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VIIRS onboard Suomi-NPP and JPSS

d The Joint Polar Satellite System (JPSS) Is the USA's next generation polar-orbiting operational environmental
satellite system. JPSS will provide operational continuity of satellite-based observations and products currently
obtained from the Suomi National Polar-orbiting Partnership (NPP) mission.

4 Visible Infrared Imaging Radiometer Suite (VIIRS) is a multi-spectral scanning radiometer (22 bands between 0.4pum
and 12um) on-board the Suomi-NPP with spatial resolution for 16 bands at 750m and 5 bands at 325m. The spatial
resolution of Intermediate Product (IP) output is 750 m at nadir. The spatial resolution of Environment Data Record
(EDR) 1s 6 km at nadir compared to 10km at nadir for Moderate-Resolution Imaging Spectroradiometer (MODIS).

d The MODIS on-board Agua and Terra are currently providing global aerosol coverage for research and operational
activities in weather, climate, and air quality. The VIIRS on-board Suomi-NPP and future JPSS satellites are
expected to continue daily global aerosol observations for operational and research communities.

1 Separate algorithms are used for aerosol retrieval over land and ocean. The over-land aerosol algorithm is based on
but a different scheme from MODIS Surface Reflectance algorithm (MODO09) and the over-ocean algorithm is
derived from the MODIS Aerosol (MODO04 Collection 4) algorithm. In VIIRS, Aerosol Optical Thickness (AOT) and
aerosol type are retrieved simultaneously by minimizing the difference between observed and calculated reflectance
In multiple channels.

VIIRS Aerosol Products

= VIIRS aerosol products include AOT, Aerosol Particle Size Parameter (APSP), and Suspended Matter (SM).

= The VIIRS AOT and APSP products reached Provisional maturity level and the SM product reached Beta maturity
level on January 23, 2013.

= The VIIRS AOT and APSP (both EDR and IP) products are now publicly accessible from NOAA's Comprehensive
Large Array-data Stewardship System (CLASS at http://www.class.ngdc.noaa.gov).

Maritime Aerosol Network (MAN)

= MAN Is a network of ship-borne aerosol optical thickness measurements using hand-held Microtops Il sun
photometers [Smirnov et al., 2009] with an uncertainty of AOT measurement no larger than 0.02.

= Collected MAN data follow AErosol RObotic NETwork (AERONET) protocol for data processing,
http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol network.html.

= The cruise measurements available from MAN offer an unprecedented opportunity to validate the VIIRS AOT and
APSP over open Ocean, far from coastlines and islands as that AERONET site.

Comparisons between VIIRS Aerosol Retrievals and MAN Measurements

= Period from May 2, 2012 to February 28, 2014.
= MAN Level 2.0 Series Average Datasets.
= VIIRSAOT EDRs at three quality-flag (QF) levels;
 High : used only high QF AOT.
e Top2 : used both high and medium QF AOT.
« All :usedall retrieved AOT (QF = high, medium, and low).
= VIIRS APSP (Angstrom Exponent, AE) EDRs:
e Used only high QF APSP.
 AE computed at MAN’s and MODIS’s like wavelength pairs (445/865 versus 440/870 and 550/865 versus 500/870).
= Match-up criteria for VIIRS EDRs and MAN measurements:

« The VIIRS-MAN match-up uses each MAN measurement as a reference point and finds the VIIRS retrievals
within the spatial and temporal matching domain of 0.5° latitude-longitude and one hour time window centered
on the MAN observation.

e At least 12 (about 20%) selected quality VIIRS EDRs within the matching domain or any VIIRS EDR(s) within
3km of MAN measurements.

* Multiple collocations within one-hour time window are averaged to a single match-up.
= Performance Statistics:

e Accuracy : the mean difference between two datasets.

* Precision : the standard deviation of the difference.

o Separate AOT (7) retrieval performance in the range of < 0.3 and == 0.3.
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Locations of MAN measurements where match-ups were found
with high quality VIIRS AOT EDRs during selected period.
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Comparisons between VIIRS high quality APSP EDRs and MAN
measurements. Left panel shows the scatter plot of AE computed at MAN-
like wavelength(A)-pair and right panel shows the scatter plot of AE
computed at MODIS-like A-pair. N : number of match-ups, A : accuracy, P :
precision, U : uncertainty, R : correlation coefficient
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Figure3 Comparisons between VIIRS AOT EDRs and MAN measurements.
Figures in left, middle, and right columns are scatter plots of all match-
ups, match-ups where MAN 7 < 0.3, and match-ups where MAN 7 2 0.3,
respectively. Figures in upper, middle, and bottom rows are scatter plots
of quality level equals to High, Top2, and All, respectively. N : number of
match-ups, A : accuracy, P : precision, U : uncertainty, R : correlation
coefficient, and ER : percentage of match-ups within MODIS expected

error bars (£0.03+£0.057).

VIIRS APSP  JPSS EDR

against JPSS requirement threshold at two AE A-pairs.

Attribute QF Level  APSP A-pair Measurement  Threshold Achieved
U - MAN-like 0.20 03 v
y : MODIS-like 0.19 | \
. | MAN-like 0.39 v
Precision High : 0.6
MODIS-like 0.44 v
Tablel The performance statistics of VIIRS high quality APSP EDRs

. VIIRSAOT  JPSSEDR .
Attribute QF Level 7-range Measurement Threshold Achieved
High 0.02 v
Top2 r<0.3 0.04 0.08 v
All 0.08 v
Accuracy :
High 0.03 v
Top2 r20.3 0.07 0.15 v
All 0.11 v
High 0.04 v
Top2 r<0.3 0.06 0.15 \
. All 0.08 v
Precision :
High 0.15 v
Top2 r20.3 0.14 0.35 v
All 0.15 v

Table2 The performance statistics of VIIRS AOT EDRs against JPSS
requirement threshold at three quality levels.

Summary

= VIIRS AOT EDRs meet JPSS AOT thresholds at all three QF levels. It still needs some improvements to achieve the objective goal of 1% for
both accuracy and precision at all zvalues.

= VIIRS high quality APSP EDRs meet JPSS thresholds for APSP. It also needs improvements to achieve the objective goal of 0.1 unit for both
accuracy and precision.

= Comparisons between VIIRS AOT and APSP over the land can be seen from poster session presented by J. Huang et. al., “Spatial and

Temporal Characterization of the Difference between Multi-Sensor Aerosol Retrievals and AERONET measurements”.
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INTRODUCTION Total-band and In-band averaged nL,(4) - MOBY Site

Table 1. The ratio between nL,(A) at the nominal band center and total-band averaged

» The in-band and out-of-band responses refer to sensor spectral response contribution MODIS VIIRS nL,(4), and the effective band center wavelengths for MODIS and VIIRS.

from within and outside the spectral bandwidth of the sensor bands, while total-band
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ABSTRACT

The Chesapeake Bay (CB) contains some of the most productive waters along the U.S.
East Coast. Standard satellite algorithms for net primary production (NPP) for the open
ocean are generally not applicable for the CB. In this presentation, we show NPP estimates
from MODIS-Aqua by applying a new regional NPP model to satellite products. This NPP
model for the CB incorporates an improved prediction of the photosynthetic parameter,
Pbopt, as a function of sea surface temperature (SST). These MODIS-Aqgua NPP estimates
agree well with in-situ measurements. NPP time series for CB using MODIS-Aqua data
(2002-2011) with the new model are used to characterize spatial and temporal variability of
NPP in CB. Spatial distributions show high NPP in the southern upper Bay and northern
middle Bay, and low NPP values in the northern upper Bay, the eastern middle Bay, and the
lower Bay. Lowest NPP occurred during winter over the entire Bay, and highest NPP
occurred In late spring to summer. These results are consistent with NPP dynamics
ascertained by shipboard studies. We conclude by demonstrating NPP derived using VIIRS
products for CB. This study has been documented in our recent paper (Son et al., 2014).

