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VIIRS onboard Suomi-NPP and JPSS

d The Joint Polar Satellite System (JPSS) Is the USA's next generation polar-orbiting operational environmental
satellite system. JPSS will provide operational continuity of satellite-based observations and products currently
obtained from the Suomi National Polar-orbiting Partnership (NPP) mission.

4 Visible Infrared Imaging Radiometer Suite (VIIRS) is a multi-spectral scanning radiometer (22 bands between 0.4pum
and 12um) on-board the Suomi-NPP with spatial resolution for 16 bands at 750m and 5 bands at 325m. The spatial
resolution of Intermediate Product (IP) output is 750 m at nadir. The spatial resolution of Environment Data Record
(EDR) 1s 6 km at nadir compared to 10km at nadir for Moderate-Resolution Imaging Spectroradiometer (MODIS).

d The MODIS on-board Agua and Terra are currently providing global aerosol coverage for research and operational
activities in weather, climate, and air quality. The VIIRS on-board Suomi-NPP and future JPSS satellites are
expected to continue daily global aerosol observations for operational and research communities.

1 Separate algorithms are used for aerosol retrieval over land and ocean. The over-land aerosol algorithm is based on
but a different scheme from MODIS Surface Reflectance algorithm (MODO09) and the over-ocean algorithm is
derived from the MODIS Aerosol (MODO04 Collection 4) algorithm. In VIIRS, Aerosol Optical Thickness (AOT) and
aerosol type are retrieved simultaneously by minimizing the difference between observed and calculated reflectance
In multiple channels.

VIIRS Aerosol Products

= VIIRS aerosol products include AOT, Aerosol Particle Size Parameter (APSP), and Suspended Matter (SM).

= The VIIRS AOT and APSP products reached Provisional maturity level and the SM product reached Beta maturity
level on January 23, 2013.

= The VIIRS AOT and APSP (both EDR and IP) products are now publicly accessible from NOAA's Comprehensive
Large Array-data Stewardship System (CLASS at http://www.class.ngdc.noaa.gov).

Maritime Aerosol Network (MAN)

= MAN Is a network of ship-borne aerosol optical thickness measurements using hand-held Microtops Il sun
photometers [Smirnov et al., 2009] with an uncertainty of AOT measurement no larger than 0.02.

= Collected MAN data follow AErosol RObotic NETwork (AERONET) protocol for data processing,
http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol network.html.

= The cruise measurements available from MAN offer an unprecedented opportunity to validate the VIIRS AOT and
APSP over open Ocean, far from coastlines and islands as that AERONET site.

Comparisons between VIIRS Aerosol Retrievals and MAN Measurements

= Period from May 2, 2012 to February 28, 2014.
= MAN Level 2.0 Series Average Datasets.
= VIIRSAOT EDRs at three quality-flag (QF) levels;
 High : used only high QF AOT.
e Top2 : used both high and medium QF AOT.
« All :usedall retrieved AOT (QF = high, medium, and low).
= VIIRS APSP (Angstrom Exponent, AE) EDRs:
e Used only high QF APSP.
 AE computed at MAN’s and MODIS’s like wavelength pairs (445/865 versus 440/870 and 550/865 versus 500/870).
= Match-up criteria for VIIRS EDRs and MAN measurements:

« The VIIRS-MAN match-up uses each MAN measurement as a reference point and finds the VIIRS retrievals
within the spatial and temporal matching domain of 0.5° latitude-longitude and one hour time window centered
on the MAN observation.

e At least 12 (about 20%) selected quality VIIRS EDRs within the matching domain or any VIIRS EDR(s) within
3km of MAN measurements.

* Multiple collocations within one-hour time window are averaged to a single match-up.
= Performance Statistics:

e Accuracy : the mean difference between two datasets.

* Precision : the standard deviation of the difference.

o Separate AOT (7) retrieval performance in the range of < 0.3 and == 0.3.
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Locations of MAN measurements where match-ups were found
with high quality VIIRS AOT EDRs during selected period.
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Comparisons between VIIRS high quality APSP EDRs and MAN
measurements. Left panel shows the scatter plot of AE computed at MAN-
like wavelength(A)-pair and right panel shows the scatter plot of AE
computed at MODIS-like A-pair. N : number of match-ups, A : accuracy, P :
precision, U : uncertainty, R : correlation coefficient
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Figure3 Comparisons between VIIRS AOT EDRs and MAN measurements.
Figures in left, middle, and right columns are scatter plots of all match-
ups, match-ups where MAN 7 < 0.3, and match-ups where MAN 7 2 0.3,
respectively. Figures in upper, middle, and bottom rows are scatter plots
of quality level equals to High, Top2, and All, respectively. N : number of
match-ups, A : accuracy, P : precision, U : uncertainty, R : correlation
coefficient, and ER : percentage of match-ups within MODIS expected

error bars (£0.03+£0.057).

VIIRS APSP  JPSS EDR

against JPSS requirement threshold at two AE A-pairs.

Attribute QF Level  APSP A-pair Measurement  Threshold Achieved
U - MAN-like 0.20 03 v
y : MODIS-like 0.19 | \
. | MAN-like 0.39 v
Precision High : 0.6
MODIS-like 0.44 v
Tablel The performance statistics of VIIRS high quality APSP EDRs

. VIIRSAOT  JPSSEDR .
Attribute QF Level 7-range Measurement Threshold Achieved
High 0.02 v
Top2 r<0.3 0.04 0.08 v
All 0.08 v
Accuracy :
High 0.03 v
Top2 r20.3 0.07 0.15 v
All 0.11 v
High 0.04 v
Top2 r<0.3 0.06 0.15 \
. All 0.08 v
Precision :
High 0.15 v
Top2 r20.3 0.14 0.35 v
All 0.15 v

Table2 The performance statistics of VIIRS AOT EDRs against JPSS
requirement threshold at three quality levels.

Summary

= VIIRS AOT EDRs meet JPSS AOT thresholds at all three QF levels. It still needs some improvements to achieve the objective goal of 1% for
both accuracy and precision at all zvalues.

= VIIRS high quality APSP EDRs meet JPSS thresholds for APSP. It also needs improvements to achieve the objective goal of 0.1 unit for both
accuracy and precision.

= Comparisons between VIIRS AOT and APSP over the land can be seen from poster session presented by J. Huang et. al., “Spatial and

Temporal Characterization of the Difference between Multi-Sensor Aerosol Retrievals and AERONET measurements”.
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INTRODUCTION Total-band and In-band averaged nL,(4) - MOBY Site

Table 1. The ratio between nL,(A) at the nominal band center and total-band averaged

» The in-band and out-of-band responses refer to sensor spectral response contribution MODIS VIIRS nL,(4), and the effective band center wavelengths for MODIS and VIIRS.

from within and outside the spectral bandwidth of the sensor bands, while total-band
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ABSTRACT

The Chesapeake Bay (CB) contains some of the most productive waters along the U.S.
East Coast. Standard satellite algorithms for net primary production (NPP) for the open
ocean are generally not applicable for the CB. In this presentation, we show NPP estimates
from MODIS-Aqua by applying a new regional NPP model to satellite products. This NPP
model for the CB incorporates an improved prediction of the photosynthetic parameter,
Pbopt, as a function of sea surface temperature (SST). These MODIS-Aqgua NPP estimates
agree well with in-situ measurements. NPP time series for CB using MODIS-Aqua data
(2002-2011) with the new model are used to characterize spatial and temporal variability of
NPP in CB. Spatial distributions show high NPP in the southern upper Bay and northern
middle Bay, and low NPP values in the northern upper Bay, the eastern middle Bay, and the
lower Bay. Lowest NPP occurred during winter over the entire Bay, and highest NPP
occurred In late spring to summer. These results are consistent with NPP dynamics
ascertained by shipboard studies. We conclude by demonstrating NPP derived using VIIRS
products for CB. This study has been documented in our recent paper (Son et al., 2014).

DATA & METHODS
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= In situ Primary Production and ancillary data (Chl-a, N v
PBoot Zeww PAR, SST, etc.) are obtained in the : Ny R
Chesapeake Bay by Harding et al. SN SN

» Total data number is 558 from April 1989 to November i\ [ ?L e
2003 (data before April 1989 are excluded due to _H“ﬁ “~ Lofe
suspected data quality). FJ‘ ‘:_ﬂ.

* MODIS-Aqua Level-2 ocean color data from July 2002 2l 7 AT B
to December 2011 were generated using the NIR-SWIR 1220 R i i
combined atmospheric correction algorithm (Wang & Shi, m}—?: _wﬁ-mi szl
2007) with MODIS-Aqua Level-1B data from the NASA N -’w;iﬁ g[8
MODAPS website. MODIS PAR and SST data were = W
obtained from the NASA OBPG website. 3l . ;; i/

* Those Level-2 data were remapped and then processed “z::%ﬂﬁwy_g&&;ﬁ; " 7
to generate NPP composite images. .~_ ﬁlﬁm > ea® -f

= Three regions in Chesapeake Bay are defined, i.e., the P s
lower Bay, middle Bay, and upper Bay (shown as boxes, A
A, B, & C in Fig.1, respectively), following salinity || S| E—
gradients.

Fig. 1. Map of the Chesapeake Bay
with locations of in situ PP data
(triangles).

Chesapeake Bay Production Model
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* The daily-integrated NPP model for CB, CBPM, (Harding et al., 2002) is described as:

Log,,(NPP) = 0.1329 + 0.964-log,,P®,,; + 1.0265-log,,Chl-a + 0.9710-log,,Z,,, +

where Zeu is euphotic depth, Eo is surface PAR, and DL is day length.

= A third polynomial regression relationship between P5,, and SST was derived to
parameterize P® ;.

10910PBp = -2.32x10°1 + 4.34x102 SST + 1.00x10- SST2 — 5.00x10°5 SST?

Validation of the CB NPP Model
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= Comparisons of model-derived and in situ NPP show the new approach to generate
PBopt significantly improves retrievals for the Bay.

* The original CBPM-derived NPP are biased low by ~20%, while the new CBPM
shows better agreement with NPP by ~4% for the median.

* Match-up analyses show that MODIS-derived NPP compares favorably with in situ
NPP, despite limitations of sample size due to a short temporal overlap.

» Histogram results show MODIS-derived NPP is similar to in situ NPP. But there is
decadal difference between MODIS-Aqua and in situ NPP measurements.

Seasonal Variability of MODIS-derived NPP
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Fig. 4. MODIS-Aqua-measured (2002-2011) monthly NPP climatology images for the Chesapeake
Bay for months of January to December.
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» General spatial distributions from MODIS-Aqua NPP images are similar over most of
months, showing high values in the southern upper Bay and the northern middle Bay,
while relatively lower NPP values are in the northern upper ay, the eastern area of the
middle Bay, and the lower Bay.

* MODIS-derived NPP are lowest in winter (Dec—Feb) for the entire Bay, due to limited
light avalilability. NPP is highest in late spring to summer (May—Aug), depending on
location. In autumn, NPP decreases with seasonal reduction of solar energy.

Interannual Variability of MODIS-derived NPP
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* There Is a strong interannual variablility in the NPP for CB. In the upper Bay, highest
NPP values appeared in summer of 2009 and 2010, while relatively lower seasonal
peaks occurred in 2005 and 2006.

* [n the lower Bay, the seasonal peak of NPP generally appears in June. But, an early
seasonal peak appeared in 2007 and 2010 (May), and a late seasonal peak in 2008
(August). A relatively higher NPP peak occurred in June 2011.
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* Results from mean values of the MODIS-derived annual NPP show that interannual
variability of annual NPP is evident in the three sub-regions, with an apparent
Increasing trend from 2003 to 2011 in the all Bay regions. The increasing trend in NPP
may be related to the increases in nutrient and phytoplankton biomass.

* Interannual variability in NPP in the Chesapeake Bay would be positively (lower Bay)
or negatively (upper Bay) related to freshwater flow from the rivers, particularly the
Susquehanna River.

CONCLUSIONS

» The regional daily NPP model for the Chesapeake Bay has been improved for use with
satellite ocean color data.

» MODIS-derived NPP data correspond reasonably well to in situ measurements.

» MODIS-derived NPP products show that higher NPP values are found in southern upper
Bay and northern middle Bay, while relatively low NPP values are in northern upper Bay,
the eastern area of middle Bay, and lower Bay. Temporally, lowest NPP in winter over the
entire Bay, while high NPP in later spring to summer depending on location.

» There Is a strong interannual variability in NPP for CB, and an apparent increasing trend
from 2003 to 2011.
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Abstract

A new approach that combines advantages of various existing near-infrared (NIR)
ocean reflectance correction algorithms for satellite ocean color data processing,
Including Bailey et al. (2010) algorithm, Ruddick et al. (2000) “MUMM” algorithm,
and Wang et al. (2012) algorithm, has bee developed. The new algorithm is named
BMW after Bailey, MUMM, and Wang. The results from the BMW algorithm are
evaluated against those from the shortwave infrared (SWIR)-based atmospheric
correction algorithm and also compared with results from various existing NIR
ocean reflectance correction algorithms using data from MODIS-Aqua and VIIRS-
SNPP, with emphasis on the performance in various coastal and inland turbid waters
In the world. The new BMW algorithm provides improved satellite ocean color
results compared with various existing NIR algorithms and can be incorporated into
the official VIIRS ocean color data processing system, which does not have the NIR
radiance correction algorithm that is required for the data processing in coastal and
Inland waters. Some detailed algorithm evaluations and discussions are provided.

Three different methods for estimation of ocean
reflectance at the NIR bands

B: The bio-optical model described by Bailey et al. (2010) is used in the current

NASA MODIS atmospheric correction algorithm, which is an improved version of
the Stumpf et al. (2003) model. It exploits the relationships in the intrinsic optical
properties (IOP) of the NIR and red/green bands. However, the disadvantage is that it
cannot be applied to extremely turbid waters because the IOP relationship stops to
work In those areas.

M: The MUMM algorithm described by Ruddick et al. (2000) is originally

proposed for SeaWIFS. Its advantage Is that it does not use any bio-optical model
and it simultaneously solves for water-leaving reflectance and aerosol reflectance at
the two NIR bands. However, it requires knowing a priori the reflectance ratios
between the two NIR bands for both water (o) and aerosol (g) contributions obtained
from a scatter plot of the entire scene, which limits its operational usage.

W: Wang et al. (2012) proposed a regional, iterative method for estimation of water

reflectance at the NIR from diffuse attenuation coefficient K;(490), to be used in the
atmospheric correction algorithm for the Korean geostationary ocean color sensor —
the Geostationary Ocean Color Imager (GOCI). The NIR model (radiance
relationship between two NIR bands) was derived from MODIS data using the
SWIR approach. Its field of view include one of the most turbid areas in the world
where the current MODIS algorithm will not work. GOCI does not have SWIR
bands that can be used for atmospheric correction purpose.

