Validation of Satellite Sounder Environmental Data Records: Application to S-NPP

Nicholas R. Nalli¹,², C. D. Barnet³, A. Reale⁴, D. Tobin⁵, A. Gambacorta¹,², E. S. Maddy³,², E. Joseph⁶, B. Sun¹,⁴, L. Borg⁵, A. K. Mollner⁷, V. R. Morris⁶, X. Liu⁸, M. Divakarla¹,², P. J. Minnett⁹, R. O. Knuteson⁵, T. S. King¹,², and W. W. Wolf²

¹IMSG, Rockville, Maryland, USA
²NOAA/NESDIS/STAR, College Park, Maryland, USA
³STC, Columbia, Maryland, USA
⁴NOAA/NESDIS/STAR, Suitland, Maryland, USA
⁵University of Wisconsin-Madison, Madison, Wisconsin, USA
⁶Howard University, Washington, D.C., USA
⁷The Aerospace Corp., El Segundo, California, USA
⁸NASA Langley Research Center, Hampton, Virginia, USA
⁹RSMAS, University of Miami, Miami, Florida, USA

2014 AMS Annual Meeting
Atlanta, Georgia, USA
6 February 2014
Outline

• Introduction
 – JPSS CrIMSS
 – Importance of validating EDRs
 – JPSS Cal/Val Program

• Validation Methodology
 – NWP Global Comparisons
 – Satellite EDR Intercomparisons
 – Conventional RAOB Matchup Assessments
 – Dedicated/Reference RAOB Matchup Assessments
 – Intensive Field Campaign “Dissections”

• Assessment Methodology
 – Reducing Correlative Measurements to layers
 – Statistical Metrics for Sounder EDR Validation
 – Use of Averaging Kernels

• Application to S-NPP
 – S-NPP Validation Datasets
 – NPROVS, NPROVS+
 – VALAR

• Future Work
Introduction: JPSS CrIMSS

- **Joint Polar Satellite System (JPSS) Cross-track Infrared Microwave Sounder Suite (CrIMSS) sounder system:**
 - Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS)
 - Designed to retrieve atmospheric vertical temperature and moisture profiles (AVTP and AVMP), with optimal vertical resolution under non-precipitating conditions (cloudy, partly cloudy and clear)

- **CrIMSS Operational EDR Algorithms**
 - NOAA Unique CrIS/ATMS Processing System (NUCAPS)
 - Exact line-for-line modular implementation of the iterative, multistep AIRS Science Team retrieval algorithm
 - AVTP, AVMP and trace gas profiles (O₃, CO, CO₂, CH₄, etc.; e.g., see 16ATCHEM Oral 5.3, Smith and Nalli)
 - See 10GOESRPSS Oral 9.1 (Gambacorta et al.)
 - Original IDPS Algorithm
 - Optimal Estimation (OE) algorithm originally developed by AER
 - See 10GOESRPSS Poster 353 (Divakarla et al.)

NUCAPS Ozone retrieval 450 hPa
15 May 2013
The Importance of Validating Sounder EDRs

- **Validation** is “the process of ascribing uncertainties to these radiances and retrieved quantities through comparison with correlative observations” (Fetzer et al., 2003).
- Validation of EDRs provides implicit validation of SDRs.
- Includes validation of retrieved cloud-cleared radiances (CCRs), which are known to have positive impact on NWP (e.g., Le Marshall et al., 2008).
- Enables development/improvement of algorithms.
- Sounder EDR (AVTP, AVMP and trace gas) users include
 - WFOs (AWIPS)
 - Science users/investigators (e.g., Pagano et al., 2013)
JPSS Cal/Val Program

- **JPSS Cal/Val Phases**
 - Pre-Launch / Early Orbit Checkout (EOC)
 - Intensive Cal/Val (ICV)
 - Validation of EDRs against multiple correlative datasets
 - Long-Term Monitoring (LTM)
 - Characterization of all EDR products and long-term demonstration of performance

- In accordance with the JPSS phased schedule, the **S-NPP CrIMSS EDR cal/val plan** was devised to ensure the EDR would meet the mission Level 1 requirements (*Barnet*, 2009)

- The **EDR validation methodology** draws upon previous work with AIRS and IASI and is summarized in this talk (after *Nalli et al.*, 2013b)

Atmospheric Vertical Temperature Profile (AVTP)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVTPClear, surface to 300 mb</td>
<td>1.6 K / 1-km layer</td>
</tr>
<tr>
<td>AVTPClear, 300 to 30 mb</td>
<td>1.5 K / 3-km layer</td>
</tr>
<tr>
<td>AVTPClear, 30 mb to 1 mb</td>
<td>1.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTP Clear, 1 mb to 0.5 mb</td>
<td>3.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTPCloudy, surface to 700 mb</td>
<td>2.5 K / 1-km layer</td>
</tr>
<tr>
<td>AVTPCloudy, 700 mb to 300 mb</td>
<td>1.5 K / 1-km layer</td>
</tr>
<tr>
<td>AVTPCloudy, 300 mb to 30 mb</td>
<td>1.5 K / 3-km layer</td>
</tr>
<tr>
<td>AVTPCloudy, 30 mb to 1 mb</td>
<td>1.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTPCloudy, 1 mb to 0.5 mb</td>
<td>3.5 K / 5-km layer</td>
</tr>
</tbody>
</table>