DATA & METHODS
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= In situ Primary Production and ancillary data (Chl-a, N v
PBoot Zeww PAR, SST, etc.) are obtained in the : Ny R
Chesapeake Bay by Harding et al. SN SN

» Total data number is 558 from April 1989 to November i\ [ ?L e
2003 (data before April 1989 are excluded due to _H“ﬁ “~ Lofe
suspected data quality). FJ‘ ‘:_ﬂ.

* MODIS-Aqua Level-2 ocean color data from July 2002 2l 7 AT B
to December 2011 were generated using the NIR-SWIR 1220 R i i
combined atmospheric correction algorithm (Wang & Shi, m}—?: _wﬁ-mi szl
2007) with MODIS-Aqua Level-1B data from the NASA N -’w;iﬁ g[8
MODAPS website. MODIS PAR and SST data were = W
obtained from the NASA OBPG website. 3l . ;; i/

* Those Level-2 data were remapped and then processed “z::%ﬂﬁwy_g&&;ﬁ; " 7
to generate NPP composite images. .~_ ﬁlﬁm > ea® -f

= Three regions in Chesapeake Bay are defined, i.e., the P s
lower Bay, middle Bay, and upper Bay (shown as boxes, A
A, B, & C in Fig.1, respectively), following salinity || S| E—
gradients.

Fig. 1. Map of the Chesapeake Bay
with locations of in situ PP data
(triangles).

Chesapeake Bay Production Model
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* The daily-integrated NPP model for CB, CBPM, (Harding et al., 2002) is described as:

Log,,(NPP) = 0.1329 + 0.964-log,,P®,,; + 1.0265-log,,Chl-a + 0.9710-log,,Z,,, +

where Zeu is euphotic depth, Eo is surface PAR, and DL is day length.

= A third polynomial regression relationship between P5,, and SST was derived to
parameterize P® ;.

10910PBp = -2.32x10°1 + 4.34x102 SST + 1.00x10- SST2 — 5.00x10°5 SST?

Validation of the CB NPP Model
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= Comparisons of model-derived and in situ NPP show the new approach to generate
PBopt significantly improves retrievals for the Bay.

* The original CBPM-derived NPP are biased low by ~20%, while the new CBPM
shows better agreement with NPP by ~4% for the median.

* Match-up analyses show that MODIS-derived NPP compares favorably with in situ
NPP, despite limitations of sample size due to a short temporal overlap.

» Histogram results show MODIS-derived NPP is similar to in situ NPP. But there is
decadal difference between MODIS-Aqua and in situ NPP measurements.

Seasonal Variability of MODIS-derived NPP
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Fig. 4. MODIS-Aqua-measured (2002-2011) monthly NPP climatology images for the Chesapeake
Bay for months of January to December.

-76 ~76.50 -78

» General spatial distributions from MODIS-Aqua NPP images are similar over most of
months, showing high values in the southern upper Bay and the northern middle Bay,
while relatively lower NPP values are in the northern upper ay, the eastern area of the
middle Bay, and the lower Bay.

* MODIS-derived NPP are lowest in winter (Dec—Feb) for the entire Bay, due to limited
light avalilability. NPP is highest in late spring to summer (May—Aug), depending on
location. In autumn, NPP decreases with seasonal reduction of solar energy.

Interannual Variability of MODIS-derived NPP
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* There Is a strong interannual variablility in the NPP for CB. In the upper Bay, highest
NPP values appeared in summer of 2009 and 2010, while relatively lower seasonal
peaks occurred in 2005 and 2006.

* [n the lower Bay, the seasonal peak of NPP generally appears in June. But, an early
seasonal peak appeared in 2007 and 2010 (May), and a late seasonal peak in 2008
(August). A relatively higher NPP peak occurred in June 2011.
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* Results from mean values of the MODIS-derived annual NPP show that interannual
variability of annual NPP is evident in the three sub-regions, with an apparent
Increasing trend from 2003 to 2011 in the all Bay regions. The increasing trend in NPP
may be related to the increases in nutrient and phytoplankton biomass.

* Interannual variability in NPP in the Chesapeake Bay would be positively (lower Bay)
or negatively (upper Bay) related to freshwater flow from the rivers, particularly the
Susquehanna River.

CONCLUSIONS

» The regional daily NPP model for the Chesapeake Bay has been improved for use with
satellite ocean color data.

» MODIS-derived NPP data correspond reasonably well to in situ measurements.

» MODIS-derived NPP products show that higher NPP values are found in southern upper
Bay and northern middle Bay, while relatively low NPP values are in northern upper Bay,
the eastern area of middle Bay, and lower Bay. Temporally, lowest NPP in winter over the
entire Bay, while high NPP in later spring to summer depending on location.

» There Is a strong interannual variability in NPP for CB, and an apparent increasing trend
from 2003 to 2011.
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Abstract

A new approach that combines advantages of various existing near-infrared (NIR)
ocean reflectance correction algorithms for satellite ocean color data processing,
Including Bailey et al. (2010) algorithm, Ruddick et al. (2000) “MUMM” algorithm,
and Wang et al. (2012) algorithm, has bee developed. The new algorithm is named
BMW after Bailey, MUMM, and Wang. The results from the BMW algorithm are
evaluated against those from the shortwave infrared (SWIR)-based atmospheric
correction algorithm and also compared with results from various existing NIR
ocean reflectance correction algorithms using data from MODIS-Aqua and VIIRS-
SNPP, with emphasis on the performance in various coastal and inland turbid waters
In the world. The new BMW algorithm provides improved satellite ocean color
results compared with various existing NIR algorithms and can be incorporated into
the official VIIRS ocean color data processing system, which does not have the NIR
radiance correction algorithm that is required for the data processing in coastal and
Inland waters. Some detailed algorithm evaluations and discussions are provided.

Three different methods for estimation of ocean
reflectance at the NIR bands

B: The bio-optical model described by Bailey et al. (2010) is used in the current

NASA MODIS atmospheric correction algorithm, which is an improved version of
the Stumpf et al. (2003) model. It exploits the relationships in the intrinsic optical
properties (IOP) of the NIR and red/green bands. However, the disadvantage is that it
cannot be applied to extremely turbid waters because the IOP relationship stops to
work In those areas.

M: The MUMM algorithm described by Ruddick et al. (2000) is originally

proposed for SeaWIFS. Its advantage Is that it does not use any bio-optical model
and it simultaneously solves for water-leaving reflectance and aerosol reflectance at
the two NIR bands. However, it requires knowing a priori the reflectance ratios
between the two NIR bands for both water (o) and aerosol (g) contributions obtained
from a scatter plot of the entire scene, which limits its operational usage.

W: Wang et al. (2012) proposed a regional, iterative method for estimation of water

reflectance at the NIR from diffuse attenuation coefficient K;(490), to be used in the
atmospheric correction algorithm for the Korean geostationary ocean color sensor —
the Geostationary Ocean Color Imager (GOCI). The NIR model (radiance
relationship between two NIR bands) was derived from MODIS data using the
SWIR approach. Its field of view include one of the most turbid areas in the world
where the current MODIS algorithm will not work. GOCI does not have SWIR
bands that can be used for atmospheric correction purpose.

BMW - the new blended algorithm

Simply speaking, the proposed blended algorithm uses B algorithm to identify and
process clear water pixels and M algorithm to process the remaining turbid water
pixels, and for the turbid water pixel processing M algorithm uses the NIR water
reflectance relationship established by W algorithm and NIR aerosol reflectance
ratio (¢) derived from nearby clear water pixels. In detail, the BMW algorithm works
as follows:

1. Use B algorithm to perform a preliminary atmospheric correction, identify clear
water pixels and save their corresponding NIR aerosol reflectance ratio ¢ (If a
valid pixel is not a clear water pixel, it Is regarded as a turbid water pixel).