BMW - the new blended algorithm

Simply speaking, the proposed blended algorithm uses B algorithm to identify and
process clear water pixels and M algorithm to process the remaining turbid water
pixels, and for the turbid water pixel processing M algorithm uses the NIR water
reflectance relationship established by W algorithm and NIR aerosol reflectance
ratio (¢) derived from nearby clear water pixels. In detail, the BMW algorithm works
as follows:

1. Use B algorithm to perform a preliminary atmospheric correction, identify clear
water pixels and save their corresponding NIR aerosol reflectance ratio ¢ (If a
valid pixel is not a clear water pixel, it Is regarded as a turbid water pixel).

2. For each turbid water pixel not yet assigned an ¢ value, assign it an € value using
the mean of the ¢ values of all clear or turbid water pixels (that have already been
assigned an ¢ value) within the 101 pixels by 101 pixels box centered at this turbid
water pixel. If no clear water pixel is found within the box, this turbid water pixel
will walt for assignment of ¢ value in the next iteration.

3. Repeat Step 2 until no more turbid water pixels can find clear water pixels or
turbid water pixels that has been assigned an ¢ value. The remaining turbid water
pixels are assigned the mean ¢ value of all clear pixels in the image.

4. Use M algorithm incorporated with W algorithm’s NIR water reflectance
relationship to process all the turbid water pixels using their assigned ¢ values.

Results: case studies

Figure 1. nLw(748)

= from MODIS-Agua on
Oct. 19, 2003 at 05157
™ over East China Sea

Figure 2. Chl-a from
MODIS-Aquaon
Oct. 21, 2009 at

Lo 1820Z over southern

Mid-Atlantic Bight

The NIR-SWIR processing using BMW

Although the BMW algorithm works reasonably well in very turbid waters, there
are circumstances where the SWIR algorithm is necessary. For example, In
MODIS-Aqua Images, 746 and 869 nm often get saturated in extremely turbid
waters, such as In the La Plata estuary (Fig. 4), which will prevent the applicability
of any NIR algorithm. Also, for highly turbid waters the NIR model is not accurate.
Therefore, a NIR-SWIR processing algorithm using BMW as NIR component was
developed to solve this problem. The BMW is first used to process all pixels, which
IS also used to identify turbid pixels with water-leaving radiances at ~865 nm band
larger than a threshold (~0.2). For those turbid waters the SWIR algorithm is used,
but there Is a buffer zone 0.2-0.4 where the BMW and SWIR results are blended to
create a smooth transition between the two algorithms.

E 1

Figure 4. Kd(490) from MODIS-Aqua on Mar. 30, 2006 at 1735Z over La Plata estuary

Results: match-ups

Figure 3. nLw(443)
from VIIRS-SNPP
on Jul. 16, 2013 at
1738Z over La Plata
estuary

Product Mean Ratio STD Mean Ratio Median Ratio STD
nL,(410) 1.0428 0.120 1.0253 1.0147 0.149
nL,(443) 1.0299 0.111 1.0170 1.0046 0.136
nL,(488) 1.0143 0.098 1.0012 0.9967 0.120
nL,(551) 0.9988 0.182 1.0045 0.9931 0.196
nL,(667) 1.4125 0.559 0.9049 0.9392 1.050
Chlorophyll-a 0.9348 0.238 0.9712 0.9699 0.214

Product Mean Ratio STD match-ups Mean Ratio STD match-ups
nL,(410) 0.9330 0.318 373 0.8173 0.359 369
nL,(443) 1.0119 0.300 825 0.9445 0.309 863
nL,(488) 0.9207 0.181 875 0.9440 0.193 931
nL,(551) 0.8945 0.201 441 0.9485 0.209 487
nL,(667) 0.7573 0.756 516 1.0498 0.823 560
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History of Ozone Monitoring at CPC

CPC worked along side NASA in the 1970’s to determine the effects of
Super Sonic Transport air liners flying on ozone in the stratosphere. CPC
began using satellite data to monitor the ozone layer with the BUV
Instrument on Nimbus-4 and the SBUV on Nimbus-7. NOAA chose to
monitor the profile of ozone vs the total column and started using the
SBUV/2 on NOAA-9. All together there have been 8 NOAA spacecraft
with SBUV/2 instruments on them. CPC has worked hand-in-hand with
NESDIS to utilize the best quality ozone data sets for its monitoring of the
ozone depletion, the annual ozone hole, the determination of ozone trends,
and assisting NCEP/EMC with the assimilation of ozone in NCEP’s
weather and climate models.

Ozone Monitoring at CPC

CPC monitors the total column of ozone as well as the ozone profile. CPC
monitors ozone on various time scales. Short (day-to-day) time periods for
phenomena such as the Antarctic (and occasionally Arctic) ozone hole.
Seasonally, CPC monitors the ozone layer’s relationship to the thermal and
dynamical background. On the longer time scales (annual to decadal),
CPC monitors trends in the ozone layer’s profile and total column. CPC
has used observations from the SBUV/2 instrument to perform this
monitoring. The OMPS Nadir Mapper, Nadir Profiler, and Limb Profiler
will continue and enhance CPC monitoring capabilities.

OMPS will allow CPC to Continuing to Monitor the
Antarctic Ozone Hole

Monitoring Ozone Hole Peak Size

NOAA-19 Total Profile Analysis

SBUV/2 TOTAL OZONE

Southern Hemisphere
90W

Analysis procedure smooths out features.
Reduces Mins and Max values.

S-NPP OMPS NM

S-NPP OMPS TOTAL OZONE

Southern Hemisphere
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NM provides greater fidelity of features
and maintains max and min values.

LLong Term Monitoring Requires the Creation of a Cohesive

Ozone Data

Set

OMPS NP will continue to provide the structure of ozone in vertical
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Satellite Satellite dates
Nimbus 7 10/31/78 — 5/31/89
NOAA-11a 6/1/89 — 12/31/93
NOAA-9 1/1/94 — 2/4/95
NOAA-14 2/5/95 — 12/31/98
NOAA-11d 1/1/99 — 12/31/00
NOAA-16 1/1/01 — 12/31/02
NOAA-17 1/1/03 — 12/31/08
NOAA-18 1/1/09 — 12/31/10
NOAA-19 1/1/11 - 12/31/12

9 SBUV (/2) data sets (one for each satellite) are bias adjusted
and trend adjusted to create a long term cohesive total and
profile ozone data set to be used for climate and trend detection.

Inter-Annual Variability of Total Column Ozone
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previous years. OMPS observations will continue this monitoring
for the next couple decades.
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Using Regression Analysis to Determine Trends

Two sets of orbital curtain plots (SBUV/2 on Left and OMPS Limb on Right) of ozone
concentration in October 2013. Top orbit shows low ozone values on the edge of the ozone

hole on the left side. The bottom orbit passes through the ozone maximum region
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A regression which removes the AO, AAO, QBO, and Solar cycles
is used with the “hockey stick” model to determine the trend
from 1979-1996, the trend change, and the liniear trend from

1979-20089.
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Calibration Validation With The Aircraft Based
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Summary Calibration Verification Results S-HIS

Climate change detection and potential attribution analy- Calibration, Calibration Verification, and Traceability

ses, as well as Numerical Weather Prediction applications,
require rigorous uncertainty analyses following estab-
lished metrological principles. Using satellite radiance

S-HIS Brightness Temperature Spectra and RU
(for flight conditions encountered during the SNPP overpass on 2013-06-01)

CrIS Brightness Temperature Spectra and RU

(typical clear sky Earth spectrum) - Pre-integration calibration of on-board blackbody references at subsystem level

- Pre and post deployment end-to-end calibration verification

observations, these analyses start with understanding the o—————— | . Instrument calibration during flight using two on-board calibration blackbodies
Y 280 - ) SRR 1 ; s 1 . 5 o o o o o o o

uncertainties associated with the spectral radiance obser- N . | | T A __ L | . Periodic end-to-end radiance evaluations under flight like conditions with NIST transfer sensors.
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The first Suomi NPP dedicated airborne calibration validation campaign was conducted in May 2013 with a 0 Svranper S e P i e e

primary objective of providing detailed validation of CrIS radiance observations and meteorological products.
During this calibration validation campaign, the NASA ER-2 aircraft instrument payload included the UW-SSEC

Scanning-High resolution Interferometer Sounder (S-HIS), the NPOESS Atmospheric Sounder Testbed- 895-900 cm” Brightness Temperature
Interferometer (NAST-I), the NPOESS Atmospheric Sounder Testbed-Microwave Spectrometer (NAST-M), the . & IR : x| s o etbron Terleston TomnalFrocesang PR SRR WY o5 1S etbreton verllcaton Hominsl Prossssing: Baer 2019001 T =080
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Double Obs-Calc Comparison Methodology

- The resulting residual difference in this method is essentially the difference between the CrIS and S-HIS
respective observation minus calculation residuals, reduced to the lowest common spectral resolution for
the two instruments.

- The radiance calculations for each instrument assume the same surface conditions, atmospheric state, and

. Infrared Fourier transform spectrometer with 1305 spectral channels; produces high-resolution,
T [0 e | = three-dimensional temperature, pressure, and moisture profiles. Designed to give scientists more refined
2013-05-15 FROR. | . i g o el Ul - - P e Gheals information about Earth's atmosphere and improve weather forecasts and our understanding of climate.
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The tool for the VIIRS LST Product

As one of the key products of VIIRS, land surface temperature (LST) is of fundamental importance to the net radiation budget at
the Earth surface and to monitoring the state of crops and vegetation, as well as an important indicator of both the greenhouse
effect and the energy flux between the atmosphere and the land. To better monitor the performance of the VIIRS LST product
and evaluate different retrieval algorithms for potential algorithm improvement, a monitoring system has been developed and
implemented for both the routine monitoring and the basic research.

It consists of two main components, the global cross-satellite comparison system and the one validating VIIRS LST against certain
ground sites’ LST observations. The third component for cross-satellite comparison at the granule level will be included in the
near future. The global component generates daily global LST maps for both daytime and nighttime from VIIRS and MODIS-
AQUA. Besides the satellite LST, additional variables such as the brightness temperature and the sensor zenith angle, etc, are
included in the daily composite dataset, allowing not only the cross-satellite LST comparison, but also the cross-algorithm
comparison. A series of subset datasets with respect to certain ground sites’ locations are generated from this component.
These will replace the subset data produced by LPEATE, which is currently being used by the satellite-ground validation
component. The latter carries out the validation of VIIRS LST with observations from SURFRAD ground stations. It evaluates the
satellite retrieval performance against the ground “truth” for the past week, the past month, and the past year. Warning
messages will be generated and sent to the LST group if any of the prescribed criteria is met. A data table consisting of around
30 variables is generated with respect to each ground site. The data table is used to evaluate different retrieval algorithms and
analyze the retrieval under different situations.

The monitoring system is automatically run at the background in a local Linux computer on a daily basis. The results are
published via an FTP site and will be transitioned to a web site in the future. The tool currently includes two satellite sensors,
VIIRS and AQUA, and will be extended to the monitoring of the LSTs from other satellites including the current GOES-13 and
GOES-15 and the future GOES-R and Himawari/AHI.

Validation with ground sites
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Figure. 3. VIIRS LST and LST calculated with
other algorithm are validated with SURFRAD
sites’ observations.

Figure. 2. A message with summary and/or
warning will be sent to the users once the
validation is done.

Peng Yu?!, Yunyue Yu?, Yuling Liu!, and Zhuo Wang*
LESSIC/CICS, UMD, College Park, MD 2STAR/NESDIS, NOAA, College Park, MD

monitoring and validation

Global cross-satellite comparison

Daily data from SNPP-VIIRS and MODIS-AQUA are collected. Two global datasets based on different compositing procedure are
generated for daytime/night and VIIRS/AQUA, allowing the cross-satellite comparison of the LST products. For dataset 1, satellite
LST as well as data required for retrieval with other algorithm are stored. Different retrieval algorithms for VIIRS are tested for
potential algorithm improvement.

Global LST maps for VIIRS and AQUA Other variables of the global dataset
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Figure.6. a) The LST difference between VIIRS and AQUA is shown. The difference can be as
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VIIRS algorithm, its difference with AQUA LST is much smaller than that shown in a. This
Figure. 4. Daily LST maps are generated for cross- | indicates the algorithm difference is not the main reason for the large LST difference. d) The
satellite comparison. a) VIIRS daytime; b) AQUA scatter plot of the LST shown in c. Possible cause of the large LST difference: observation time,

daytime; c) VIIRS nighttime; and d) VIIRS daytime  satellite view angle, which will be further studied.

The routine satellite LST monitoring tool has been developed and implemented. Part of its functionalities has been automated
for the goal of routine validation. The tool has been also utilized as a basic research tool to solve problems in the algorithm
improvement and product validation.

The monitoring tool is still in development and testing mode. The global cross-satellite comparison component will be
automated and the component to compare LST from different satellite LSTs at granule level is being developed. Further testing
of the tool with different case studies will be needed. After the developmental phase, it will be also extended to other satellites
such as GOES-R, etc.




Evaluation of the SNPP VIIRS Land Surface Temperature Product:

Provisional Maturity
Yuling Liut, Yunyue Yu?, Zhuo Wang?, Peng Yu'
1CICS, University of Maryland, College Park; 2STAR/NESDIS/NOAA

Introduction

VIIRS LST EDR, the measurement of the skin temperature over global land coverage including coastal and inland-water, is derived utilizing the split-window technique. The regression based algorithm coefficients are surface type dependent, referring 17 International Geosphere-Biosphere
Programme (IGBP) types. Since January 19th, 2012, VIIRS LST data has been generated at pixel level with 750m moderate spatial resolution at nadir.

VIIRS LST maturity has transitioned from beta to provisional status and the LST data calculated with the updated LUT is available in NOAA's Comprehensive Large Array-data Stewardship System (CLASS) archive since April 07, 2014. A lot of efforts have been devoted to the validation of the
beta version LST and this study presents an evaluation of the provisional LST and addresses some issues in the algorithm development. The evaluation is mainly carried out using the conventional temperature-based approach by comparisons between the VIIRS LSTs and in-situ LSTs, and cross
satellite comparison with MODIS LST.