Atmospheric Vertical Moisture Profile (AVMP)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVMPClear, surface to 600 mb</td>
<td>Greater of 20% or 0.2 g/kg / 2-km layer</td>
</tr>
<tr>
<td>AVMPClear, 600 to 300 mb</td>
<td>Greater of 35% or 0.1 g/kg / 2-km layer</td>
</tr>
<tr>
<td>AVMPClear, 300 to 100 mb</td>
<td>Greater of 35% or 0.1 g/kg / 2-km layer</td>
</tr>
<tr>
<td>AVMPCloudy, surface to 600 mb</td>
<td>Greater of 20% or 0.2 g/kg / 2-km layer</td>
</tr>
<tr>
<td>AVMPCloudy, 600 mb to 400 mb</td>
<td>Greater of 40% or 0.1 g/kg / 2-km layer</td>
</tr>
<tr>
<td>AVMPCloudy, 400 mb to 100 mb</td>
<td>Greater of 40% or 0.1 g/kg / 2-km layer</td>
</tr>
</tbody>
</table>
Validation of Satellite Sounder Environmental Data Records: Application to S-NPP

VALIDATION METHODOLOGY
Validation Methodology Hierarchy (1/2)

1. Numerical Model (e.g., ECMWF, NCEP/GFS) Global Comparisons
 - Large, global samples acquired from Focus Days
 - Useful for early sanity checks, bias tuning and regression
 - However, not independent truth data

2. Satellite EDR (e.g., AIRS, ATOVS, COSMIC) Intercomparisons
 - Global samples acquired from Focus Days (e.g., AIRS)
 - Consistency checks; merits of different retrieval algorithms
 - However, IR sounders have similar error characteristics; must take rigorous account of averaging kernels of both systems (e.g., Rodgers and Connor, 2003)

3. Conventional RAOB Matchup Assessments
 - Conventional WMO/GTS operational sondes launched ~2/day for NWP (e.g., NPROVS)
 - Useful for representation of global zones and long-term monitoring
 - Large statistical samples acquired after a couple months’ accumulation
 - Limitations:
 - Skewed distribution toward NH-continental sites
 - Significant mismatch errors
 - Non-uniform, less-accurate and poorly characterized radiosonde types used in data sample
4. **Dedicated/Reference RAOB Matchup Assessments**
 - Dedicated sondes: Vaisala RS92-SGP dedicated for the purpose of satellite validation
 - Well-specified error characteristics and optimal accuracy
 - Minimal mismatch errors
 - Include atmospheric state “best estimates” or “merged soundings”
 - Reference sondes: CFH, corrected RS92, Vaisala RR01 under development
 - Traceable measurement
 - Detailed performance specification and regional characterization
 - Limitation: Small sample sizes and geographic coverage
 - E.g., ARM sites (e.g., Tobin et al., 2006), ideally GRUAN

5. **Intensive Field Campaign Dissections**
 - Include dedicated RAOBs, especially those not assimilated into NWP models
 - Include ancillary datasets (e.g., ozonesondes, lidar, M-AERI, MWR, sunphotometer, etc.)
 - Ideally include funded aircraft campaign using aircraft IR sounder (e.g., NAST-I, S-HIS) underflights (See 10GOESRJPSS Poster 690, Taylor et al.)
 - Detailed performance specification; state specification; SDR cal/val; EDR “dissections”
 - E.g., AEROSE, JAIVEX, WAVES, AWEX-G, EAQUATE
Validation of Satellite Sounder Environmental Data Records: Application to S-NPP

ASSESSMENT METHODOLOGY
Assessment Methodology: Reducing Truth to Correlative Layers

- The relationship between the forward and inverse problem (Rodgers, 1990) requires that high-resolution truth measurements (e.g., dedicated RAOB) should be reduced to correlative RTA layers

\[
\hat{x} = I[F(x,b), b, c]
\]

- Basic approach is to integrate quantities over the atmospheric path (e.g., number densities → column abundances), interpolate to RTA (arbitrary) levels, then compute then RTA layer quantities

\[
\sum_x(z) = \int_{z_t}^{z} N_x(z') \, dz'
\]
Assessment Methodology: Statistical Metrics

- Level 1 AVTP and AVMP accuracy requirements are defined over coarse layers, roughly 1–5 km for tropospheric AVTP and 2 km for AVMP (Table, Slide 5).