2. For each turbid water pixel not yet assigned an ¢ value, assign it an € value using
the mean of the ¢ values of all clear or turbid water pixels (that have already been
assigned an ¢ value) within the 101 pixels by 101 pixels box centered at this turbid
water pixel. If no clear water pixel is found within the box, this turbid water pixel
will walt for assignment of ¢ value in the next iteration.

3. Repeat Step 2 until no more turbid water pixels can find clear water pixels or
turbid water pixels that has been assigned an ¢ value. The remaining turbid water
pixels are assigned the mean ¢ value of all clear pixels in the image.

4. Use M algorithm incorporated with W algorithm’s NIR water reflectance
relationship to process all the turbid water pixels using their assigned ¢ values.

Results: case studies

Figure 1. nLw(748)

= from MODIS-Agua on
Oct. 19, 2003 at 05157
™ over East China Sea

Figure 2. Chl-a from
MODIS-Aquaon
Oct. 21, 2009 at

Lo 1820Z over southern

Mid-Atlantic Bight

The NIR-SWIR processing using BMW

Although the BMW algorithm works reasonably well in very turbid waters, there
are circumstances where the SWIR algorithm is necessary. For example, In
MODIS-Aqua Images, 746 and 869 nm often get saturated in extremely turbid
waters, such as In the La Plata estuary (Fig. 4), which will prevent the applicability
of any NIR algorithm. Also, for highly turbid waters the NIR model is not accurate.
Therefore, a NIR-SWIR processing algorithm using BMW as NIR component was
developed to solve this problem. The BMW is first used to process all pixels, which
IS also used to identify turbid pixels with water-leaving radiances at ~865 nm band
larger than a threshold (~0.2). For those turbid waters the SWIR algorithm is used,
but there Is a buffer zone 0.2-0.4 where the BMW and SWIR results are blended to
create a smooth transition between the two algorithms.

E 1

Figure 4. Kd(490) from MODIS-Aqua on Mar. 30, 2006 at 1735Z over La Plata estuary

Results: match-ups

Figure 3. nLw(443)
from VIIRS-SNPP
on Jul. 16, 2013 at
1738Z over La Plata
estuary

Product Mean Ratio STD Mean Ratio Median Ratio STD
nL,(410) 1.0428 0.120 1.0253 1.0147 0.149
nL,(443) 1.0299 0.111 1.0170 1.0046 0.136
nL,(488) 1.0143 0.098 1.0012 0.9967 0.120
nL,(551) 0.9988 0.182 1.0045 0.9931 0.196
nL,(667) 1.4125 0.559 0.9049 0.9392 1.050
Chlorophyll-a 0.9348 0.238 0.9712 0.9699 0.214

Product Mean Ratio STD match-ups Mean Ratio STD match-ups
nL,(410) 0.9330 0.318 373 0.8173 0.359 369
nL,(443) 1.0119 0.300 825 0.9445 0.309 863
nL,(488) 0.9207 0.181 875 0.9440 0.193 931
nL,(551) 0.8945 0.201 441 0.9485 0.209 487
nL,(667) 0.7573 0.756 516 1.0498 0.823 560
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History of Ozone Monitoring at CPC

CPC worked along side NASA in the 1970’s to determine the effects of
Super Sonic Transport air liners flying on ozone in the stratosphere. CPC
began using satellite data to monitor the ozone layer with the BUV
Instrument on Nimbus-4 and the SBUV on Nimbus-7. NOAA chose to
monitor the profile of ozone vs the total column and started using the
SBUV/2 on NOAA-9. All together there have been 8 NOAA spacecraft
with SBUV/2 instruments on them. CPC has worked hand-in-hand with
NESDIS to utilize the best quality ozone data sets for its monitoring of the
ozone depletion, the annual ozone hole, the determination of ozone trends,
and assisting NCEP/EMC with the assimilation of ozone in NCEP’s
weather and climate models.

Ozone Monitoring at CPC

CPC monitors the total column of ozone as well as the ozone profile. CPC
monitors ozone on various time scales. Short (day-to-day) time periods for
phenomena such as the Antarctic (and occasionally Arctic) ozone hole.
Seasonally, CPC monitors the ozone layer’s relationship to the thermal and
dynamical background. On the longer time scales (annual to decadal),
CPC monitors trends in the ozone layer’s profile and total column. CPC
has used observations from the SBUV/2 instrument to perform this
monitoring. The OMPS Nadir Mapper, Nadir Profiler, and Limb Profiler
will continue and enhance CPC monitoring capabilities.

OMPS will allow CPC to Continuing to Monitor the
Antarctic Ozone Hole

Monitoring Ozone Hole Peak Size

NOAA-19 Total Profile Analysis

SBUV/2 TOTAL OZONE

Southern Hemisphere
90W

Analysis procedure smooths out features.
Reduces Mins and Max values.

S-NPP OMPS NM

S-NPP OMPS TOTAL OZONE

Southern Hemisphere
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80 100120 140 160 180 200 220 240 260280 300 320340 360 380 400 420 440 460 480 500 520 DU

NM provides greater fidelity of features
and maintains max and min values.

LLong Term Monitoring Requires the Creation of a Cohesive

Ozone Data

Set

OMPS NP will continue to provide the structure of ozone in vertical
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Satellite Satellite dates
Nimbus 7 10/31/78 — 5/31/89
NOAA-11a 6/1/89 — 12/31/93
NOAA-9 1/1/94 — 2/4/95
NOAA-14 2/5/95 — 12/31/98
NOAA-11d 1/1/99 — 12/31/00
NOAA-16 1/1/01 — 12/31/02
NOAA-17 1/1/03 — 12/31/08
NOAA-18 1/1/09 — 12/31/10
NOAA-19 1/1/11 - 12/31/12

9 SBUV (/2) data sets (one for each satellite) are bias adjusted
and trend adjusted to create a long term cohesive total and
profile ozone data set to be used for climate and trend detection.

Inter-Annual Variability of Total Column Ozone
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previous years. OMPS observations will continue this monitoring
for the next couple decades.
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Using Regression Analysis to Determine Trends

Two sets of orbital curtain plots (SBUV/2 on Left and OMPS Limb on Right) of ozone
concentration in October 2013. Top orbit shows low ozone values on the edge of the ozone

hole on the left side. The bottom orbit passes through the ozone maximum region
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A regression which removes the AO, AAO, QBO, and Solar cycles
is used with the “hockey stick” model to determine the trend
from 1979-1996, the trend change, and the liniear trend from

1979-20089.
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Summary Calibration Verification Results S-HIS

Climate change detection and potential attribution analy- Calibration, Calibration Verification, and Traceability

ses, as well as Numerical Weather Prediction applications,
require rigorous uncertainty analyses following estab-
lished metrological principles. Using satellite radiance

S-HIS Brightness Temperature Spectra and RU
(for flight conditions encountered during the SNPP overpass on 2013-06-01)

CrIS Brightness Temperature Spectra and RU

(typical clear sky Earth spectrum) - Pre-integration calibration of on-board blackbody references at subsystem level

- Pre and post deployment end-to-end calibration verification

observations, these analyses start with understanding the o—————— | . Instrument calibration during flight using two on-board calibration blackbodies
Y 280 - ) SRR 1 ; s 1 . 5 o o o o o o o

uncertainties associated with the spectral radiance obser- N . | | T A __ L | . Periodic end-to-end radiance evaluations under flight like conditions with NIST transfer sensors.
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The first Suomi NPP dedicated airborne calibration validation campaign was conducted in May 2013 with a 0 Svranper S e P i e e

primary objective of providing detailed validation of CrIS radiance observations and meteorological products.
During this calibration validation campaign, the NASA ER-2 aircraft instrument payload included the UW-SSEC

Scanning-High resolution Interferometer Sounder (S-HIS), the NPOESS Atmospheric Sounder Testbed- 895-900 cm” Brightness Temperature
Interferometer (NAST-I), the NPOESS Atmospheric Sounder Testbed-Microwave Spectrometer (NAST-M), the . & IR : x| s o etbron Terleston TomnalFrocesang PR SRR WY o5 1S etbreton verllcaton Hominsl Prossssing: Baer 2019001 T =080
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Double Obs-Calc Comparison Methodology

- The resulting residual difference in this method is essentially the difference between the CrIS and S-HIS
respective observation minus calculation residuals, reduced to the lowest common spectral resolution for
the two instruments.