The evaluation results suggest that the VIIRS LST EDR meets the provisional maturity criteria but the performance varies over surface types and day/night conditions. VIIRS LST agrees well with ground LST measurements and achieves comparable accuracy with MODIS LST over SURFRAD sites.
Improvements are needed over open shrub land, snow/ice, barren surface and cropland surface. The cross satellite comparisons are mostly over Simultaneous Nadir Overpasses (SNO) between VIIRS and Aqua and the results show an overall close agreement between VIIRS and MODIS LST.
However, we do observe some discrepancies between VIIRS LST and MODIS LST under some specific conditions, e.qg., over Australia under circumstances of significant brightness temperature (BT) difference between the two split window channels, which is not observed in the ground
evaluations. Although the BT difference correction has been applied to provisional LST and the impact of high BT difference on LST retrieval has been reduced compared to beta LST, VIIRS LST is degraded under this special situation. The possible causes of the LST degradation include: a very
wide range of BT differences (can reach 16K over Australia, under hot and humid atmospheric condition with high water vapor content, or significant emissivity difference between the two split channels); limitations of the regression method and the radiative transfer simulation database
being regressed; the VIIRS LST algorithm form, i.e., quadratic term of the BT difference. Efforts are made toward the investigation of the impacts of water vapor, emissivity, and sensor view angles on the LST retrieval, which will direct our focus on the further algorithm improvement.
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ALST: jsthe LST error of surface type i, separately for day and night condition
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MYD11 L2, MODIS/Aqua Land Surface Temperature 5-Minute L2 Swath at 1 km is used as a reference for the cross satellite evaluation.
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® VIIRS LST shows a good overall agreement with ground LST measurements, with a better performance achieved at nighttime than at daytime. However, the performance varies with surface type. LST is
: : : underestimated over closed shrub lands at both daytime and nighttime, open shrub lands and barren surface at nighttime, woody savannas and snow/ice surface at daytime. The evaluation results over barren surface
Comparlson results from Simultaneous Nadir at daytime conflict with the results obtained using measurements in Africa, the latter showing an obvious underestimation of VIIRS LST both at daytime and nighttime. Possible explanations for this apparent
Overpass (SNO) between VIIRS and AQUA N inconsistency include homogeneity of the site, ground in-situ quality control, emissivity used to calculate the ground LST and regional atmospheric condition that might affect LST retrieval.
2012 and Oct-Dec, 2013. The matchups are ® VIIRS LST is in close overall agreement with MODIS LST. Disagreements are shown over areas with large brightness temperature difference between the two retrieval channels, and these disagreements are reduced
S - - - - after calibration. However VIIRS LST is degraded under this special situation.
; quality controlled with additional cloud filter for s P

*Several issues need to be well addressed in the algorithm development. Since VIRIS LST algorithm is a surface type dependent algorithm, it underperforms over surface types that vary seasonally (which is not
reflected in the surface type EDR), and misclassified surface types particularly if the misclassification happens between two surface types with distinct emission features. The appropriate emissivity setting for all IGBP
. . . surface types is very important for the simulation. The large variation of emissivity over surface types makes it difficult to determine the representative emissivity setting for each IGBP surface type and the uncertainty
991 204 217 230 243 from the emissivity and land cover type product also introduce error into the procedure.

both LST measurements.




VIIRS (2486 - a551)

ESTIMATING SEA SURFACE SALINITY IN COASTAL WATERS OF THE Ocean

Weather
GULF OF MEXICO USING VISIBLE CHANNELS ON SNPP VIIRS
TSH(E) S%?IS]I;,TEJ\? Ryan A. Vandermeulen?, Robert Arnone?, Sherwin Ladner?, Paul Martinolich3
MISSISSIPPL 1University of Southern Mississippi, Department of Marine Science, Stennis Space Center, MS 39529 Real-time monitoring

2Naval Research Laboratory, Stennis Space Center, MS 39529 ; 3QinetiQ North America, Stennis Space Center, MS 39529

ABSTRACT

Sea surface salinity is determined using the visible channels
from the Visual Infrared Imaging Radiometer Suite (VIIRS) to
derive a regional algorithms for the northern Gulf of Mexico.
Data were collected over all seasons in the year 2013 in order
to assess inter-annual variability. The seasonal spectral
signatures at the river mouth were used to track the fresh
water end members and used to develop a seasonal slope and
bias between salinity and radiance.

APPROACH

For salinity algorithm development, in situ salinity data (Jan—
Oct 2013) obtained from five USGS platforms and one
NOAA/NDBC platform in the Mississippi Sound were compared
to VIIRS spectral Rrs and absorption (QAA).

A time-series of satellite data monitoring NEAR-ZERO salinity
points (mouth of Mobile Bay) shows changes assumed to be
independent of salinity, indicating a change in water mass that
can be normalized throughout the year.
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RESULTS & DISCUSSION

Bi-monthly regression slopes were
applied to VIIRS absorption data and
evaluated using an in situ flow through
data set in the MS Sound/Bight. Results
(below) show good agreement of satellite
data with in situ data along a range of
salinity values.
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An qualitative analysis of errors (below)
shows that higher uncertainties were
present in the 5-10 and 15-20 psu range.
Further evaluation shows that 65% of
satellite data points (n=419) were within
2 psu of in situ measurements.
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The river-mouth normalized regressions are applied to VIIRS absorption data (a486-
a551, QAA) to obtain a salinity map for the Northern Gulf of Mexico (shown above).
Even with higher inherent error than current microwave scatterometers
(Aquarius/SAC-D, SMOS), the high spatial (750-m) and temporal (daily) resolution
obtained from VIIRS offer significant improvements.
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A comparison of VIIRS salinity product (left) with NAVY Coastal Ocean Model (NCOM,
right) salinity product on September 04, 2013 shows the detection of episodic
freshwater river plumes originating from the Mississippi River. The higher resolution
satellite data product can potentially provide direct data for assimilation into physical
circulation models in near-real time.
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NIR-BASED Ocean Color IOP Algorithm for Coastal and Inland Waters

Wei Shi, Menghua Wang,, and Lide Jiang
STAR/NESDIS/NOAA, Camp Springs, MD, 20746, USA

Summary

> Three-year (2009-2011) observations in highly turbid waters of the western Pacific

from (MODIS) on the satellite Aqua are used to conduct this study. SWIR atmospherics
correction with band set of 1640 nm and 2130 nm Is conducted to derive nL(4) at the
red, near-infrared (NIR), and shortwave infrared (SWIR) .

»NIR ocean reflectance spectral shape represented by reflectance ratio of
pun(748)/p,,n(869) Is highly dynamic in a large coverage of turbid waters.

> In turbid waters, ocean IOP modeling can be significantly simplified. It is feasible to

analytically derive some IOP properties in turbid waters with combined visible-NIR
nL,(4) spectra data.

> 0P properties such as by,(4) can be derived from satellite nL,(4)
measurements In the NIR wavelengths. Backscattering spectral slopes can also be
reasonably derived in the coastal turbid regions.

> This work is published in Limnology and Oceanography (Shi and Wang, 2014).

Spectral Features of nL, (4)in the Read, NIR and SWIR

(869)

(748) / p

Poun

West Pacific Highly Turbid Waters — re e 2o iz 12 o

I 7 h"isx-tation = I
- i ww,. |
The BS, YS, and ECS are the three major marginal Bejing 20> 19 e Sy
seas in the western Pacific Ocean bounded by ﬂ‘b° B g .,
China, Korea, and Japan (Fig. 1). They cover some e ey © ""“23%{ -
of the most turbid waters In the world (Shi and {._3.-4»":“36’ i

Wang 2010, 2012). Major rivers in this region such

A, Yellow Sea

as the Yangtze River and Yellow River transport ’ o ?g%
large amounts of sediments into the BS, YS, and ~ Station 3 T g
ECS. _ o : m“ﬁk % % Station 4 ‘
In the_: coastal region of the YS (_Sta._l, 2 in Fig. 1), 0 ﬁ~$mghm X % =
Subei Shoal of the YS (Sta. 3 in Fig. 1), Yangtze s (% W eStation. ST o

: : : | S Station 7 . s &
River estuary (Sta. 5 in Fig. 1), Hangzhou Bay ., = o ok O 5
(Sta. 6 in Fig. 1), and Lake Taihu (Sta. 7 in Fig. 1), = ik o

normalized water-leaving radiance at the red band
nL,, (645) can be over ~5 mW cm= um= srt in 116° 118" 120" 122 124" 126
the winter season (Shi and Wang 2012; Wang et al.

2011). Normalized water-leaving radiance at 859  Figure 1 Map of the Bohai Sea, Yellow Sea, and
East China Sea. Locations of the seven pseudo-

nm (nL,,(859)) normally is also over ~2 mW cm™  stations for representative turbid waters in the
,um_l sr1 at these stations. three seas are also marked

Three-year MODIS-Aqua observations from 2009-2011 are used to derive nL,(645),

nL,(748), nL,(859), nL,(869), and nL,(1240) using the SWIR atmospheric correction
with the band set of 1640 and 2130 nm (Wang 2007).

» 28"

»>NIR reflectance spectral shapes represented with p,,\(748):p,,,(869) Is highly dynamic.
It drops from ~1.8—2.0 for moderately turbid water to 1.1-1.2 for highly turbid waters.

P.n(748)/p,.1(869) vs. p, 4(869) at Different Stations

. ————— e ——————————— 25 Y ————————
- Station 3 Subei Shoal (b) | | Station 5: Yangtze River Estuary (c)

0 002 004 006 008 01 012 O 002 004 006 008 Of
Pun(869) Pun(869)

Figure 2. p,n(748):p,n(869) Vs. p,(869) between 2009 and 2011 in a 5x5 box centered at (a) Sta. 1, (b) Sta. 3,
(c—e) Sta. 57, and (f) Sta. 1, 3, 5, 6, and 7.

Concept of NIR-based IOP Retrieval Modeling

NIR-based Reflectance Modelling and IOP Retrievals

In the NIR Wavelengths
a, (1) == a,, (1), a (L), and a (7.

( b, (2) j ﬁ[ by(A) }
(a(2) + b,(A)) (a,(A)+b, ()

MODIS NIR-based Reflectance and I1OP Modeling

P..(748) b,.(748) b,,(A) power
o (869) | == b,,.(869) E) | law slope n | =)

| b,,(A) in visible | mmmm) | a(A) in visible | E—) acdom(A) @phy(A)

in visible

Figure 3. Schematic chart shows how the 10OP properties are retrieved in coastal turbid waters.

NIR-based IOP Model Test with IOCCG Synthetic Data

L IOCCG Report #5 Data Set

- For data with Rrs(740) > 0.001
L Mean ratio Derived/Known: 0.982

[ IOCCG Report #5 Data Set

[ For data with Rrs(740) > 0.001
i Mean ratio Derived/Known: 1.005
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Figure 4. Comparison between the model-derived particle backscattering coefficient b,,(7) and the true values from
the IOCCG synthetic dataset for (a) by,(440), (b) b,,(550), (c) by,(670), and (d) b,,(800).

NIR-based IOP Retrievals in the Turbid Waters
b,,(859) Derived from MODIS-Aqua Measurements
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Figure 5. Three-year mean images of backscattering coefficient at the wavelength of 859 nm by,(859) derived from
MODIS-Agua measurements from 2009 to 2011 for (a) spring (March—May), (b) summer (June—August), (c) fall
(September—November), (d) winter (December—February), and (e) three-year climatology.
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Figure 6. Scatter plots of MODIS-Aqua-derived power law slope 7 vs. b,(859) from 2009-2011 in a 5x5 box
centered at (a) Sta. 1, (b) Sta. 2, (c) Sta. 3, (d) Sta. 5, (e) Sta. 6, and (f) Sta. 7.

Conclusion Remarks

> This study quantifies and characterizes the normalized water-leaving radiance

spectra nL,(4) in wavelengths of the red, NIR, and SWIR in highly turbid coastal
regions of the BS, YS, and ECS.

»NIR ocean reflectance spectral shape represented by reflectance ratio of
pun(748)/p,,(869) Is highly dynamic in a large coverage of turbid waters.

> In turbid waters, ocean IOP modeling can be significantly simplified. It is feasible

to analytically derive some IOP properties in turbid waters with combined visible-
NIR nL,(4) spectra data.

> We demonstrate 10P properties such as by,(4) can be derived from satellite nL (1)
measurements In the NIR wavelengths. Backscattering spectral slopes can also be
reasonably derived in the coastal turbid regions.

> SWIR atmospheric correction with the MODIS SWIR band set of 1240 and 2130
nm can be safely used for nL(A) retrievals for waters with nL,(859) less than ~2.5
mwW cm=2 umt srt,

> Current existing algorithms for Chl-a, K;(490), TSM, and IOPs using the ocean

reflectance at the red band for coastal regions are all limited and cannot be applied to
highly turbid waters with p,,(859) > ~0.05.
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Regional Vicarious Gain Adjustment for Coastal VIIRS Products

Jennifer Bowers?!, Robert Arnone? Sherwin Ladner3, Giulietta S. Fargion*, Adam Lawson3, Paul Martinolich!, Ryan Vandermeulen?

1 QinetiQ North America, Stennis Space Center, MS, 2 University of Southern Mississippi, Stennis Space Center, MS, 3 Naval Research Laboratory, Stennis Space Center, MS, # San Diego State University, San Diego, CA

ABSTRACT: As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology
Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and
compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities.

An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveClIS. The coastal site provides different water types with varying complexity of CDOM,
sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.

MOBY vicarious calibration coefficients and WCIS derived green
water vicarious gain adjustment (VGA)

1. Accumulate coincident matchups (+- 3hrs) of satellite and in situ data (blue markers). ~4-MOBY average gain (vit/Lt)  —=-WCIS average VGA (vit/Lt)

2. Apply screening criteria to coincident collections (green and yellow markers). 5. Calculate an average gain for each site:

MOBY satellite derived nLw (551 nm) WCIS satellite retrieved nLw (551 nm) MOBY vicarious callbrat.|0|.1 and. WCIS VGA.

Jan 1, 2012 to April 30, 2013 Jan 1, 2013 to March 20, 2014 Although there is no statistical difference between the
vicarious calibration and VGA gains, the MOBY site provides
less uncertainty.

Average vLt/Lt

¢ original sample, n =81 /\ passed screening criteria, n =25 ¢ original sample, n = 82 mpass flag screening, n = 50 Apass exclusion criteria, n = 23

=
B

Screening satellite data and in situ
pairs removes 72% of the data !!

Screening the satellite data and in situ
pairs removes 69% of the data !!

=
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Vicarious calibration effect on WCIS nLw 551 nm Green Water VGA effect on WCIS nLw 551 nm
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SCREENING CRITERIA IS CRITICAL!

As mission average calibrations have been shown to reach stability after 20 — 40 high quality calibration samples* 8 consideration is given to balance the
strictness of removal criteria and preservation of sample size.
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Regional VGA (relaxed constraints)
Vicarious calibration WaveCIS AERONET-OC (Jan 2013 to Mar 2014)
MOBY (January 2012 to April 2013) Satellite flags: within 3 hours of overpass, atmospheric failure, failure, cloud/ice,
Satellite constraints: within 3 hours of over pass and no flags allowed high LT, seaice, high satellite zenith angle, high solar zenith angle, epsilon out of
on satellite imagery range, high glint, max AER iteration, high polarization, moderate sun glint, and
Exclusion criteria: wind speed must be less than 8 m/s, the maximum coccolithophores
aerosol optical thickness (AOT) must be less than 0.2 as measured Exclusion criteria: wind speed must be less than 8 m/s, the maximum aerosol
by the MOBY buoy, the nLw values must be between 0.001 and 3.0, optical thickness (AOT) must be less than 0.2 as measured by the AERONET, the
the maximum solar zenith angle = 70 degrees and maximum sensor nLw values must be between 0.001 and 3.0, the maximum solar zenith angle = 70
zenith angle = 56 degrees. degrees and maximum sensor zenith angle = 56 degrees.