AVTP

\[
\text{RMS}(\Delta T_G) = \sqrt{\frac{1}{n_j} \sum_{j=1}^{n_j} (\Delta T_{G,j})^2} \\
\text{BIAS}(\Delta T_G) \equiv \Delta T_G = \frac{1}{n_j} \sum_{j=1}^{n_j} \Delta T_{G,j} \\
\text{STD}(\Delta T_G) \equiv \sigma(\Delta T_G) = \sqrt{[\text{RMS}(\Delta T_G)]^2 - [\text{BIAS}(\Delta T_G)]^2}
\]

AVMP and O₃

- W2 weighting was used in determining Level 1 Requirements
- To allow compatible STD calculation, W2 weighting should be consistently used for both RMS and BIAS

\[
\text{RMS}(\Delta q_G) = \sqrt{\frac{\sum_{j=1}^{n_j} W_{G,j} (\Delta q_{G,j})^2}{\sum_{j=1}^{n_j} W_{G,j}}}, \quad \text{water vapor weighting factor, } W_{G,j},
\]

\[
\text{BIAS}(\Delta q_G) = \frac{\sum_{j=1}^{n_j} W_{G,j} \Delta q_{G,j}}{\sum_{j=1}^{n_j} W_{G,j}}, \quad W_{G,j} = \begin{cases}
1 & , \quad W^0 \\
q_{G,j} & , \quad W^1 \\
(q_{G,j})^2 & , \quad W^2
\end{cases}
\]

\[
\text{STD}(\Delta q_G) = \sqrt{[\text{RMS}(\Delta q_G)]^2 - [\text{BIAS}(\Delta q_G)]^2}
\]
Assessment Methodology: Use of Averaging Kernels (AKs)

- **AKs** define the **vertical sensitivity** of the sounder measurement system
 \[A \equiv \frac{\partial \hat{x}}{\partial x} \]
- Facilitates intercomparisons of profiles obtained by two different observing systems
- Retrieval AKs can be used to “smooth” correlative truth (RAOBs reduced to RTA layers), thereby **removing null-space errors** otherwise present
 \[x_s = A(x - x_0) + x_0 \]
Validation of Satellite Sounder Environmental Data Records: Application to S-NPP

APPLICATION TO S-NPP
Conventional RAOB Matchups

- NOAA Products Validation System (NPROVS) (Reale et al., 2012)
 - See 10GOESRJPSS Posters 675 (Sun et al.) and 677 (Pettey et al.)

- Matchup Sample Jul-Dec 2013, $N = 34234$
JPSS S-NPP Dedicated RAOBs

- **PMRF** (Kauai, Hawaii)
 - 2012 SNPP testbed site
- **BCCSO** (Beltsville, MD)
 - Howard University
 - continent, urban
- **ARM Sites**
 - TWP (Manus Island)
 - SGP (Oklahoma)
 - NSA (Alaska)
 - See 10GOESRJPSS Poster 700 (*Borg et al.*)
- **AEROSE Campaigns**
 - Tropical Atlantic Ocean
 - See 10GOESRJPSS Poster 681 (*Nalli et al.*)
Reference RAOBs

- GRUAN reference RAOB matchups with S-NPP are currently being acquired via the NPROVS+ system
 - Traceable measurements
 - See 10GOESRJPSS Poster 675 (Reale et al.)
A VALAR “stamp” is roughly defined as a granule-level input file (matched with a RAOB anchor point) needed for performing re-retrievals.

SDR stamps consist of 4-scan line granules within ±1 minute of overpass, ≈500 km radius.
Future Work

• **SNPP CrIMSS NUCAPS Stages 1-3 Validated Maturities**
 — NUCAPS Phase II algorithm improvements

• **Long Term Monitoring (LTM) of S-NPP CrIMSS**
 — Apply averaging kernels in NUCAPS error analyses
 — Ensemble statistics versus GRUAN and dedicated RAOB
 — calc – obs (e.g., CCR) analyses (e.g., Nalli et al., 2013a)
 — NUCAPS trace gas profile validation (e.g., O₃, CO, etc.)
 — NUCAPS skin SST validation
 — NUCAPS EDR algorithm development (e.g., AVTP/AVMP uncertainty estimates)
Acknowledgments

• The NOAA Joint Polar Satellite System Office Office (M. D. Goldberg) and the former Integrated Program Office (IPO)
• The STAR Satellite Meteorology and Climatology Division (F. Weng and I. Csiszar).
• AEROSE works in collaboration with the NOAA PIRATA Northeast Extension (PNE) project and is supported by the NOAA Educational Partnership Program grant NA17AE1625, NOAA grant NA17AE1623, JPSS and NOAA/NESDIS/STAR.
• Contributors to the S-NPP CrIMSS EDR validation effort: L. Zhou, M. Wilson, F. Iturbide-Sanchez, C. Tan, X. Xiong, H. Xie, F. Tilley, C. Brown, M. Petty (NOAA/NESDIS/STAR), and M. Feltz (UW/CIMSS).
• Contributions to the S-NPP validation data collection effort: B. Demoz and M. Oyola (Howard University); D. Wolfe (NOAA/ESRL); J. E. Wessel (Aerospace)
• D. Holdridge and J. Mather and the U.S. DOE ARM Climate Research Facility for its support of the satellite overpass radiosonde efforts.