- The radiance calculations for each instrument assume the same surface conditions, atmospheric state, and

. Infrared Fourier transform spectrometer with 1305 spectral channels; produces high-resolution,
T [0 e | = three-dimensional temperature, pressure, and moisture profiles. Designed to give scientists more refined
2013-05-15 FROR. | . i g o el Ul - - P e Gheals information about Earth's atmosphere and improve weather forecasts and our understanding of climate.
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The tool for the VIIRS LST Product

As one of the key products of VIIRS, land surface temperature (LST) is of fundamental importance to the net radiation budget at
the Earth surface and to monitoring the state of crops and vegetation, as well as an important indicator of both the greenhouse
effect and the energy flux between the atmosphere and the land. To better monitor the performance of the VIIRS LST product
and evaluate different retrieval algorithms for potential algorithm improvement, a monitoring system has been developed and
implemented for both the routine monitoring and the basic research.

It consists of two main components, the global cross-satellite comparison system and the one validating VIIRS LST against certain
ground sites’ LST observations. The third component for cross-satellite comparison at the granule level will be included in the
near future. The global component generates daily global LST maps for both daytime and nighttime from VIIRS and MODIS-
AQUA. Besides the satellite LST, additional variables such as the brightness temperature and the sensor zenith angle, etc, are
included in the daily composite dataset, allowing not only the cross-satellite LST comparison, but also the cross-algorithm
comparison. A series of subset datasets with respect to certain ground sites’ locations are generated from this component.
These will replace the subset data produced by LPEATE, which is currently being used by the satellite-ground validation
component. The latter carries out the validation of VIIRS LST with observations from SURFRAD ground stations. It evaluates the
satellite retrieval performance against the ground “truth” for the past week, the past month, and the past year. Warning
messages will be generated and sent to the LST group if any of the prescribed criteria is met. A data table consisting of around
30 variables is generated with respect to each ground site. The data table is used to evaluate different retrieval algorithms and
analyze the retrieval under different situations.

The monitoring system is automatically run at the background in a local Linux computer on a daily basis. The results are
published via an FTP site and will be transitioned to a web site in the future. The tool currently includes two satellite sensors,
VIIRS and AQUA, and will be extended to the monitoring of the LSTs from other satellites including the current GOES-13 and
GOES-15 and the future GOES-R and Himawari/AHI.

Validation with ground sites
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Figure. 3. VIIRS LST and LST calculated with
other algorithm are validated with SURFRAD
sites’ observations.

Figure. 2. A message with summary and/or
warning will be sent to the users once the
validation is done.
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monitoring and validation

Global cross-satellite comparison

Daily data from SNPP-VIIRS and MODIS-AQUA are collected. Two global datasets based on different compositing procedure are
generated for daytime/night and VIIRS/AQUA, allowing the cross-satellite comparison of the LST products. For dataset 1, satellite
LST as well as data required for retrieval with other algorithm are stored. Different retrieval algorithms for VIIRS are tested for
potential algorithm improvement.

Global LST maps for VIIRS and AQUA Other variables of the global dataset
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Figure.6. a) The LST difference between VIIRS and AQUA is shown. The difference can be as
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T E— T TE—— satellitesis consistent with the LST difference. c) LST is calculated with MODIS BT data and

VIIRS algorithm, its difference with AQUA LST is much smaller than that shown in a. This
Figure. 4. Daily LST maps are generated for cross- | indicates the algorithm difference is not the main reason for the large LST difference. d) The
satellite comparison. a) VIIRS daytime; b) AQUA scatter plot of the LST shown in c. Possible cause of the large LST difference: observation time,

daytime; c) VIIRS nighttime; and d) VIIRS daytime  satellite view angle, which will be further studied.

The routine satellite LST monitoring tool has been developed and implemented. Part of its functionalities has been automated
for the goal of routine validation. The tool has been also utilized as a basic research tool to solve problems in the algorithm
improvement and product validation.

The monitoring tool is still in development and testing mode. The global cross-satellite comparison component will be
automated and the component to compare LST from different satellite LSTs at granule level is being developed. Further testing
of the tool with different case studies will be needed. After the developmental phase, it will be also extended to other satellites
such as GOES-R, etc.




Evaluation of the SNPP VIIRS Land Surface Temperature Product:

Provisional Maturity
Yuling Liut, Yunyue Yu?, Zhuo Wang?, Peng Yu'
1CICS, University of Maryland, College Park; 2STAR/NESDIS/NOAA

Introduction

VIIRS LST EDR, the measurement of the skin temperature over global land coverage including coastal and inland-water, is derived utilizing the split-window technique. The regression based algorithm coefficients are surface type dependent, referring 17 International Geosphere-Biosphere
Programme (IGBP) types. Since January 19th, 2012, VIIRS LST data has been generated at pixel level with 750m moderate spatial resolution at nadir.

VIIRS LST maturity has transitioned from beta to provisional status and the LST data calculated with the updated LUT is available in NOAA's Comprehensive Large Array-data Stewardship System (CLASS) archive since April 07, 2014. A lot of efforts have been devoted to the validation of the
beta version LST and this study presents an evaluation of the provisional LST and addresses some issues in the algorithm development. The evaluation is mainly carried out using the conventional temperature-based approach by comparisons between the VIIRS LSTs and in-situ LSTs, and cross
satellite comparison with MODIS LST.

The evaluation results suggest that the VIIRS LST EDR meets the provisional maturity criteria but the performance varies over surface types and day/night conditions. VIIRS LST agrees well with ground LST measurements and achieves comparable accuracy with MODIS LST over SURFRAD sites.
Improvements are needed over open shrub land, snow/ice, barren surface and cropland surface. The cross satellite comparisons are mostly over Simultaneous Nadir Overpasses (SNO) between VIIRS and Aqua and the results show an overall close agreement between VIIRS and MODIS LST.
However, we do observe some discrepancies between VIIRS LST and MODIS LST under some specific conditions, e.qg., over Australia under circumstances of significant brightness temperature (BT) difference between the two split window channels, which is not observed in the ground
evaluations. Although the BT difference correction has been applied to provisional LST and the impact of high BT difference on LST retrieval has been reduced compared to beta LST, VIIRS LST is degraded under this special situation. The possible causes of the LST degradation include: a very
wide range of BT differences (can reach 16K over Australia, under hot and humid atmospheric condition with high water vapor content, or significant emissivity difference between the two split channels); limitations of the regression method and the radiative transfer simulation database
being regressed; the VIIRS LST algorithm form, i.e., quadratic term of the BT difference. Efforts are made toward the investigation of the impacts of water vapor, emissivity, and sensor view angles on the LST retrieval, which will direct our focus on the further algorithm improvement.
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ALST: jsthe LST error of surface type i, separately for day and night condition
Dij is the probability of mis-classfication of surface type i (i=1,2...17) to be j (j=1,2...17)
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MYD11 L2, MODIS/Aqua Land Surface Temperature 5-Minute L2 Swath at 1 km is used as a reference for the cross satellite evaluation.
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® VIIRS LST shows a good overall agreement with ground LST measurements, with a better performance achieved at nighttime than at daytime. However, the performance varies with surface type. LST is
: : : underestimated over closed shrub lands at both daytime and nighttime, open shrub lands and barren surface at nighttime, woody savannas and snow/ice surface at daytime. The evaluation results over barren surface
Comparlson results from Simultaneous Nadir at daytime conflict with the results obtained using measurements in Africa, the latter showing an obvious underestimation of VIIRS LST both at daytime and nighttime. Possible explanations for this apparent
Overpass (SNO) between VIIRS and AQUA N inconsistency include homogeneity of the site, ground in-situ quality control, emissivity used to calculate the ground LST and regional atmospheric condition that might affect LST retrieval.
2012 and Oct-Dec, 2013. The matchups are ® VIIRS LST is in close overall agreement with MODIS LST. Disagreements are shown over areas with large brightness temperature difference between the two retrieval channels, and these disagreements are reduced
S - - - - after calibration. However VIIRS LST is degraded under this special situation.
; quality controlled with additional cloud filter for s P