0.5 1 1.9 2 2.5

Vicariously Calibrated (MOBY average gain)VIIRS nLw 551 nm
(W/m2/sr)

WCIS AERONET-OC nLw 551 nm

0.5 1 1.9
VGA VIIRS nLw 331 nm (W/m2/sr)

WCIS AERONET-OC nLw 551 nm

MOBY gains nLw 410 nm R2 = 0.4005 . . S . .
__ The table to the left summarizes the regression statistics calculated for the MOBY and WaveCIS gains applied

during image processing on the nLw retrievals by the satellite (x) compared to the in situ (y) as illustrated in the

figures above. The results show minor improvements for using the green water VGA at all wavelengths except

486nm however, the slopes are not statistically different.

slopes closer to 1 indicate better calibration while higher r2 indicates better statistical fit of the regression

WCIS gains nLw 671 nm y = 0.8853x + 0.0389 R2 = 0.9433

3. Calculate vLt/Lt for each matchup. 7. Effects of Vicarious Calibration and VGA on chlorophyll products

npp.2014018.MB.mobygains.hdf Sat Jan 18 18:12:40 2014
Chlorophyll Concentration, OCI Algorithm npp.2014012.MB
90°W 89°W 88°W 87°W 86°W 85°W e 663585x .

Monitoring a Vicarious Regional matchup Lt and nlw E'xter.15|vely |?ubll§he<_j by NASA s' Ocean Biology Program G.roup (OB.PG), the
vicarious calibration is an inversion of the forward processing algorithm
Regional Bias of the Lt resulting in a ratio of predicted (vLt) to observed TOA radiance (Lt).
e

TOp Atmosph Regional Bias / trends

Radiance e Real time trend i —
Lt, (A) radiance / satellite\ gain ()\) VLt()\) / Lt ()\)

Feedback the Lt,, nlt,
toSQL database APS processing employs:
S . » standard atmospheric correction of Gordon/Wang
Granules , : N2gen e Stumpf NIR iteration
Real Time Atmospheric correction Inreverse " : : : : :
Lt Raylaigh': L~ Aeresols Vsing atelite  Initial processing assumes perfect sensor calibration (unity gains)
1Sl /tggas - [rurfaestosin siraceto * save the atmospheric components (Lr, La, transmittances, polarization
i sclas ks SRt adianteSete ) correction, etc.) and pointing-angles
Matchun nLw from the in situ sensor is run through the inversion where the
rime, _ atmospheric components are added back creating an expected Lt from

location
Transformed  EERES S, i = B, the view of the VIIRS (vLt(A) )
to VMRS me Ol

O ’D] % . e
otk a LU L R
o S\ p

. Aeronet - 0C Aeronet OC In a perfect system in which all components are computed accurately, the .
er Leaving Spectral shift nLWA(;b) : ’ 8. CO“CIUSlOnS: —

Radiance _f VIRIS vLt and original Lt should have a ratio of 1.0. _ s . . ~
: |  The procedure addresses selection criteria for optimizing data quality in a nearfeal*time"srtttiation, allowing for vicarious calibration and regional VGA to be
established for each of the VIIRS visible channels. R ———

 Assembling an optimum data set for determining vicarious gains is time consumxcludes considerable data: 69%.for.MOBY.and 72% for WaveClS site
 The standard deviation of the adjustment gains was deemed acceptable and the screening procedure is critical for determining the adjustment.

31°N

VIIRS MOBY Gains chlor_a

0.001 0.0085 0.073 mgm”"-3 0.62
M CLDICE LAND BATMFAIL  ERHILT

chlor_a (provisional) Code 7330/0cean Sciences - \ 4 &
Mississippi Bight (VIIRSN-npp) Naval Research Laboratory w1y .
Version 2 (APS v5.4.0) Stennis Space Center, MS NS VIIRS Green Gains chlor_a

Spectral analysis of remaining gains for manual * Due to the uncertainties in the vicarious calibration and VGA processes thef tatistically significant difference in the blue water (g01) and green
screening ——Series . . S c .
WCIS site: 1 July 2013 to 20 March 2014 B Series? water (g02) gains, however; as expected, the blue water gains exhibit lower stah Viations per channel:
e S aries3 . o« . . . . . . . . . .
erioon * Optimizing selection of matchup points provides a strong relationship between satellite and in situ nLw(A) and chl for both gain set, MOBY or WaveClS.
s Seriesbd [— ——
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Assimilation of VIIRS AOT EDR for Air Quality Analyses and Forecasts:
A Comparison with the Assimilation of MODIS AOT

Zhiquan Liu (liuz@ucar.edu), Junmei Ban, Hui-Chuan Lin

National Center for Atmospheric Research, Boulder, CO, USA
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OBJECTIVES RESULTS & DISCUSSION » 351 (m7)
0 0.05 0.1 0.15 0.2

e Demonstrate a spatially improved ocean color product by e By comparing variance across the interpolated
combining the VIIRS 750-meter (M- channels) with the 375- spectrum with the variance of the high resolution
m (I1-channel) to produce an image at a pseudo-resolution band, a “sharpening probability map” is created.
of 375-m.

 Apply a dynamic wavelength-specific spatial resolution ratio
that is weighted as a function of the relationship between
proximate I- and M-band variance at each pixel.

—M1 —M?2 —M3 M4 11 —M5

g bb 551 qaa
§_ | Gulf of Mexico
g 080 ¢ Nov 08, 2012
T 060 |- Gulf of Mexico
(F Nov 08, 2012
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o UL . . ’
Wavelength (nm) = .
S 0.4 G
=
S 0.2 f
Challenge: = )
I-1 band is not panchromatic, must account for dynamic - o - o
variance across the spectrum based on differing A (nm)
absorption and scattering coefficients at each A.

e At pixels where M(A)., / I, ratio is closer to 1 (i.e.
covariance of M and I-channel), M(A) is sharpened
according to |I-band variance. Where divergence
in variance occurs, the sharpening weight is
adjusted in proportion to the difference in
variance between the two bands.

The sharpened water leaving radiance (nLw)) radiance spectrum is placed into
|I2gen software, and processed to produce bio-optical products (bb 551 shown
above) at a higher spatial resolution. Notice the increased feature resolution for
coastal bays and inland waters in the northern Gulf of Mexico.

APPROACH

1) Determine wavelength specific spatial resolution
ratio, R(A), for every pixel in image:

2) Apply dynamic ratio to each low-resolution M-band:
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A scatter plot comparison of 44 in situ spectral
reflectance  measurements (Hyperpro, Sky-
blocked approach [Lee et al. 2013], ASD,
AERONET) to VIIRS satellite data processed at two
different resolutions shows enhanced accuracy
and precision at 375-m resolution compared to
the native 750-m resolution of the sensor.

2.7

3 ° T 2.5
8 12 16 20 24 28 32 36 40

Distance (km)

An in situ flow through data set showing bean attenuation (551 nm) is binned to
375-m (black line) and compared to satellite products at 375-m (red) and 750-m
(blue). Results show an increased feature detection for the VIIRS sensor.




Revealing Issues for Improving VIIRS Land Surface Temperature Retrieval
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Introduction

The Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) is one of the NOAA primary polar-orbiting satellite sensors. It can provide a series of Environmental Data Records (EDRS) including Land Surface Temperature (LST) product. The current VIIRS LST is
generated from a surface-type dependent split window algorithm, which performs well for most surface types. There are still several issues which may causing uncertainties. Further improvements are necessary.

The satellites cross comparison between VIIRS and MODIS indicates that they agree with each other well under dry atmospheric condition, but there is some significant difference over wet regions mostly for daytime cases. In such regions, brightness temperature (BT) difference between split
window channels is very large. We have performed some tests in different seasons over Australia to find the main factors related to high BT difference. We investigated the impacts of water vapor and emissivity on the LST retrieval. The results indicate that both water vapor and emissivity
difference affect the BT difference, but water vapor is a dominant factor.

We have also tested an emissivity explicit algorithm in VIIRS LST retrieval, and its computed LSTs is more closer to Aqgua LST than VIIRS beta version LSTs. The algorithms including water vapor terms in several different ways are tested. Some preliminary results are presented. All these studies
provide a basis for our future algorithm improvements.

BT difference Issue Water Vapor and Emissivity Impact on BT difference Emissivity Explicit Algorithm

The BT difference over land is usually larger than that over ocean, and it is affected by both water

vapor and surface emissivity. The water vapor is a dominant factor, but the impact of emissivity is We have tested the emissivity explicit algorithm in VIIRS LST retrieval
_ still under investigation. Left: BT difference, Middle: Water vapor, Right: emissivity difference.
Brlghtness.temperatu res between BT_diff, d20131010_t0538207_e0544101_b10113 GFS_Water, d20131010_10538297_e05441071_b10113 emis_diff, d20131010t0538297 0544101 610113 LST — C + AlTll _I_ Az (Tll _T12)+ A‘)’ g + A4 (Tll _T12 )(SeC H _1) (1)
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November 20, 2013.
. Where T,; and T,, are the brightness temperatures in 11.2 pum and 12.3um bands,

respectively. e=(e,;+€,,)/2, €4, andg,, are the spectral emissivity in the split window bands.
C,A;, A, A;, and A, are algorithm coefficients.

Top Left:  Day
Below right: Night

Water Vapor included Algorithm

e\ To analyze how the water vapor affects the algorithm, | computed the algorithm
’ coefficients for ABI algorithm for the following water vapor ranges: [0, 1], [1, 2], [2, 3],

ST : - [3, 4], and [4, 4.5]. The following figures shows that each coefficient in Eq. (1) varies
EmISSIVIty ImpaCt onLST Algorlthm Regressmn with water vapor obviously (Left: daytime, Right: nighttime)

Significant difference found between VIIRS
beta version LST and MODIS LST, mostly

over wet regions; this is particularly true for
daytime cases. In such regions, brightness
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Spatial and Temporal Characterization of the Dilierence between Mulil-Sensor Aerosol Retrievals and AERONET
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2. VIIRS vs. AERO

1. INTRODUCTION

3. Multi-Sensor (VIIRS, Aqua MODIS, Terra MODIS, MISR) vs. AER(
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The accuracy and precision of VIIRS AOT
EDR meet JPSS-1 validation thresholds and
demonstrate performance that is comparable

to its counterparts from MODIS and MISR.
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Comparison of VIIRS SST fields obtained from differing SST equations applied to a region covering the northern Gulf of Mexico and

INTRODUCTION

Sea Surface Temperature (SST) retrievals derived from data acquired by the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor on-board the S-NPP satellite are produced using a number of SST
equations. This study examines the effect on the produced SST fields of daytime SST equations that are
or were used by the Naval Oceanographic Office (NAVOCEANO), NOAA/STAR, Météo France, the
Integrated Data Processing Segment (IDPS) and the University of Miami. For the Météo France equation,
coefficient values from NAVOCEANO, NOAA and Météo France are tested. To match a scene provided by
the University of Miami, the region in this study covers the Northern Gulf of Mexico and part of the Western
North Atlantic for a daytime scene which was captured on May 14, 2013. We attempt to validate the SST
fields by comparing the satellite derived values with those of drifting or moored buoys. We also examine
the end of scan region as it is the area where results of the SST equations differ most. Analyzing the
difference in temperature at the overlap between swaths provides insight on how well the various
equations and coefficients combinations perform at higher satellite zenith angles.

SST EQUATIONS
(as of November 2013)

* IDPS (standard NLSST equation)

a0+a1T11+a2Tf(T11—T12)+a3(T11—T12)( :

COS

(9) —1 ) with first guess T. in Celsius.

A.NL53deg — NAVOCEANO (expanded NLSST equation/operational)

1
astay, Jrifv4CZ:;(;;:;;;(Z;T-——']))( Jf’ll-—-][’lz)

* NL+2 -NAVOCEANO (NLSST equation with extra angle terms)

1 1
cos |8 _1) (T”_le) +a6(cosl95 _1)

* NLC - OSI-SAF/Météo France (NLSST equation with extra angle terms)
1 1

1
ay+ a1+a2(m)s —T—1 — —1) VAT N +a6(ms - —1)

* Miami: University of Miami uses the NLD equation with a domain divided by latitude bands

SST FIELDS

agta;l |+

agta ;T |+ a3+a4Tf+(a5+a7Tf)

317 1 1 -*- t:l:; _+_‘:Z‘1 jrwa? _+_‘;l:5

SST fields created with the NL53deg, NL+2, and NLC SST equations were all produced at NAVOCEANO with same minimal
cloud detection. Coefficients derived at NAVOCEANO, and, provided by NOAA/STAR and Météo France were tested with

the NLC equation.
30
)

& B 26

SST field May 14, 2013, GoM/Atlantic (NL53deg equation) SST field May 14, 2013, GoM/Atlantic (NL+2)

SST field May 14, 2013, GoM/Atlantic (NLC/NAVO coefs) 58T field May 14, 2013, GoM/Atlantic (NLC/MeteoFrance)
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The IDPS EDR SST field comes from the Comprehensive Large Array-data Stewardship System. Only high quality SST
are accepted: Except for the satellite zenith angle and the sun glint flags which are ignored, all other flags are clear. The
Miami SST field was provided by the University of Miami/RSMAS, in that case only the best two quality levels are used.

SST field May 14, 2013, GoM/Atlantic (IDPS EDR) SST field May 14, 2013, GoM/Atlantic (Miami)
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Comparison between SST FIELDS

Both the IDPS and the NL53deg are designed to make SST retrievals at a maximum satellite zenith angle
of 53 degrees, with IDPS flagging all data over 40 degrees as lower quality. Over that limit, their
performance degrade rapidly. This is seen in the next two pictures of SST difference fields “IDPS minus
NLC” and “NL53deg minus NLC” where we observe a cold bias in the swath overlap region.

S8T diff. May 14, 2013, GoM/Atlantic (IDPS EDR - NLC/MeteoFrance)

SST diff. May 14, 2013, GoM/Atlantic (NL53deg - NLC/MeteoFrance)

Between SST fields that are created with the NLC equation differences appear depending on which set of
coefficients is used. There are relatively minor differences between fields with the Météo France and
NOAA sets of coefficients. More significant differences are observed with the NAVOCEANO coefficients. In
particular at high satellite zenith angle where the limb effect correction is more accentuated with the
NAVOCEANO coefficients than with either the Météo France or NOAA coefficients.

SST diff. May 14, 2013, GoM/Atlantic (NLC/NOAA - NLC/MeteoFrance) S8T diff. May 14, 2013, GoM/Atlantic (NLC/NAVO - NLC/MeteoFrance)

SS8T diff. May 14, 2013, GoM/Atlantic (Miami - NLC/MeteoFrance)

The Miami latitude bands algorithm produces
fields which are close to those obtained the
NLC equations and Météo France coefficients.
N This is surprising because the Miami algorithm
relies on a standard NLSST equation like
IDPS.

S8T differences May 14, 2013, GoM/Atlantic (NLC/NAVO - NL+2)

Comparison between the SST fields derived
from the NLC and NL+2 equations, both with
NAVOCEANO determined coefficients, show
little differences, smaller than those observed
with  NLC with NOAA or Meétéo France
coefficients.

