{ (O$_3$)} \]

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.