*Several issues need to be well addressed in the algorithm development. Since VIRIS LST algorithm is a surface type dependent algorithm, it underperforms over surface types that vary seasonally (which is not
reflected in the surface type EDR), and misclassified surface types particularly if the misclassification happens between two surface types with distinct emission features. The appropriate emissivity setting for all IGBP
. . . surface types is very important for the simulation. The large variation of emissivity over surface types makes it difficult to determine the representative emissivity setting for each IGBP surface type and the uncertainty
991 204 217 230 243 from the emissivity and land cover type product also introduce error into the procedure.

both LST measurements.




VIIRS (2486 - a551)

ESTIMATING SEA SURFACE SALINITY IN COASTAL WATERS OF THE Ocean

Weather
GULF OF MEXICO USING VISIBLE CHANNELS ON SNPP VIIRS
TSH(E) S%?IS]I;,TEJ\? Ryan A. Vandermeulen?, Robert Arnone?, Sherwin Ladner?, Paul Martinolich3
MISSISSIPPL 1University of Southern Mississippi, Department of Marine Science, Stennis Space Center, MS 39529 Real-time monitoring

2Naval Research Laboratory, Stennis Space Center, MS 39529 ; 3QinetiQ North America, Stennis Space Center, MS 39529

ABSTRACT

Sea surface salinity is determined using the visible channels
from the Visual Infrared Imaging Radiometer Suite (VIIRS) to
derive a regional algorithms for the northern Gulf of Mexico.
Data were collected over all seasons in the year 2013 in order
to assess inter-annual variability. The seasonal spectral
signatures at the river mouth were used to track the fresh
water end members and used to develop a seasonal slope and
bias between salinity and radiance.

APPROACH

For salinity algorithm development, in situ salinity data (Jan—
Oct 2013) obtained from five USGS platforms and one
NOAA/NDBC platform in the Mississippi Sound were compared
to VIIRS spectral Rrs and absorption (QAA).

A time-series of satellite data monitoring NEAR-ZERO salinity
points (mouth of Mobile Bay) shows changes assumed to be
independent of salinity, indicating a change in water mass that
can be normalized throughout the year.
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RESULTS & DISCUSSION

Bi-monthly regression slopes were
applied to VIIRS absorption data and
evaluated using an in situ flow through
data set in the MS Sound/Bight. Results
(below) show good agreement of satellite
data with in situ data along a range of
salinity values.
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An qualitative analysis of errors (below)
shows that higher uncertainties were
present in the 5-10 and 15-20 psu range.
Further evaluation shows that 65% of
satellite data points (n=419) were within
2 psu of in situ measurements.
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The river-mouth normalized regressions are applied to VIIRS absorption data (a486-
a551, QAA) to obtain a salinity map for the Northern Gulf of Mexico (shown above).
Even with higher inherent error than current microwave scatterometers
(Aquarius/SAC-D, SMOS), the high spatial (750-m) and temporal (daily) resolution
obtained from VIIRS offer significant improvements.
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A comparison of VIIRS salinity product (left) with NAVY Coastal Ocean Model (NCOM,
right) salinity product on September 04, 2013 shows the detection of episodic
freshwater river plumes originating from the Mississippi River. The higher resolution
satellite data product can potentially provide direct data for assimilation into physical
circulation models in near-real time.
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NIR-BASED Ocean Color IOP Algorithm for Coastal and Inland Waters

Wei Shi, Menghua Wang,, and Lide Jiang
STAR/NESDIS/NOAA, Camp Springs, MD, 20746, USA

Summary

> Three-year (2009-2011) observations in highly turbid waters of the western Pacific

from (MODIS) on the satellite Aqua are used to conduct this study. SWIR atmospherics
correction with band set of 1640 nm and 2130 nm Is conducted to derive nL(4) at the
red, near-infrared (NIR), and shortwave infrared (SWIR) .

»NIR ocean reflectance spectral shape represented by reflectance ratio of
pun(748)/p,,n(869) Is highly dynamic in a large coverage of turbid waters.

> In turbid waters, ocean IOP modeling can be significantly simplified. It is feasible to

analytically derive some IOP properties in turbid waters with combined visible-NIR
nL,(4) spectra data.

> 0P properties such as by,(4) can be derived from satellite nL,(4)
measurements In the NIR wavelengths. Backscattering spectral slopes can also be
reasonably derived in the coastal turbid regions.

> This work is published in Limnology and Oceanography (Shi and Wang, 2014).

Spectral Features of nL, (4)in the Read, NIR and SWIR

(869)

(748) / p

Poun

West Pacific Highly Turbid Waters — re e 2o iz 12 o

I 7 h"isx-tation = I
- i ww,. |
The BS, YS, and ECS are the three major marginal Bejing 20> 19 e Sy
seas in the western Pacific Ocean bounded by ﬂ‘b° B g .,
China, Korea, and Japan (Fig. 1). They cover some e ey © ""“23%{ -
of the most turbid waters In the world (Shi and {._3.-4»":“36’ i

Wang 2010, 2012). Major rivers in this region such

A, Yellow Sea

as the Yangtze River and Yellow River transport ’ o ?g%
large amounts of sediments into the BS, YS, and ~ Station 3 T g
ECS. _ o : m“ﬁk % % Station 4 ‘
In the_: coastal region of the YS (_Sta._l, 2 in Fig. 1), 0 ﬁ~$mghm X % =
Subei Shoal of the YS (Sta. 3 in Fig. 1), Yangtze s (% W eStation. ST o

: : : | S Station 7 . s &
River estuary (Sta. 5 in Fig. 1), Hangzhou Bay ., = o ok O 5
(Sta. 6 in Fig. 1), and Lake Taihu (Sta. 7 in Fig. 1), = ik o

normalized water-leaving radiance at the red band
nL,, (645) can be over ~5 mW cm= um= srt in 116° 118" 120" 122 124" 126
the winter season (Shi and Wang 2012; Wang et al.

2011). Normalized water-leaving radiance at 859  Figure 1 Map of the Bohai Sea, Yellow Sea, and
East China Sea. Locations of the seven pseudo-

nm (nL,,(859)) normally is also over ~2 mW cm™  stations for representative turbid waters in the
,um_l sr1 at these stations. three seas are also marked

Three-year MODIS-Aqua observations from 2009-2011 are used to derive nL,(645),

nL,(748), nL,(859), nL,(869), and nL,(1240) using the SWIR atmospheric correction
with the band set of 1640 and 2130 nm (Wang 2007).

» 28"

»>NIR reflectance spectral shapes represented with p,,\(748):p,,,(869) Is highly dynamic.
It drops from ~1.8—2.0 for moderately turbid water to 1.1-1.2 for highly turbid waters.

P.n(748)/p,.1(869) vs. p, 4(869) at Different Stations

. ————— e ——————————— 25 Y ————————
- Station 3 Subei Shoal (b) | | Station 5: Yangtze River Estuary (c)

0 002 004 006 008 01 012 O 002 004 006 008 Of
Pun(869) Pun(869)

Figure 2. p,n(748):p,n(869) Vs. p,(869) between 2009 and 2011 in a 5x5 box centered at (a) Sta. 1, (b) Sta. 3,
(c—e) Sta. 57, and (f) Sta. 1, 3, 5, 6, and 7.