SST field May 14, 2013, with overlayed transect line

SST profiles along a transect line help better
lllustrate the behavior of the various SST
equations on this particular scene. Using the
NLC equation with Météo France as the
reference, a look at Miami, NL53deg, IDPS
and NLC with NAVOCEANO coefficients

| el 2250 confirms the previous observations, namely:

i IS N J\/\ * The Miami algorithm corrects the Ilimb

darkening effect almost as well as NLC(MF).

* The IDPS equation does not correct as
much as NLC(Météo France).

* The NL53deg does not perform well at high
satellite zenith angle, because of the
equation, but also because its coefficients
are derived from data within the 53 degree

satellite zenith angle domain.

e (a0 costs) —— 1 * The correction of the limb darkening effect is

stronger for NLC with NAVOCEANO

coefficients than for NLC with Méteo France
coefficients.
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SST differences with NLC (MF coefs) along Transect line at 28N from 92W to 83W
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VALIDATION BY COMPARISON TO BUOYS

Because of the low number of buoys, results are not statistically significant. However they do offer a sanity
check on all the SST fields. Of note, to better evaluate the SST equations and not the cloud detection, the
closest SST retrieval to the buoy temperature, within the immediate neighborhood of the buoy, is selected
as the match-up.

Bias °C Std Deviation °C

SST £ield May 14, 2013,  Buoylocaltions . NL53deg(NAVO) 0.08 0.26
. IDPS 0.04 0.31

: Miami 0.04 0.29

i NLC(NOAA) 0.11 0.26

B - NLC(MeteoFrance) 0.05 0.26

I 22 NLC(NAVO) 0.00 0.32

s NL+2(NAVO) 0.01 0.33

=95 =90 -85 -80 =75

VALIDATION BY ANALYSIS OF OVERLAP BETWEEN SWATHS

The overlap between two successive satellite swaths allows the view of a scene at an interval of about 1
hour and 36 minutes. Here, the SST field of the later orbit is subtracted from that of the earlier orbit, and as
such, a small cold bias can be expected because of daytime warming. The uncorrected limb darkening
effect appears as a cold bias on west side of the overlap region and a warmer bias on the east side. As
expected the NL53deg and IDPS equations perform poorly in the swath overlap region as they were not
designed to work at a high satellite zenith angle.

SST diff. swath overlap May 14, 2013, GoM/Atlantic (NL53deg) SST diff. swath overlap May 14, 2013, GoM/Atlantic (IDSF EDR)
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SST diff. swath overlap May 14, 2013, GoM/Atlantic (Miami) SST diff. swath overlap May 14, 2013, GoM/Atlantic (NLC/MeteoFrance)

SST diff. swath overlap May 14, 2013, GoM/Atlantic (NLC/NAVO coefs) SST diff. swath overlap May 14, 2013, GoM/Atlantic (NL+2)
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The mean bias and the mean absolute bias are estimated on a common set of retrievals that are cloud free
In all SST fields. They confirm the good performance of NLC and the poor performance of NL53deg and
IDPS at high satellite zenith angle. Results from a March 31, 2014 scene (same region but clouded west
side) show IDPS better performance after the switch to the NLC equation.

May 15, 2013 bias °C mean abs bias °C March 31, 2014 bias °C mean abs bias °C
NL53deg(NAVO) -0.23 0.51 NL53deg(NAVO) 0.19 0.35

IDPS -0.23 0.52 IDPS 0.14 0.30

Miami -0.15 0.39 Miami

NLC(NOAA) -0.12 0.41 NLC(NOAA) 0.10 0.25
NLC(MeteoFrance) -0.13 0.38 NLC(MeteoFrance) 0.18 0.32
NLC(NAVO) -0.09 0.27 NLC(NAVO) 0.10 0.27
NL+2(NAVO) 0.07 0.26 NL+2(NAVO) 0.07 0.24

CONCLUSION

The NLC equation has been shown to perform well, although the choice of coefficients can significantly
affect results. As expected NL53deg and IDPS (standard NLSST) perform poorly at high satellite zenith
angles as they were not design to process such data. Full swath processing results in large regions where
successive orbits overlap even at low latitude. Those overlap regions allow new ways to evaluate and
analyze the SST fields. Beside Méteo France; NOAA/STAR, IDPS and NAVOCEANO are using or plan to
use the NLC equation.
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Abstract

Operational radiometric calibration of reflective solar bands (RSBs) of Suomi-NPP VIIRS
relies on using onboard Solar Diffuser (SD) together with Solar Diffuser Stability Monitor
(SDSM). As an independent validation of RSB calibration of VIIRS, lunar calibration is
employed through observing moon in Earth View during scheduled spacecraft maneuver
with lunar phase being nearly the same. These lunar calibrations often rely on using lunar
Irradiance models and it requires the model to be highly accurate.

Here, we present a simple lunar band ratio (LBR) approach to trend radiometer stability of
VIIRS so that the usage of lunar irradiance model is not required. Using scheduled lunar
observations, digital numbers (DNs) of the lunar signal are aggregated in each band after
the removal of bias. One of the most stable bands such as M4 is chosen as the reference

band for calculating the band ratios.

The LBR analysis reveals that M6 and M7 degrade the fastest and agrees well with the
trending independently determined from onboard solar diffuser ratios. For stable bands
such as M2-M4 of VIIRS, the variation range of M2/M4 and M3/M4 are all within 0.5%,
Indicating the LBR can reveal the sub percent band to band stability. It is demonstrated
that long-term stability monitoring of VIIRS solar bands using LBR is an important part of

the VIIRS lunar calibration and can reveal the relative degradation of instruments.

Introduction

VIIRS scheduled lunar observations are performed approximately monthly.

v"With the roll angle limitation between 0 to -14 degrees for safety.

Lunar roll maneuver views the moon in the day side through the earth view

sector near the nac
The dual gain bano
For radiometric sta

Ir angle as shown in Figure 1.
s are set to high gain mode during the collection.
nility and repeatability, the lunar phase angles are

maintained between -51.1 to -50 degrees.
v'Negative phase angle means that VIIRS views waxing moon.

v Initially, phase angle limit was from -56 deg to -55 deg in the first three
scheduled lunar observations [1].
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Figure 1. VIIRS band 1 image of the scheduled lunar collection on November 234 2012.

Data Sets

 VIIRS scheduled lunar observation data: 15 collections listed in Table 1.

« NASA LAADS (L1 Atmospheric Archive Distribution System) provides
Verifled Decompressed Raw Instrument Packets 5-min LO RDR (VRDR).

Table 1. VIIRS scheduled lunar collection list

Data Processing

 Lunar Band Ratio (LBR) calculation

v This methodology was originally developed and applied to monitor long-term normalized
difference vegetation index (NDVI) stability for AVHRR [2].

v From the VRDR data sets, lunar area is properly trimmed including deep space in each

band as shown in Figure 2.

v'Before summation of the all the DN values, bias level is calculated and removed in each
line by the averaged value from either sides of the moon.

v Lunar Band Ratios (LBR) are calculated by reference band M4 as shown in following

equation. _
2> (DNband,pixel _<b|as>band,line)

e Operational F factors are shown in Figure 3.

\

I—BRband — L

> (DNband wa,piret —(01AS) M4,Iine)

pixels
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Figure 2. VIIRS trimmed lunar images in the reflective solar bands on March 12t 2014.
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v The band M4 provides reasonably stable F factors over the VIIRS lifetime.
v'The F factors are normalized by band M4 before comparing the LBR.
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VisNIR bands M5, M6, M7, |1 and 12 (Figure 5)
— The LBRs are following general F factor ratio

trends.

— Differences between LBRs and F factor ratios

are growing.

« With time and center wavelength
— 12 and M7 ratios are almost identical.
S/WMIR bands M8~M11 and 13 (Figure 6)
— There is no SD degradation applied in these

bands.

— There are noticeable differences between F

factor ratios and LBR.

12/M7 and 13/M10 ratios consistency (Figure 7)
— The LBRs and F factor ratios are consistent

approximately within 0.2%.

LBR / F factor ratio @ Lunar collection plot

(Figure 8)

— The differences are increasing by time.
— With wavelength dependency.

Wavelength dependency of LBR / F factor

ratio (Figure 9)

— Used results on 3/12/2014 (2" from the last).
— Ratios are increasing in the M5 ~ M8 wavelength

range below 1um bands.

— Ratios are decreasing in the short wave IR bands.
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Figure 8. LBR / F factor ratio at lunar
collection time
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Figure 9. Wavelength dependency of LBR / F
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NOAA ICVS VIIRS long-term monitoring (LTM) website at
http://www.star.nesdis.noaa.gov/icvs/status  NPP_VIIRS.php

Date Target time Roll angle Date Target time Roll angle
4/2/2012 23:05:11 -3.989 10/14/2013 21:39:19 -1.305
5/2/2012 10:20:06 -3.228 11/13/2013 6:57:41 -7.981

10/25/2012 6:58:15 -4.048 12/12/2013 19:35:46 -9.438
11/23/2012 21:18:20 -9.429 1/11/2014 9:59:45 -6.727
12/23/2012 15:00:50 -7.767 2/10/2014 5:34:12 -3.714
2/21/2013 9:31:25 -1.712 3/12/2014 1:11:43 -3.945
3/23/2013 3:29:00 -3.32 4/10/2014 20:53:15 -4.977
4/21/2013 19:47:54 -3.882

Results and Analysis

 The LBRs versus SD F factor Ratios
normalized by band M4 (Figure 4)

v'The LBRs are normalized by the first
scheduled lunar collection on 4/2/2012.

* VISNIR

v'The
oscll

pands M1~M4 (400 to 600 nm)
| BRs are following the annual

ation pattern but not as strong as F

factor ratios.

Ratio

F factor ratio and LER

1.01

2013

Summary

The LBR method is developed and applied to measure relative accuracy of
VIIRS radiometric calibration coefficients (F factors).

The LBRs are generally following the annual oscillation pattern of the F factor

ratio within 0.5% especially in the bands M2 and M3.
v Growing differences over time are observed In bands of M5, M6, M7, 11

and 12.

The S/IWMIR band LBRs also suggest time dependent ratio differences.
The direct ratios of 12/M7 and I13/M10 are very consistent within 0.2% in both

LBRs and F factors.

Strong wavelength dependencies are observed in longer wavelength bands

beyond M5 at 672nm.

The LBR demonstrated the radiometric stability and consistency in short
wavelength bands in M1, M2, M3, and |1.
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Figure 4. LBR and F factor ratio in bands M1, M2, and M3.
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: : : : o O o O reflectance ratios
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- ; - °3r 4 oL = The one that uses AERONET
AOT retrievals. C_)urrent VIIRS aerosol retrieval algorithm AOT derived ratios i the bast
uses constant ratios over the whole globe. We present an 00 s 10 s 20 oo o5 1o 15 20 | ®The clear sky method also
: : : : Improves the AOT retrievals
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retrieval by using more accurate surface reflectance ratios. S |
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. A comparison between MODIS Aqua (left) and VIIRS high quality EDR AOT (right) coverage over land: VIIRS s R =
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Slte S US| ng AFE RO N ET_retrleved AOT M1 / M5. M ) / M5 quality AOT retrieval over soil dominated regions, which is defined as NDVI < 0.2. : g
M3/M5, and M11/M>5 surface reflectance ratios were then Surface reflectance ratios NDVI Dependent ratios matios from clear sky
CaICUIated fOr eaCh Slte Separately These ratlos Vary Strongly MS3/MS5 surface reflectance ratios at AERONET Algorithm in IDEA uses NDVI ] ] ] ] ]
from site to site. This variability is the reason for the biases e e L T AQOT retrievals at selected sites using different ratios
and standard deviations in the AOT retrieval when a single \ 10 e i e ] e ] e i
. . . . . . @ = - : E:colﬁgcy= 0.133 o : i:col;'::cy=—0.002 Ny : E:col.;::cy= 0.008 '. : i:col;?:cy= 0.072
fixed value of the ratio Is used. When instead the individual %a{ 09 of s of e of s
ratios are used in the AOT retrieval, their statistics (naturally) g P L P i
Improve. In order to obtain these ratios without the help of S Newsos | e 208t
. § 0.7 F ol T M11/M5=1.788 ol & m’l“,”hj’gff_fgg . & M11/M5=1.12 | wl ¥
the AERONET AOT, we tested a clear sky method, which L S e S L
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ratios were obtained for each AERONET sites, which were o, o 1 1 ST
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retrievals also showed improvements over those from the o A o AT meion |l BT s o U
original algorithm. Many sites have M3/M5 surface reflectance ratio less than 0.64. When AOT ”
is close to 0, negative AOT will be retrieved on those locations. e T ] T TR T] et et
VIIRS Aerosol Retrieval over Land Estimate surface reflectance ratios at AERONET site | A | s |
L For each aerosol } _ Method 1 (Use AERONET AQT) Method 2 (Clear sky) o ghe | - B g?j%ggl%gl | 5 %%258232 | |
model In the flow chart, the ratios R, are i I == — oop A MIUMSSLSA2 o S
surface reflectance ratios between
l each band and band M5 (672nm). " 2013 AER_ONET matchup dataset " 2013 AER_ONET matchup dataset Original constant ratios Ratios from AERONET AOT Ratios from clear sky NDVI Dependent ratios
[ For each AOT } = 25 km region = 25 km region
l The accuracies of the AOT retrievals = Pixels with VIIRS IP AOT QF high or =Get surface reflectance ratios for each e B
Compute surface over land are dependent on the out of bound AOT (negative) day, assuming AOT=0.05 e e ———————
reflectance at M3, M5 accuracies of the surface reflectance » AERONETAOT <0.1 = 20%+ pixels are high quality (high IP
s 0o TELES Lsee! 1 e ellpermin. = Retrieve surface reflectance at AOT quality or out of bound) Summary
The ratio between M3 (488nm) and M1,M2,M3,M5,M11 using TOA - S_elect the day with mln_lmum M3/M5
> Interpolate AOT value M5 determines the AOT value. AOT reflectance, AERONET AOT and LUT ratio over the 30 day period » Using site specific surface reflectance ratios can improve AOT retrieval
will usually be underestimated if a (look-up-table) =Total 12 days over the whole year statistics
1 higher rattio Is used and vise versa. (Maybe less for the AERONET matchup « Including soil dominated pixels does not degrade AOT statistics
Calculate p,, p,.,ps, Ps, C ¢ official VIIRS | dataset) e Future work:
11 at AOT val urrent ofriCla aeroso = . ]
e l o algorithm uses constant values dUSfe thre] pIXQIS fll;om thohse.12 days to v'Expand clear sky method to the whole globe
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ri‘j)'ggmﬁ;]"fhog  The estimated surface reflectance ratios are then used for the AOT
smallest residual retrievals Acknowledgment
Figure 1. VIIRS AOT retrieval over land algorithm flow chart The prOjECt IS Supported by NOAA.
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NAVOCEANO Milestones

* Operational with NPP VIIRS SST: March 2013

e Official Distribution in GDS 2.0 format: September
2013 (first GDS 2.0 SST product on JPL/GDAC)

* Monitoring NAVO SST statistics for over 2 years



NAVOCEANO SST Evaluation

o Statistics for April based on match-up buoys (count)

* NAVO VIIRS SST (Best quality):

Count Bias RMS error
day 19780 -0.06 0.41
night 32470 -0.02 0.37

* NAVO VIIRS SST Statistics have remained stable
and within requirements.
 Similar or better than NAVO AVHRR SST



NAVOCEANO SST EDR Evaluation

* For comparison, IDPS SST EDR (Best quality):

Count Bias RMS error
day 8199 0.06 0.50
night 0476 -0.08 0.29

 Much smaller domain because of satellite zenith
angle limit ™% can be relaxed with new equations

* Daytime RMS error varies 0.45-0.50°C due to
missed aerosol and cloud contamination



Evaluation of Clear Sky
determination on SST accuracy

» Accuracy of the VIIRS Cloud Mask (VCM) “cloud-free”
SST retrievals
« Comparison with NAVOCEANO Cloud Mask (NCM)

NCM Is a good comparison standard as it produces
very clean SST for assimilation by oceanographic
models.

VCM only handles the detection of clouds and not
other contaminants = needs extra tests for a valid
comparison.




Evaluation of Clear Sky
determination on SST accuracy

* Added contamination tests: Simple tests to be
considered as proof of concept
e Daytime:
- Reflectance test contingent on field test

* Nighttime:
- NCM aerosol test
- Adjacency to cloud test contingent on field test



Evaluation of Clear Sky
determination on SST accuracy

Daytime / February Buoy matches RMS error °C
NCM / NCM + test 4967 / 4901 0.51 /050
VCM /VCM + test 16844 [ 14863 0.70/0.51

Nighttime / February Buoy matches RMS error °C
NCM 6785 0.36
VCM /VCM + tests 21052 /17171 0.56/0.34

» Additional tests mostly flagging adjacent retrievals to
detected clouds ™ cloud leakage w/ original VCM

* VCM with additional tests performs as well as NCM,
and allows increased coverage



Example of Clear Sky SST

Daytime SST fields on April 6, 2014 a) for NCM clear, b) for VCM clear, c)
for VCM clear with additional test, d) with a tightened additional test to remove
remaining cloud leakage

VIIRS Daytime SST NCM Clear 06APRI14 VIIRS Daytime SST VCM Clear 06APR14
Total Obs = 25874 Total Obs = 124863

0. 20.0 24.0

26'N

Tk

-*?;;;;@??L e
£ I S

W

82w sow A mwew aw 80w 78w
VIIRS Daytime SST VCM Clear (RM7<0.03)when((s-f)<-0.5) 06APR14 VIIRS Daytime SST VCM Clear (RM7<0.02)when((s-f)<-0.25) 06APR14
Total Obs = 97417 Total Obs = 86737
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SST analyses with Swath Overlap

 With full swath processing, significant swath overlap even at low latitudes
« The overlap between swath can help evaluate SST equations at higher
satellite zenith angle (SZA).
* Three types of equations:
e Standard Non Linear SST — NL53deg (designed for SZA < 53°)
 NLSST equation with additional SZA terms — “Non Lineaire Complet”
(NLC) which is OSI/SAF daytime equation
« Miami Lat-band algorithm v6
« For NLC: coefficients from NAVO, STAR, Météo France.

SST field May 14 2013
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SST analyses with Swath Overlap

« SST field of later orbit is subtracted from that of earlier
orbit

e Uncorrected limb darkening effect appears as a cold
bias on west side of the overlap region and a warmer
bias on the east side




SST analyses with Swath Overlap

* Numerical results for domain shown in previous two slides
* As expected at high satellite zenith angle NL53deg
performs significantly worse than NLC.

May 14, 2013 bias °C mean absolute bias °C
NL53deg -0.23 0.51
IDPS (old equations) -0.23 0.52
Miami -0.15 0.39
NLC (NOAA coefs 10/2013) -0.12 0.41
NLC (Météo France coefs) -0.13 0.38

NLC (NAVO coefs) -0.09 0.27



NAVOCEANO improvements

NAVOCEANO is investigating the use of VCM or

Improvements to NCM for SST production

Example: Recent improvements address coverage and

cloud detection artifact issues in nighttime SST

Before April 29, 2013
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NAVOCEANO improvements

* Example: Proposed modification to address coverage
and cloud detection artifact issues in daytime SST
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Conclusion

* VIIRS Is an excellent sensor which allows the
production of quality SST retrievals.

* VCM with additional tests performs well for SST
production. VCM would benefit from access to
computed SST retrievals and a good previous day
SST field.

 Full swath processing allows overlap analyses even
at low latitudes but requires the switch to an NLC (NL
with extra SZA terms) type equation.
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Overview Refinement to the BPSA algorithm Validation at SURFRAD

¢ Surface Radiation Budget
Network, established in 1993

¢ Surface albedo is the ratio between outgoing and incoming
shortwave radiation at the Earth surface. It is an essential

Table 1. List of seven SURFRAD sites.
¢ Anew LUT of LSA BPSA regression

- [ Name [Location ] Latitude | Longitude | Land cover |
), o .
component of the Earth’s surface radiation budget. coef]flqents :Vats 39V9|0tpe?- « Bondbville is not used due to great Wl esertfock, WV 3663 11602 D
. o e Using updated spectra . N I Bondville, IL 4005 -8837  Cropland
¢ Surface albedo EDR is combination of land surface albedo respinsz functiopn' spatial heterogeneity X8 Fort Peck, MT 4831 10510  Grassland
(LSA), ocean surface albedo (OSA) and sea-ice surface « Considering mulm’)l e aerosol * Instantaneous measurements of m;?dw'" R VEE R
albedo (SSA). downward and upward shortwave [EDM rennstate,pa 2072 -77.93 Cropland
types; B siouxFalls, SO 4373 -9662  Grassland

¢ Two algorithms (Dark Pixel Sub-Algorithm (DPSA) and Bright 4013 10524 Grassland

« Including surface BRDF in radiation at the surface every Boulder, CO

Pixel Sub-Algorithm (BPSA)) implemented for LSA; DPSA radiative transfer simulation: minute
derives the BRDF information from the 17-day gridded « Developing surface-specific !
surface reflectance IP, and then calculates spectral albedoes ping P O e o Table 2. Summary of
. . LUTS. R? RMSE  Bias R* RMSE  Bias R? RMSE  Bias . .
which then are converted to broadband albedo using « The new BRDE LUT has not been COTTEEEm o5 oo oou oo oo4 omz o oot ooz Validation results at
empirical models. BPSA directly estimate broadband albedo implemented in the NOAA %:g‘: 00 oM cr ai oo o aom oo Seven SURFRAD sites
from VIIRS TOA radiances. P tional svst " Fig. 3. A brief flowchart LRSS0 oo oo om o1 oms 00 oo 003 (Top: 2012, bottom:
. . . . . . operational system yet. [ENCCCM 0.50 0040 -0.020 0, . 073 0.02 0079 -0.054 .
e BPSAis also applied to sea ice pixel to estimate SSA with a peratl v v showing how the BPSA LUT EETTAT o5 os: aoos s o1ss oot asr ooss oeer  2013). Three satellite
o : * Analysis of results from the new ) o CTIMMN 0% 00i6 00M 048 0143 000 08D 000 002  4|bodo d
separate LUT specifically developed for sea-ice surfaces. BRDF LUT is based on the data of regression coefficients is albedo data (VIIRS LSA
¢ The BPSA is currently used to generate LSA. Several enerated at the UM local generated S E—— from the Lambertian
[ViiRS (BROFLUT) ___VIIRS {betarelease) _moDis _______|
improvements have been made since the S-NPP launch. & ™~ _ Rmse Bas & Avse sas Rt wse mas  LUT, VIIRS LSA from
. e facility. m— 037 00a2 0006 051 OGS 0001 095 0064 0B  tpo BROF LUT and
mm T MIODIS albedo) are
= Temporal stability of LSA retrievals e | Eiﬁ omi oot o oun oo om ass oy validated against field
— e Sealce The LSA retrievals in the summer of 2012 over two Libya desert o TR e e S Il  measurements.
Albedo 1P AlbedolP | e sites (Site 1: 24.42°N 13.35°E and Site 2: 26.45°N, 14.08°E) are used
2 to illustrate the issue of temporal variability of LSA. VRS 8ROF LUT) . VRS boa rlsso woos

028 pMsE-0 o5 | @ Goodwin Creek
026/ Bias=-0017 ot

RMSE=0018
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Fig. 1.Af|owchartshowingthe major inputs data to surface A% e ots

albedo EDR algorithm

Example of VIIRS LSA maps

Fig. 2. Temporal averaged maps of surface albedo, May 8-23,
2012

Publication

Wang, D., S. Liang, T. He, and Y. Yu (2013), Direct estimation of land
surface albedo from VIIRS data: Algorithm improvement and preliminary
validation, J. Geophys. Res. Atmos., 118, 12,577-12,586,
doi:10.1002/2013)JD020417

Fig. 4. Time series of beta release data. Jumps around 8/9 were
caused by the bugs in a early version of the operational codes.
“Forward” means pixels with relative azimuth angle >90° and
“backword” means those with relative azimuth angle <90°.

New albedo estimated with the BRDF LUT has improved in
temporal stability
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Fig. 5. LSA retrieved from new BRDF LUT. The spurious retrievals
caused by undetected cloud and cloud shadow are excluded with
the threshold of mean + 0.05.

Compare residual variations with those from alternative methods

Fig. 6. Residue of BRDF fitting, calculated as the difference
between MODIS surface reflectance and BRF predicted from
MODIS BRDF. The narrow-to-broadband conversion coefficients are
used to covert spectral residues to the broadband residue.
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Fig. 7. Validation results of 16-day mean albedo from VIIRS BRDF LUT,
CLASS VIIRS data and MODIS, using data from 2012(top) and 2013
(bottom) non-snow seasons (May-September) at six SURFRAD sites.

Summary

¢ Validations are performed with comparisons to MODIS LSA, in-situ LSA,
LSA map monitoring, evaluation of LSA temporal stability.

¢ Validation results demonstrate the VIIRS BPSA algorithm can reliably
retrieve LSA over both dark and bright surfaces.

¢ Continuous efforts have been put to improve the BPSA LSA algorithm.
The refined algorithm will be able to provide more stable and consistent
LSA with higher accuracy for the J1 mission.

* Comprehensive validation will be carried out to better understand
uncertainties of LSA products.




Repair for VOCCO Coastal Products
Evaluation of the IDPS (VOCCO) ocean color products in Coastal regions

ﬁ Ocean - - -
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Current and Future Marine Optical BuoY (MOBY)
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Abstract

The MOBY system has provided vicarious calibration data for virtually all ocean color satellites since the launch of NASA’s SeaWi1FS instrument. MOBY has been operating continuously since 1997 in an operational
manner, and the current system 1s described in this poster. Recently we have been funded to “refresh” the internal systems in MOBY with a new optical system and updated control electronics (MOBY-Refresh).

This updated system will lead to improved data quality and reliability.

History

The Marine Optical BuoY (MOBY) (Clark et al. 1997, 2002) 1s the primary ocean measurement site for vicarious calibration of satellite ocean color sensors (Barnes et al. 2001, Eplee et al. 2001). Since late 1996, the
time series of normalized water-leaving radiances nLw(A), determined from the array of radiometric sensors attached to MOBY, has been the primary basis for the on-orbit vicarious calibrations of the USA
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTYS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular
Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometers (MODIS, Terra and Aqua). MOBY support has been provided to Japanese and
European Space Agency calibration teams for the Global Imager (GLI) and the Medium Resolution Imaging Spectrometer (MERIS), respectively. The MOBY vicarious calibration nLw(A) reference 1s an essential
element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors (Franz et al., 2007a).

Description of Present System

MOBY i1s a 16 m spar buoy (including the lower instrument bay) uniquely designed as an optical bench for measurements of Ed(z,A) and Lu(z, A) at

depths of 1 m, 5 m, 9 m, and 12 m. Meteorological sensors for wind speed, wind direction, air temperature, relative humidity, and barometric

pressure are mounted on the MOBY Mooring Buoy (MMOB). The Marine Optical System (MOS), the heart of MOBY, consists of two single-grating

CCD spectrographs connected via an optical multiplexer and fiber optic cables to the Ed(z, A) and Lu(z, A) optical heads mounted at the ends of
the buoy’s three standoff arms. To provide low-loss transmission at ultraviolet wavelengths, 1 mm diameter silica fiber optic cables are used to
connect the optical heads to MOS. Lu(12, A), at z= 12 m, 1s measured through a window 1in the bottom of the MOS housing itself. A seventh
fiber optic cable connects a surface irradiance, Es(\), cosine collector, mounted at the top of the MOBY above-water mast, to the spectrographs.
Each pair of in-water optical heads 1s mounted on a standoff arm to minimize radiometric artifacts due to shadows or reflections from the buoy.

MOBY i1s continuously moored approximately 20 km west of the island of Lanai in a water depth of 1200 m. During prevailing trade wind
conditions, this location is sheltered in the lee of the 1sland, yet it 1s far enough offshore to minimize atmospheric perturbations associated

with the 1sland’s wake. The MOBY Operations Site, located at the University of Hawaii (UH) Marine Facility in Honolulu, 1s staffed full time by
personnel from the Moss Landing Marine Laboratories (MLML) for buoy maintenance, for instrument maintenance and calibration, and for
staging buoy relief. The University of Hawaii’s research vessels are used for cruises to support buoy deployments, and interim maintenance

and quality control operations. A subset of the MOBY data 1s transmitted daily, via web linked cellular telephone, to the University of Miami
(UM) in Florida. The MOBY data are transferred from UM to MLML for processing to produce and extract weighted band-averaged nLw(L)s.
These data are made available to NOAA via an MLML web host and ftp server, and are openly available through the NOAA Coastwatch site.

The current MOBY optical system has two spectrometers, one which covers the region from 350-620 nm (Blue spectrograph or BSG, and another
which covers the region from 620 nm to 750 nm (red spectrograph or RSG). The light from each sensor head comes to the MOBY Optical
System (MOS) over a fiber which is sequentially introduced to the spectrographs. A dichroic mirror separates the light into the two spectral
regions. Along with the measurement fibers, there are internal calibration sources that can measure the instrument stability.

An example of the use of the MOBY system i1n determining the absolute calibration of a relatively stable satellite sensor (SeaWiFS) 1s shown

in the figures on the right (Franz et al., 2007a). The SeaWiFS project used lunar views to determine the relative temporal drift of the sensor, while
the absolute gain factor was determined through a vicarious calibration using the MOBY time series. One aspect of both the noise 1n the satellite
retrieval and the inherent environmental noise in the MOBY system, 1s that multiple measurements are required for the satellite data to converge
to the “true” gain factor. Presumably, if the noise in either of these systems was reduced, the number of data points required to attain

convergence would also be reduced in a corresponding manner.