Concept of NIR-based IOP Retrieval Modeling

NIR-based Reflectance Modelling and IOP Retrievals

In the NIR Wavelengths
a, (1) == a,, (1), a (L), and a (7.

( b, (2) j ﬁ[ by(A) }
(a(2) + b,(A)) (a,(A)+b, ()

MODIS NIR-based Reflectance and I1OP Modeling

P..(748) b,.(748) b,,(A) power
o (869) | == b,,.(869) E) | law slope n | =)

| b,,(A) in visible | mmmm) | a(A) in visible | E—) acdom(A) @phy(A)

in visible

Figure 3. Schematic chart shows how the 10OP properties are retrieved in coastal turbid waters.

NIR-based IOP Model Test with IOCCG Synthetic Data

L IOCCG Report #5 Data Set

- For data with Rrs(740) > 0.001
L Mean ratio Derived/Known: 0.982

[ IOCCG Report #5 Data Set

[ For data with Rrs(740) > 0.001
i Mean ratio Derived/Known: 1.005
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Figure 4. Comparison between the model-derived particle backscattering coefficient b,,(7) and the true values from
the IOCCG synthetic dataset for (a) by,(440), (b) b,,(550), (c) by,(670), and (d) b,,(800).

NIR-based IOP Retrievals in the Turbid Waters
b,,(859) Derived from MODIS-Aqua Measurements
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Figure 5. Three-year mean images of backscattering coefficient at the wavelength of 859 nm by,(859) derived from
MODIS-Agua measurements from 2009 to 2011 for (a) spring (March—May), (b) summer (June—August), (c) fall
(September—November), (d) winter (December—February), and (e) three-year climatology.
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Figure 6. Scatter plots of MODIS-Aqua-derived power law slope 7 vs. b,(859) from 2009-2011 in a 5x5 box
centered at (a) Sta. 1, (b) Sta. 2, (c) Sta. 3, (d) Sta. 5, (e) Sta. 6, and (f) Sta. 7.

Conclusion Remarks

> This study quantifies and characterizes the normalized water-leaving radiance

spectra nL,(4) in wavelengths of the red, NIR, and SWIR in highly turbid coastal
regions of the BS, YS, and ECS.

»NIR ocean reflectance spectral shape represented by reflectance ratio of
pun(748)/p,,(869) Is highly dynamic in a large coverage of turbid waters.

> In turbid waters, ocean IOP modeling can be significantly simplified. It is feasible

to analytically derive some IOP properties in turbid waters with combined visible-
NIR nL,(4) spectra data.

> We demonstrate 10P properties such as by,(4) can be derived from satellite nL (1)
measurements In the NIR wavelengths. Backscattering spectral slopes can also be
reasonably derived in the coastal turbid regions.

> SWIR atmospheric correction with the MODIS SWIR band set of 1240 and 2130
nm can be safely used for nL(A) retrievals for waters with nL,(859) less than ~2.5
mwW cm=2 umt srt,

> Current existing algorithms for Chl-a, K;(490), TSM, and IOPs using the ocean

reflectance at the red band for coastal regions are all limited and cannot be applied to
highly turbid waters with p,,(859) > ~0.05.
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Regional Vicarious Gain Adjustment for Coastal VIIRS Products

Jennifer Bowers?!, Robert Arnone? Sherwin Ladner3, Giulietta S. Fargion*, Adam Lawson3, Paul Martinolich!, Ryan Vandermeulen?

1 QinetiQ North America, Stennis Space Center, MS, 2 University of Southern Mississippi, Stennis Space Center, MS, 3 Naval Research Laboratory, Stennis Space Center, MS, # San Diego State University, San Diego, CA

ABSTRACT: As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology
Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and
compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities.

An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveClIS. The coastal site provides different water types with varying complexity of CDOM,
sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.

MOBY vicarious calibration coefficients and WCIS derived green
water vicarious gain adjustment (VGA)

1. Accumulate coincident matchups (+- 3hrs) of satellite and in situ data (blue markers). ~4-MOBY average gain (vit/Lt)  —=-WCIS average VGA (vit/Lt)

2. Apply screening criteria to coincident collections (green and yellow markers). 5. Calculate an average gain for each site:

MOBY satellite derived nLw (551 nm) WCIS satellite retrieved nLw (551 nm) MOBY vicarious callbrat.|0|.1 and. WCIS VGA.

Jan 1, 2012 to April 30, 2013 Jan 1, 2013 to March 20, 2014 Although there is no statistical difference between the
vicarious calibration and VGA gains, the MOBY site provides
less uncertainty.

Average vLt/Lt

¢ original sample, n =81 /\ passed screening criteria, n =25 ¢ original sample, n = 82 mpass flag screening, n = 50 Apass exclusion criteria, n = 23

=
B

Screening satellite data and in situ
pairs removes 72% of the data !!

Screening the satellite data and in situ
pairs removes 69% of the data !!

=
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-

Vicarious calibration effect on WCIS nLw 551 nm Green Water VGA effect on WCIS nLw 551 nm
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SCREENING CRITERIA IS CRITICAL!

As mission average calibrations have been shown to reach stability after 20 — 40 high quality calibration samples* 8 consideration is given to balance the
strictness of removal criteria and preservation of sample size.
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Regional VGA (relaxed constraints)
Vicarious calibration WaveCIS AERONET-OC (Jan 2013 to Mar 2014)
MOBY (January 2012 to April 2013) Satellite flags: within 3 hours of overpass, atmospheric failure, failure, cloud/ice,
Satellite constraints: within 3 hours of over pass and no flags allowed high LT, seaice, high satellite zenith angle, high solar zenith angle, epsilon out of
on satellite imagery range, high glint, max AER iteration, high polarization, moderate sun glint, and
Exclusion criteria: wind speed must be less than 8 m/s, the maximum coccolithophores
aerosol optical thickness (AOT) must be less than 0.2 as measured Exclusion criteria: wind speed must be less than 8 m/s, the maximum aerosol
by the MOBY buoy, the nLw values must be between 0.001 and 3.0, optical thickness (AOT) must be less than 0.2 as measured by the AERONET, the
the maximum solar zenith angle = 70 degrees and maximum sensor nLw values must be between 0.001 and 3.0, the maximum solar zenith angle = 70
zenith angle = 56 degrees. degrees and maximum sensor zenith angle = 56 degrees.

0.5 1 1.9 2 2.5

Vicariously Calibrated (MOBY average gain)VIIRS nLw 551 nm
(W/m2/sr)

WCIS AERONET-OC nLw 551 nm

0.5 1 1.9
VGA VIIRS nLw 331 nm (W/m2/sr)

WCIS AERONET-OC nLw 551 nm

MOBY gains nLw 410 nm R2 = 0.4005 . . S . .
__ The table to the left summarizes the regression statistics calculated for the MOBY and WaveCIS gains applied

during image processing on the nLw retrievals by the satellite (x) compared to the in situ (y) as illustrated in the

figures above. The results show minor improvements for using the green water VGA at all wavelengths except

486nm however, the slopes are not statistically different.

slopes closer to 1 indicate better calibration while higher r2 indicates better statistical fit of the regression

WCIS gains nLw 671 nm y = 0.8853x + 0.0389 R2 = 0.9433

3. Calculate vLt/Lt for each matchup. 7. Effects of Vicarious Calibration and VGA on chlorophyll products

npp.2014018.MB.mobygains.hdf Sat Jan 18 18:12:40 2014
Chlorophyll Concentration, OCI Algorithm npp.2014012.MB
90°W 89°W 88°W 87°W 86°W 85°W e 663585x .