MOBY-Refresh Optical System

In the new optical system, as currently designed, we will be measuring the optical signal from all of the sensors simultaneously using an
imaging optical system. The new spectrometers are based on a volume phase grating, and have the imaging capabilities to do this
simultaneous 1maging. A picture of the spectrograph i1s shown on the right along with an image taken from a prototype system displaying
the imaging capabilities, with 14 individual channels displayed on the spectrograph.

An example comparison of the straylight in the current MOBY 1nstrument vs the MOBY-Refresh prototype, i1s shown on

the right. This figure 1s normalized by the peak in the central band. The stray light in the figure is due to scattering and imperfect imaging
in the optical system. As can be seen, the new system will exhibit straylight approximately two orders of magnitude less than the

current system. This improved characteristic will increase the accuracy of the data by decreasing the importance and reliance on the

stray light correction in the data.

The other advantage of the new optical system is shown in the figure below, which shows some results derived from an experiment

with the prototype optical system, deployed off of Hawaii (Yarbrough et al., 2007)). Here the water leaving radiance 1s derived in two ways.
First the data were binned and used in a manner similar to the current system, where each measurement depth can only be determined 1n a
sequential manner. The water leaving radiance determined in this way is shown with the large black dots. The scatter in these dots 1s similar

to that seen 1n the MOBY data set. The data were then used to determine the water leaving radiance using each simultaneously acquired data set

to determine an individual data point for the water leaving radiance. In this way the
environmental noise 1s greatly reduced, resulting in less noise for the reported water

o leaving radiance. Additionally, with the simultaneous data, it 1s possible to make many
. A more individual measurements, which through averaging will provide a more accurate

| S e e representation of the natural light field viewed by the satellite. With this data set, the

o number of calibration points will be greatly reduced, allowing more rapid initialization of
a new satellite sensor and the possibility of correcting a sensor which has more frequent

‘ instabilities (such as MODIS Terra (Franz, 2007b).
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Conclusion

(MOBY) and the new optical system (MOBY-Refresh prototype).

The MOBY system has provided invaluable data to the Ocean Color community for the vicarious calibration of ocean color satellite systems. While it has performed well in the past, many of the components are
significantly past their design life time and the need for replacement/updating 1s critical. We are currently at the beginning of this process as we build up the new optical system and other subsystems in the MOBY

platform. This will provide the capability to extend the MOBY time series and continued vicarious calibration capabilities into the future.
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The JPSS-1 (or J1) satellite is scheduled for launch in late 2017. One of the instrument on-board -
this satellite i1s the CrIS flight module 2 (FM2) which i1s a Fourier Transform Spectrometer. This
CrlS FM2 is a near-clone of the CrlS FM1 that is currently flying on-board the S-NPP satellite. The
J1 CrIS underwent a series of tests on the bench which consists in operating the instrument at
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River Runoff Effect on the Suspended Sediment Property In the Upper
Chesapeake Bay Using MODIS Observations and ROMS Simulations

Xlaoming Liu and Menghua Wang

NOAA/NESDIS Center for Satellite Applications and Research
E/RA3, 5830 University Research Ct., College Park, MD 20740

Introduction Impact of High River Discharge Events on the Upper Bay TSS

e Ocean color data derived from MODIS-Aqua from 2002-2012 and simulations from the Regional Ocean Model
System (ROMS) are used to study the impact of the Susqguehanna River discharge on the total suspended
sediment (TSS) concentration in the upper Chesapeake Bay.
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» The shortwave infrared (SWIR)-based atmospheric correction algorithm (Wang, 2007) is used to derive nL,(A).
The diffuse attenuation coefficient at the wavelength of 490 nm Kd(490) is derived using the algorithm proposed
by Wang et al. (2009), and the TSS is derived using the algorithm proposed by Son and Wang (2012).
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% ) T (c) 11 November 2012. (39.35°N, 76.14°W) for (a) daily averaged TSS concentration from 11 October 2012 to 20 November
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X 3 .
S | Conclusions
2 « MODIS-Aqua-derived TSS data indicate that the Susgquehanna River discharge has strong and direct impact on the
S 1 variation of TSS concentration in the upper Chesapeake Bay.
o i
SNETH NN N VS B DRI B B NS B * The effect of the Susquehanna River discharge on the upper Bay TSS is mainly through a few high river discharge events
ooz a00n  s00s 2008 2010 2012 in each year, and the TSS is generally low in low river flow conditions.
Year

 Both MODIS-derived TSS data and ROMS simulations show that the Susquehanna River discharge is the dominant factor

7SS (mg I1) for the variations of TSS concentration in the upper Chesapeake Bay.

—-m Figure 3. Comparison of time series of monthly averaged
| Susquehanna River discharge from year 2002 to 2012 (dotted
_ _ _ _ line, scale In left) and time series of monthly averaged MODIS-
Figure 1. MODIS-Aqua-derlved monthly climatology images (2002-2012) measured TSS concentration from 2002 to 2012 in the upper AcC kn OWI ed g ements
OF T35 concentration for (2)-{1) & the month of January to December. Chesapeake Bay (solid line, scale in right). MODIS L1B data were obtained from the NASA/GSFC MODAPS Service website.




Abstract

Background

J1 VIIRS pre-launch testing showed polarization sensitivity that could lead to
radiometric corrections on-orbit, which would rely on understanding the polarization
states in the atmosphere. To aid in understanding this phenomenology, we developed a
ground-based spectroradiometer for polarization measurements by combining an off-
the-shelf spectroradiometer with a rotatable standard camera lens polarizer to allow
polarized light into the spectroradiometer. Since these pieces do not combine easily, we
built a customized adapter in-house - designed using open source software and built
with a 3D printer. Preliminary measurements of the atmosphere using the
spectroradiometer show stronger linear polarization (350 nm to ~650 nm) viewing 90° to
the sun than towards the sun, which is consistent with polarization dominated by
Rayleigh scattering. We plan to further improve the instrument and characterize the
atmosphere over a larger range of sun and sensor positions and analyze the
measurement uncertainties. This will improve our understanding of polarization states in
the atmosphere and contribute to validation efforts of radiative transfer models used in
any on-orbit corrections for J1 VIIRS.

Rayleigh Scattering

Rayleigh scattering linearly polarizes the sun’s radiation according to its scattering angle, o

Example of ground measurements of the full sky taken in the early morning

1-cos’ ()

DOLP = .
1+ cos“(a)+20/(1-0)

DOLP in sensor field of view Scattering angle in the sensor field of view

180

I1ED_\
14ﬂ§
s —12!'.]33

e |

where DOLP is degree of linear

polarization and ¢ is depolarization factor.
[Hansen &Travis, Space Science Reviews (1974)] ;5 100 2
3 0 9
. . Q £
With the sensor viewing upward and the 0 g
sun on the horizon, the photons detected 40 §
20

have been scattered at 90°, so are
highly polarized.

=

Fig. 4. (a) DoLP image at 700 nm of a clear early morning (23 May 2008) just after sunrise. at

around 0620 Hawanan Standard Time (HST. UTC -10) with the sun to the east. (b) The
scattering angle (with respect to the sun) mapped to the fisheye lens image plane.

[Dahlberg et al. Optics Express (2011)]

Pre-launch Polarization Sensitivity Measurements

Instrument polarization sensitivity contributes to radiometric uncertainty.
Pre-launch polarization sensitivity measurements found that J1 has higher polarization sensitivity than NPP VIIRS.
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Figure 1: Detector signals, dn(#)as a function of polarizer angle, d.

NPP VIIRS Pre-launch Measurement Setup [Novitsky et al. SPIE 2012 ]

and Results

On-orbit Corrections

On-orbit corrections can be applied at the EDR level:

Corrections are based on pre-launch polarization sensitivity measurements and atmospheric polarization states (modeled by radiative transfer codes
such as 6SV and MODTRAN-P)

Corrections will most likely used for J1 VIIRS ocean color channels .

Polarization correction Water-leaving radiance

0.965 [dimensionless] 1.035
HS @ 4 .

0.0 [mW em™ st~ pm~!] 5.0 0.0 [mW em™? sr! pm~'] 5.0
EE S O s w
(b) Ly n corrected

(e) pe (pol.corr., eq.11) (a) Ly w uncorrected

Moderate Resolution Imaging Spectrometer (MODIS) polarization corrections for ocean color
[Meister et al. Applied Optics (2005)]

Developing a polarimetric spectroradiometer to aid in understanding atmospheric polarization phenomenology.

Progress In Developing a Ground-Based Polarimetric
Spectroradiometer to Support J1 VIIRS Validation

Aaron Pearlmani, Frank Padulal, Xi Shaol, and Changyong Cao~?

LERT, Inc., °lNOAA/NESDIS/STAR

Building a Customized Spectroradiometer for Polarization Measurements

Objective: Use ASD* spectroradiometer with linear polarizer to create a simple polarimeter that can measure the degree of linear

polarization of incoming radiation.

Challenge: ASD* spectroradiometer provides fiber holder that is incompatible with standard camera lens polarizers.

Solution: Design and build custom adapter to connect the ASD with the polarizer

« Designed adapter for holding the rotating polarizer using Blender*

— Allows unobstructed path between ASD fiber field of view and linear polarizer
— Fits the rotating stage snugly

 Used ASD spectroradiometer
— Spectral coverage: 350 nm - 2500 nm (2151 bins)
— Fiber input with FOV = 25°
— Rugged design
— Wireless communication capability
— Calibrated at NIST
— Low polarization sensitivity

e Built the customized adapter in-house using a 3D printer
— Painted black to mitigate reflections
— Added threads to connect to the fiber holder

 Assembled
spectroradiometer
for measuring
polarization

Incoming
Radiation

Setup for initial measurement of polarization sensitivity of polarimeter

* |[dentification is not intended to imply recommendation or endorsement by NOAA.

Sensor Towards Sun

target

Sensor 90°to Sun

276° sensor azimuth

. target
87.7° solar azimuth g

[Dahlberg et al. Optics Express (2011)]

* Pointed sensor at ~90° to sun » Pointed sensor towards sun but not in a
e Measurement time: 6 minutes direct path to avoid detector saturation

e Measurement time: 4 minutes

Measurement conditions Polarimetric spectroradiometer setup (sensor 90° to sun)

Protractor to be replaced
with 3D-printed version

Preliminary Results

— Counts spectra for all polarizer angles

Raw Counts
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Deqgree of linear polarization (DOLP) at selected wavelenqgths

1 ‘ ° gensolr 19_0” todSug .
0.9 — . e Sensor Towards Sun
DOLP — Cmax len
i i i ) 0.8- C. +C..
e Calculated DOLP values using sinusoidal fits .’ max = min
[Novitsky et al. SPIE (2012)] o6
ngS
« Polarization increases with wavelength from 350 to 580 nm: o4r
0.3+
0.2
01+ . R .
400 * 460 560 5E|:0 660 6.."I'>D

Wavelength (nm)

Deqgree of linear polarization at all wavelengths (< 1000 nm)

« Shows potential of the instrument to measure polarization
states with high spectral resolution over a large wavelength
range that covers VIIRS ocean color channels.

180

700

o
* Need more measurements to assess wavelength range g’”ﬁ' oo 50 6 S T
where the linear polarizer is effective. 04r
0.3~
- - - - - 02_
* Need further investigation to examine if spectral 01 Sensor Towards o Sun
dependence is consistent with radiative transfer simulation —" J J e :
1900 400 500 600 700 800 900
results. Wavelength (nm)

* Results consistent with Rayleigh scattering:
« Show that DOLP is higher 90°to sun than towards the sun

Summary and Future Work

Summary:

» Designed and built a customized ASD-based polarimeter that provides a new capability for NOAA to
Investigate polarization phenomenology in support of J1 VIIRS.

* The preliminary sky measurements established confidence in the proto-type design, which will act as a
baseline for advancing atmospheric polarization research and development.

Future work:

* Improve the polarimeter design:
— Add 3D printed protractor to decrease uncertainty in angle.
— Add motor control to rotate polarizer to improve efficiency.

« Conduct measurements to gain better understanding of polarization states and assess uncertainties:
— Continue measuring atmosphere over range of sun angles.
— Measure polarization of reflected Earth surfaces.

* Work with NIST to calibrate polarimeter
« Validate atmospheric radiative transfer models

1000
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Spatial and temporal variation of the Visible Infrared Imaging Radiometer Suite w

(VIIRS) derived aerosol optical thickness over East China
Fei Meng? ?, Changyong Cao¢, Xi Shao?
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bDepartment of Civil Engineering, Shandong Jianzhu University, Jinan, PR China
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Abstract

The spatial and temporal variations in regional aerosol optical thickness (AOT) were investigated over Ej

1.1

i 0.9

) . A . . . Annual and seasonal AOT variations for different cities S ool A : i °7 2
Shandong province of China based upon one year's Visible Infrared Imaging Radiometer Suite (VIIRS) Averaged over the measurements in 2013, the minimum (Min.), maximum (Max.), mean, standard deviation 5 el 2R S ns 7 5 -
data. The regional forest background annual mean AOT was 0.467 with a standard deviation of 0.339, (Std.) and variance of AOT in 17 cities (F,ig 1) are presented in,TabIe 1 ’ ’ 25 L 35 |
which was much hlghe_r than the _backgrour_1d continental AQT Ievel_ of 0.10. Higher AOT values 1_‘or the In order to better understand the AOT values in different cities, percent days with AOT=<0.5, 1.0=A0T > 0.5 and e LUE‘ .;de"’;.ﬁ 12 T Longitude @eg) " e el Longitude (deg )
study region were mainly found in the spring and summer, especially from May to August, while the AOT > 1.0 respectively in each cities were calculated (Fig.2) B | o o @

lowest mean aerosol values were seen in November and December. Urban areas all have obviously
higher mean AOT values than the rural areas resulting from intense anthropogenic sources. Given that

33

the forest background AOT represents the natural background level, anthropogenic emissions and it Y :
secondary aerosol generation contribute approximately 0.352 to the aerosol loading in this region. =
Additionally, strong regional imbalance of AOT was found to be distributed over the study area. The

7.5 ke e e R

ol
-]

maximum annual average AOT values occurred in inland cities, while the coastal cities usually have Table 1 Statistical annual AOT data in cities of Shandong province % 35 [ ' S I
lower AOT values. s S G y
. N Min. Max. Mean Std. Variance 35 AR
I n tro d u Ctl O n Clty - 34-5 115 L'I1E 11.‘- 1*18 119 - 12 | 112“1 | 122 0=
weihai 201 0.023 1.902 0.540 0.409 0.167 Longitude (deg.)
. : : ' (e
Aerosols are ubiquitous and comprise one important component of the Earth- atmosphere system, and yantal 188 0.071 1.791 0.596 0.409 0.167 )
gingdao 201 0.050 1.352 0.626 0.322 0.104

iInfluence air quality, visibility and climate system and human health. It is shown that there is a tendency of