Monitoring a Vicarious Regional matchup Lt and nlw E'xter.15|vely |?ubll§he<_j by NASA s' Ocean Biology Program G.roup (OB.PG), the
vicarious calibration is an inversion of the forward processing algorithm
Regional Bias of the Lt resulting in a ratio of predicted (vLt) to observed TOA radiance (Lt).
e

TOp Atmosph Regional Bias / trends

Radiance e Real time trend i —
Lt, (A) radiance / satellite\ gain ()\) VLt()\) / Lt ()\)

Feedback the Lt,, nlt,
toSQL database APS processing employs:
S . » standard atmospheric correction of Gordon/Wang
Granules , : N2gen e Stumpf NIR iteration
Real Time Atmospheric correction Inreverse " : : : : :
Lt Raylaigh': L~ Aeresols Vsing atelite  Initial processing assumes perfect sensor calibration (unity gains)
1Sl /tggas - [rurfaestosin siraceto * save the atmospheric components (Lr, La, transmittances, polarization
i sclas ks SRt adianteSete ) correction, etc.) and pointing-angles
Matchun nLw from the in situ sensor is run through the inversion where the
rime, _ atmospheric components are added back creating an expected Lt from

location
Transformed  EERES S, i = B, the view of the VIIRS (vLt(A) )
to VMRS me Ol

O ’D] % . e
otk a LU L R
o S\ p

. Aeronet - 0C Aeronet OC In a perfect system in which all components are computed accurately, the .
er Leaving Spectral shift nLWA(;b) : ’ 8. CO“CIUSlOnS: —

Radiance _f VIRIS vLt and original Lt should have a ratio of 1.0. _ s . . ~
: |  The procedure addresses selection criteria for optimizing data quality in a nearfeal*time"srtttiation, allowing for vicarious calibration and regional VGA to be
established for each of the VIIRS visible channels. R ———

 Assembling an optimum data set for determining vicarious gains is time consumxcludes considerable data: 69%.for.MOBY.and 72% for WaveClS site
 The standard deviation of the adjustment gains was deemed acceptable and the screening procedure is critical for determining the adjustment.

31°N

VIIRS MOBY Gains chlor_a

0.001 0.0085 0.073 mgm”"-3 0.62
M CLDICE LAND BATMFAIL  ERHILT

chlor_a (provisional) Code 7330/0cean Sciences - \ 4 &
Mississippi Bight (VIIRSN-npp) Naval Research Laboratory w1y .
Version 2 (APS v5.4.0) Stennis Space Center, MS NS VIIRS Green Gains chlor_a

Spectral analysis of remaining gains for manual * Due to the uncertainties in the vicarious calibration and VGA processes thef tatistically significant difference in the blue water (g01) and green
screening ——Series . . S c .
WCIS site: 1 July 2013 to 20 March 2014 B Series? water (g02) gains, however; as expected, the blue water gains exhibit lower stah Viations per channel:
e S aries3 . o« . . . . . . . . . .
erioon * Optimizing selection of matchup points provides a strong relationship between satellite and in situ nLw(A) and chl for both gain set, MOBY or WaveClS.
s Seriesbd [— ——
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Assimilation of VIIRS AOT EDR for Air Quality Analyses and Forecasts:
A Comparison with the Assimilation of MODIS AOT

Zhiquan Liu (liuz@ucar.edu), Junmei Ban, Hui-Chuan Lin

National Center for Atmospheric Research, Boulder, CO, USA
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e Demonstrate a spatially improved ocean color product by e By comparing variance across the interpolated
combining the VIIRS 750-meter (M- channels) with the 375- spectrum with the variance of the high resolution
m (I1-channel) to produce an image at a pseudo-resolution band, a “sharpening probability map” is created.
of 375-m.

 Apply a dynamic wavelength-specific spatial resolution ratio
that is weighted as a function of the relationship between
proximate I- and M-band variance at each pixel.

—M1 —M?2 —M3 M4 11 —M5

g bb 551 qaa
§_ | Gulf of Mexico
g 080 ¢ Nov 08, 2012
T 060 |- Gulf of Mexico
(F Nov 08, 2012
0 040 - 750 m
(V)
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8 000 — MMM 4L A = S 08 | =
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o UL . . ’
Wavelength (nm) = .
S 0.4 G
=
S 0.2 f
Challenge: = )
I-1 band is not panchromatic, must account for dynamic - o - o
variance across the spectrum based on differing A (nm)
absorption and scattering coefficients at each A.

e At pixels where M(A)., / I, ratio is closer to 1 (i.e.
covariance of M and I-channel), M(A) is sharpened
according to |I-band variance. Where divergence
in variance occurs, the sharpening weight is
adjusted in proportion to the difference in
variance between the two bands.

The sharpened water leaving radiance (nLw)) radiance spectrum is placed into
|I2gen software, and processed to produce bio-optical products (bb 551 shown
above) at a higher spatial resolution. Notice the increased feature resolution for
coastal bays and inland waters in the northern Gulf of Mexico.

APPROACH

1) Determine wavelength specific spatial resolution
ratio, R(A), for every pixel in image:

2) Apply dynamic ratio to each low-resolution M-band:
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A scatter plot comparison of 44 in situ spectral
reflectance  measurements (Hyperpro, Sky-
blocked approach [Lee et al. 2013], ASD,
AERONET) to VIIRS satellite data processed at two
different resolutions shows enhanced accuracy
and precision at 375-m resolution compared to
the native 750-m resolution of the sensor.
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An in situ flow through data set showing bean attenuation (551 nm) is binned to
375-m (black line) and compared to satellite products at 375-m (red) and 750-m
(blue). Results show an increased feature detection for the VIIRS sensor.




Revealing Issues for Improving VIIRS Land Surface Temperature Retrieval
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Introduction

The Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) is one of the NOAA primary polar-orbiting satellite sensors. It can provide a series of Environmental Data Records (EDRS) including Land Surface Temperature (LST) product. The current VIIRS LST is
generated from a surface-type dependent split window algorithm, which performs well for most surface types. There are still several issues which may causing uncertainties. Further improvements are necessary.

The satellites cross comparison between VIIRS and MODIS indicates that they agree with each other well under dry atmospheric condition, but there is some significant difference over wet regions mostly for daytime cases. In such regions, brightness temperature (BT) difference between split
window channels is very large. We have performed some tests in different seasons over Australia to find the main factors related to high BT difference. We investigated the impacts of water vapor and emissivity on the LST retrieval. The results indicate that both water vapor and emissivity
difference affect the BT difference, but water vapor is a dominant factor.

We have also tested an emissivity explicit algorithm in VIIRS LST retrieval, and its computed LSTs is more closer to Aqgua LST than VIIRS beta version LSTs. The algorithms including water vapor terms in several different ways are tested. Some preliminary results are presented. All these studies
provide a basis for our future algorithm improvements.

BT difference Issue Water Vapor and Emissivity Impact on BT difference Emissivity Explicit Algorithm

The BT difference over land is usually larger than that over ocean, and it is affected by both water

vapor and surface emissivity. The water vapor is a dominant factor, but the impact of emissivity is We have tested the emissivity explicit algorithm in VIIRS LST retrieval
_ still under investigation. Left: BT difference, Middle: Water vapor, Right: emissivity difference.
Brlghtness.temperatu res between BT_diff, d20131010_t0538207_e0544101_b10113 GFS_Water, d20131010_10538297_e05441071_b10113 emis_diff, d20131010t0538297 0544101 610113 LST — C + AlTll _I_ Az (Tll _T12)+ A‘)’ g + A4 (Tll _T12 )(SeC H _1) (1)
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November 20, 2013.
. Where T,; and T,, are the brightness temperatures in 11.2 pum and 12.3um bands,

respectively. e=(e,;+€,,)/2, €4, andg,, are the spectral emissivity in the split window bands.
C,A;, A, A;, and A, are algorithm coefficients.

Top Left:  Day
Below right: Night

Water Vapor included Algorithm

e\ To analyze how the water vapor affects the algorithm, | computed the algorithm
’ coefficients for ABI algorithm for the following water vapor ranges: [0, 1], [1, 2], [2, 3],

ST : - [3, 4], and [4, 4.5]. The following figures shows that each coefficient in Eq. (1) varies
EmISSIVIty ImpaCt onLST Algorlthm Regressmn with water vapor obviously (Left: daytime, Right: nighttime)

Significant difference found between VIIRS
beta version LST and MODIS LST, mostly

over wet regions; this is particularly true for
daytime cases. In such regions, brightness
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Spatial and Temporal Characterization of the Dilierence between Mulil-Sensor Aerosol Retrievals and AERONET
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2. VIIRS vs. AERO

1. INTRODUCTION

3. Multi-Sensor (VIIRS, Aqua MODIS, Terra MODIS, MISR) vs. AER(
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The accuracy and precision of VIIRS AOT
EDR meet JPSS-1 validation thresholds and
demonstrate performance that is comparable

to its counterparts from MODIS and MISR.
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Comparison of VIIRS SST fields obtained from differing SST equations applied to a region covering the northern Gulf of Mexico and

INTRODUCTION

Sea Surface Temperature (SST) retrievals derived from data acquired by the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor on-board the S-NPP satellite are produced using a number of SST
equations. This study examines the effect on the produced SST fields of daytime SST equations that are
or were used by the Naval Oceanographic Office (NAVOCEANO), NOAA/STAR, Météo France, the
Integrated Data Processing Segment (IDPS) and the University of Miami. For the Météo France equation,
coefficient values from NAVOCEANO, NOAA and Météo France are tested. To match a scene provided by
the University of Miami, the region in this study covers the Northern Gulf of Mexico and part of the Western
North Atlantic for a daytime scene which was captured on May 14, 2013. We attempt to validate the SST
fields by comparing the satellite derived values with those of drifting or moored buoys. We also examine
the end of scan region as it is the area where results of the SST equations differ most. Analyzing the
difference in temperature at the overlap between swaths provides insight on how well the various
equations and coefficients combinations perform at higher satellite zenith angles.

SST EQUATIONS
(as of November 2013)

* IDPS (standard NLSST equation)

a0+a1T11+a2Tf(T11—T12)+a3(T11—T12)( :

COS

(9) —1 ) with first guess T. in Celsius.

A.NL53deg — NAVOCEANO (expanded NLSST equation/operational)

1
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* NL+2 -NAVOCEANO (NLSST equation with extra angle terms)

1 1
cos |8 _1) (T”_le) +a6(cosl95 _1)

* NLC - OSI-SAF/Météo France (NLSST equation with extra angle terms)
1 1

1
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* Miami: University of Miami uses the NLD equation with a domain divided by latitude bands

SST FIELDS

agta;l |+

agta ;T |+ a3+a4Tf+(a5+a7Tf)
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SST fields created with the NL53deg, NL+2, and NLC SST equations were all produced at NAVOCEANO with same minimal
cloud detection. Coefficients derived at NAVOCEANO, and, provided by NOAA/STAR and Météo France were tested with

the NLC equation.
30
)

& B 26

SST field May 14, 2013, GoM/Atlantic (NL53deg equation) SST field May 14, 2013, GoM/Atlantic (NL+2)

SST field May 14, 2013, GoM/Atlantic (NLC/NAVO coefs) 58T field May 14, 2013, GoM/Atlantic (NLC/MeteoFrance)
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The IDPS EDR SST field comes from the Comprehensive Large Array-data Stewardship System. Only high quality SST
are accepted: Except for the satellite zenith angle and the sun glint flags which are ignored, all other flags are clear. The
Miami SST field was provided by the University of Miami/RSMAS, in that case only the best two quality levels are used.

SST field May 14, 2013, GoM/Atlantic (IDPS EDR) SST field May 14, 2013, GoM/Atlantic (Miami)
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Comparison between SST FIELDS

Both the IDPS and the NL53deg are designed to make SST retrievals at a maximum satellite zenith angle
of 53 degrees, with IDPS flagging all data over 40 degrees as lower quality. Over that limit, their
performance degrade rapidly. This is seen in the next two pictures of SST difference fields “IDPS minus
NLC” and “NL53deg minus NLC” where we observe a cold bias in the swath overlap region.

S8T diff. May 14, 2013, GoM/Atlantic (IDPS EDR - NLC/MeteoFrance)

SST diff. May 14, 2013, GoM/Atlantic (NL53deg - NLC/MeteoFrance)

Between SST fields that are created with the NLC equation differences appear depending on which set of
coefficients is used. There are relatively minor differences between fields with the Météo France and
NOAA sets of coefficients. More significant differences are observed with the NAVOCEANO coefficients. In
particular at high satellite zenith angle where the limb effect correction is more accentuated with the
NAVOCEANO coefficients than with either the Météo France or NOAA coefficients.

SST diff. May 14, 2013, GoM/Atlantic (NLC/NOAA - NLC/MeteoFrance) S8T diff. May 14, 2013, GoM/Atlantic (NLC/NAVO - NLC/MeteoFrance)

SS8T diff. May 14, 2013, GoM/Atlantic (Miami - NLC/MeteoFrance)

The Miami latitude bands algorithm produces
fields which are close to those obtained the
NLC equations and Météo France coefficients.
N This is surprising because the Miami algorithm
relies on a standard NLSST equation like
IDPS.

S8T differences May 14, 2013, GoM/Atlantic (NLC/NAVO - NL+2)

Comparison between the SST fields derived
from the NLC and NL+2 equations, both with
NAVOCEANO determined coefficients, show
little differences, smaller than those observed
with  NLC with NOAA or Meétéo France
coefficients.

SST field May 14, 2013, with overlayed transect line

SST profiles along a transect line help better
lllustrate the behavior of the various SST
equations on this particular scene. Using the
NLC equation with Météo France as the
reference, a look at Miami, NL53deg, IDPS
and NLC with NAVOCEANO coefficients

| el 2250 confirms the previous observations, namely:

i IS N J\/\ * The Miami algorithm corrects the Ilimb

darkening effect almost as well as NLC(MF).

* The IDPS equation does not correct as
much as NLC(Météo France).

* The NL53deg does not perform well at high
satellite zenith angle, because of the
equation, but also because its coefficients
are derived from data within the 53 degree

satellite zenith angle domain.

e (a0 costs) —— 1 * The correction of the limb darkening effect is

stronger for NLC with NAVOCEANO

coefficients than for NLC with Méteo France
coefficients.
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SS8T along Transect line at 28N from 92W to 83W
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SST differences with NLC (MF coefs) along Transect line at 28N from 92W to 83W
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VALIDATION BY COMPARISON TO BUOYS

Because of the low number of buoys, results are not statistically significant. However they do offer a sanity
check on all the SST fields. Of note, to better evaluate the SST equations and not the cloud detection, the
closest SST retrieval to the buoy temperature, within the immediate neighborhood of the buoy, is selected
as the match-up.

Bias °C Std Deviation °C

SST £ield May 14, 2013,  Buoylocaltions . NL53deg(NAVO) 0.08 0.26
. IDPS 0.04 0.31

: Miami 0.04 0.29

i NLC(NOAA) 0.11 0.26

B - NLC(MeteoFrance) 0.05 0.26

I 22 NLC(NAVO) 0.00 0.32

s NL+2(NAVO) 0.01 0.33
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VALIDATION BY ANALYSIS OF OVERLAP BETWEEN SWATHS

The overlap between two successive satellite swaths allows the view of a scene at an interval of about 1
hour and 36 minutes. Here, the SST field of the later orbit is subtracted from that of the earlier orbit, and as
such, a small cold bias c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>