Fig.5 Seasonal mean VIIRS AOT observed in (a) spring (March to May 2013), (b) summer (June to August 2013), (c) Autumn

Increase in the atmospheric aerosol load due to human activities, including the industrial production chains and Rizhao 189 0.038 1.844 0.713 0.437 0.191 (September to November 2013), (d) winter (December to February, 2013) and (e) annual in 2013. A is Jinan Jinan
the operation of various transport systems on the land surface. Because of the role of atmospheric aerosols in Weifang 193 0.093 1.901 0.747 0.428 0.184 metropolitan, B is Linyi urban belt and C is Zibo urban belt.
human heath and climate change, many studies have been carried out on the retrieval of aerosol particle optical Laiwu 163 0.045 1.731 0.747 0.410 0.168
properties, their relationship with the PM2.5 and PM10 concentrations, temporal and spatial variations, and their Binzhou 146 0.048 1.871 0.767 0.500 0.250
iInfluence on the climate system and atmospheric radiation, with the development of new techniques and Zibo 185 0.074 1.884 0.805 0.454 0.206 18  day's moving average fine in sinan . o -
iInstruments. However, there are still uncertainties because of the lack of adequate knowledge on the spatial Zaozhuang 142 0.084 1.859 0.806 0.435 0.190 s D ra | e
and temporal variability of aerosol properties across the globe. Long-term continuous aerosol observations in a Dongying 158 0.086 1.900 0.808 0.504 0.254 5 1 ’ A =
large region are still of great importance for a range of assessments and applications, including satellite aerosol Taian 176 0.072 1.964 0.816 0.442 0.195 k Pwe W MW < o e A
data validation, radiative forcing computations and public health and climate change. Jining 165 0.118 1.952 0.823 0.433 0.188 ?O T | 04 LY T - e
The study area is situated on the eastern coast of China, with an area of 15.6 X104 km?2, at latitude 34.26° N- Heze 156 0.168 1,941 0826 0.441 0.195 2400 14-Mar 3May 220un 1-Aug 30-Sep 16-Nov risan 1aMar 3May 229un 1lAug 30Sep 19-Nov
38.42° N, longitude 114.93° -122.46° E. Fig.1 shows the 18 sites under study, including the regional forest Jinan 160 0.113 1.794 0.839 0.448 0.200
background (FB), Jinan (JNA), Qingdao (QD), Yantai (YT), Weihai (WH), Weifang (WF), Zibo (ZB), Taran (TA), Liaocheng 171 0.137 1.894 0.846 0.452 0.204
Linyi (LY), Jining (JN), Rizhao (RZ), Laiwu (LW), Dezhou (DZ), Liaocheng (LC), Heze (HZ), Zaozhuang (ZZ2), Dezhol 185 0.096 1.895 0.853 0478 0.229 o o | -
Binzhou (BZ) and Dongying (DY) Linyi 200 0.126 1.872 0.905 0.418 0.175 ol [ S ol e e e e

i Forest 183 0.01 1.583 0.467 0.339 0.115 . - 1.

{ﬁ <00 R R TIT

Zibo Weiflang,
40 0.7
ingdao
b 30 ¢ 0.5
—e— Forest background
20 9 03 —=— Cities around the forest
4
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Mean AOT

Fig. 6. Scatter plots of daily AOT and 7 day’s moving average line of Jinan, Linyi, Jining and Weihai in 2013.
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Fig. 3 Monthly mean AOT in the regional forest

Fig.2 Percent of days with different AOT thresholds. “*” mean

Latitude {deg.)
Latitude (deg.)

Fig. 1 Location of the study area. *Forest is the sampling location as forest background. costal city. background and nearby cities in = ' 2 3 s el 1F % - Y i i gl o E e
© e ?JLJN; _3;_ ﬂ{ﬁ,+dﬁ i : " : _ .. ;i;:;,;v o f,a“35"éi' Zj
e - I ; j- i ’ o | | | 2-2 s P ; .'qu‘ e Pl , . :2
M et h O d O I O g y an d Data Spatiotemporal pattern Of AOT i o Longitude (deg.)
To investigate the spatial and temporal variation of regional AOT, statistical analysis was performed. 17 main cities (A) August 17, 2013 (B) August 18, 2013
The VIIRS data plus the forest background were studied. Fig.3 shows variations of monthly mean values of retrieved AOT over the
The VIIRS aerosol intermediate product (IP) data acquired in Shandong China from January 24 to December 31, forest backgrounc! site (FB) and cities around it. Fig.4 also shows a large seasor.lal variation that AOT Va}“ed from Fig. 7. Distribution of AOT retrieved with VIIRS during a heavy polluted event from August 17 to 18, 2013. The black arrow
2013 (Fig. 1) 0.260+0.240 (Winter) to 1.226 +=0.401 (Summer). Urban seasonally averaged in summer was always higher than is the AOT moving direction.

values in other seasons, varied from 0.7541+0.449 (WH) to 1.2260.356 (JNA). The results in Fig.5 show a
seasonal cycle of AOT with the lowest values recorded in winter and autumn and maximum values obtained in

bands (375 m resolution at nafjlr) _ _ _ summer and spring. The time series of daily AOT and 7-day moving average line from January to December 2013
The combination of aerosol quality flags < 1, cloud detection result quality flags = 0 and turbid/shallow water = 0 are illustrated In Fig.6 with a strong seasonal variation in 4 typical cities: Jinan, Linyi, Jining and Weihai. Fig.7

were used in AOT retrieval. shows the AOT movement between August 17 and 18.

Spectral Range : 410-1250 nm, with 22 channels, of which 16 are M-bands (750 m resolution at nadir) and 5 are I-

Validation

VIIRS derived AOT were compared with those from AERONET ground-based sun photometer data of Beijing and

Xianghe sites. The correlation were shown in Fig. 2. The forest background annual averaged AOT was 0.467 with a standard deviation of 0.339, which was much

higher than the background continental AOT level of 0.10.

spring —e— summer —aA&— Autumn —m— Winter
12 r Higher AOT values for the study region were mainly found in the spring and summer, especially from May to
L August, while the lowest mean aerosol values were seen in November and December. The sequence of
s * y = 0.8989x + 0.0261 3 5 . seasonally mean AOT values was summer > spring > autumn > winter.
1.6 5 2 . < V° & . . . .
= %15 g Urban areas all have obviously higher mean AOT values than the rural areas resulting from intense
I g | anthropogenic sources. Given that the forest background AOT (annual mean 0.467) represents the natural
= o = s 04 | 2 background level, anthropogenic emissions and secondary aerosol generation contribute approximately 0.352
B | | | | | o @ to the aerosol loading in this region.
0 0.2 0.4 0.6 0.8 1 1.2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ . . . . .
AOT (AERONET) AERONET WH YT QD Rz B2 WF DY LW JNA ZB IN 2Z Hz TA DZ ILC LY FB Strong regional imbalance of AOT was found to be distributed over the study area. The maximum annual
. average AOT values occurred in inland cities, while the coastal cities usually have low AOT values.
(a) Beijing (b)Xianghe

Fig. 2 Comparison of VIIRS AOT with AERONET sun photometer-derived AOT Fig. 4 Statistical seasonal overview of mean AOT in different cities of Shandong



VIIRS Surface Type algorithm refinement and preliminary validation
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Introduction Validations Refinement Agreement with
VIIRS Surface Type Intermediate Product (IP) and M O D I S C5

Environmental Data Record (EDR) represent continuity he Independent global validation dataset was based on The preliminary validation suggested the new VIIRS QST The initial decision tree generated global surface type IP,

with NASA EOS MODIS and NOAA POES AVHRR land a stratified random sample of 500 blocks, which IP omitted some cropland pixels in India and misclassified nost-classification modelled QST-IP, and SVM generated

cover products. After the beta delivery, VIIRS Surface Included 17 IGBP classes. Each validation block some grassland or open shrublands into croplands in high QST-1P are compared to MODIS C5 (Seed) Land Cover,

Type algorithms are continuously evolving, and many contains between 10-35 VIIRS 1km pixels. The latitude areas, such as southern Argentina. and agreements among those datasets are presented. The

Water Bodies

improvements have been applled to the Surface Type IP, validation was performed by human Interpl‘eta’[lon IN : RO . s :"»: ""‘;5-?‘..“;‘.::“;‘:i;:A.\W‘;—EvergreenNeedleleafForests results indicated both decision tree and SVVM are able to

|| Evergreen Broadleaf Forests

' Deciduous Needleleaf Forests

generate MODIS C5 compatible VIIRS surface type

' Mixed Forests
' Closed Shrublands

products, and their agreements are very similar.

Woody Savannas

and then EDR. Among those improvements, results of a high resolution images using a tool built in Google

e : . . . Earth. Validation samples and comparisons of overall
post-classification modeling on top of the original decision
o 17 Class IGBP agreement between SEED and Beta delivery QSTIP In percentage,

accuracies among different products are shown below.
Grasslnds overall agreement = 92.9841%

tree algorithm outputs, and a new classification algorithm

Permanent Wetlands

- Croplands 66.85 0.19 1.34 0.06 5.39 1.14 0.24 3.46 1.04 0.72 3.24 0.08 0 0.20 0 0 0.01
Support VeCtOr MaChlneS (SVM) generated OUtpUtS are I'd . I . Urb:nandBuiIt-upLands 062 9014 001 291 263 030 0 329 206 023 1142 032 0 458 0 0 0
Va I at I O n S a‘m p e D eS I g n [ Cropland/Natural Vegetation Mosaics 0.46 0 7463 0 1.25 0.02 1.19 1.48 0.58 0.15 0.42 0.01 0 0.16 0 0 0
Shown The neCeSSIty Of the neW SVM In the ST algorlthm e ; P - :Snowandlce 0 007 0 5330 153 015 0 031 007 005 005 005 O 1170 0 0
. Indla VI I RS _‘ Barren 18.18 1.44 9.86 11.44 75.44 5.95 0.24 4.66 0.42 0.95 2.89 0.44 0 4.64 0 0 0
- - - - - - - .*.':» i o ' } S ' . ~‘ MODIS Seed 0.02 0 0 0.11 0.01 18.37 0.06 0.05 0.04 0.13 0 0.02 0 0.01 0 0 0
refinement is that decision tree output requires intensive PRy e N &N N TR I e s 7 T P 77 o e [ e e K
P N \7 2 .'_.' --‘1“"-.:' TO im Orove the accuracy Of Croplands CIaSS’ a Crop 810 277 745 1718 644 1857 302 6379 1402 224 1020 245 O 729 001 0 0.01
- - - = B . G e -km > et 001 049 001 590 013 2422 353 1057 6615 624 205 58 0 1331 0 001 0
pOSt proceSSIng Whlle SVM may prOduce better dlreCt (= ] - x,%;!%.. . 1.25 0.17 0.26 0.23 0.45 7.64 3.79 0.64 1.92 50.65  0.46 7.27 0 3.36 0.02 0.97 0
- ] \;;.. 3 % ’ «3 =g = -
T N robability product from global cropland extent project of I T B T [ T s B B B i o I 7 - 7
Output and needs |€SS post proceSSIng Comparl Sons Of " : w‘,“ “\«* 078 023 023 075 18 472 134 230 090 619 385 7032 0 1013 002 005 001
/ ok '_ ﬂﬁ% ot h k - - d - I I - I 0 0 0 0 0 0 0 0 0 0 0 0 99.76 0 0 0 0
G Wy - South Dakota State University and an internal multiple
- e i 8 g e . .'}q 0.57 4.23 1.24 7.89 4.33 2.14 0.70 5.99 7.34 3.40 4.21 9.80 0 54.17 0 0.02 0
|GBP class agreements between SEED delivery and the - d ACRR o _ T [ TR B [ [ 7 5 7 v [ oy i [
. " T + Each sample block (black squares) contains  * products crop distribution agreement data are employed in .- —__~
delivered decision tree result, post-classification modelled between 10 and 35 1-km VIIRS pixels. mccificat Tell
it and SYM " od Prelimi R S e s o ot Fo a post-classification modelling. 17 Class IGBP agreement between SEED and Post-classification modelled QSTIP
resu ’ an resu are presen e . re Im I nary ro !Cﬂ aintores arlr_le est-coas ro !ca easonal rores g e mm R e ; — s, - R " "*Eif . g o e s - II _ 0
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Abstract

Accuracy and Stability

Contact info: Yong.Chen@noaa.gov

Yong Chent, Yong Han?, Xin Jin3, Likun Wang?, Denis Tremblay#, and Fuzhong Weng?

The Cross-track Infrared Sounder (CrlS) on Suomi National
Polar-orbiting Partnership Satellite (S-NPP) 1s a Fourier
transform spectrometer and provides a total of 1305 channels
for sounding the atmosphere. Quantifying the CrlS spectral
accuracy, which is directly related to radiometric accuracy, IS
crucial for improving its data assimilation in the numerical
weather prediction.

Two basic spectral calibration methods are used to assess
the CrIS Sensor Data Records (SDR) spectral accuracy and
stability: 1). Relative spectral calibration, which uses two
uniform observations to determine frequency offsets relative to
each other; 2). Absolute spectral calibration, which requires an
accurate forward model to simulate the top of atmosphere
radiance under clear conditions and correlates the simulation
with the observed radiance to find the maximum correlation. In
this study, we use Community Radiative Transfer Model
(CRTM) and European Centre for Medium-Range Weather
Forecasts (ECMWEF) forecast fields to simulate the CrlIS
radiance over tropical clear scenes over ocean.

CrlS spectral stability 1s so high that we could detect the
Earth-rotation Doppler shift (ERDS) from CrlS observations
using the relative spectral calibration method for CrlS band 1.

Spectral calibration results show that CrIS has small and
consistent FOV to FOV spectral shift in all three bands. The
spectral shift 1s very stable during the satellite mission and
better than the instrument requirement. Long-term CrlS SDR
spectral stability Is very high.

IR Cloud Detection Algorithm

« The channels are first ordered according to their cloud
sensitivity (with the highest channels first and the
channels closest to the surface last) (McNally and Watts,
2003)

e The overcast variable contains overcast radiances
assuming the presence of a black cloud at each of
atmospheric layers. The height for a particular channel iIs
assigned by finding the layer where the difference
between the overcast and clear radiances is less than 1%.

Rclear - R

Rclear

 The resulting ranked brightness temperature departures
are smoothed with a moving-average filter in order to
reduce the effect of instrument noise.

cloudy < 001

CrIS channel cloud sensitivity height and weighting
function peak height
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CrlS Spectral Calibration Method

The correlation coefficient between the two spectra can
be written:

i@u =$,)(S,; —S,) i(sl,i -5,)(S;, —S,)

\/Zn: (Sl,i _8_1)2 (SZ,i _8_2)2

Standard deviation based on the difference of the two spectra:

I —
2152 (n-1)D, Dy,

Dsls2 = \/Zn:[(sl,i _S_l) - (Sz,i _S_z)]z/(n _1)-

The cross-correlation method Is applied to a pair fine grid
spectra to get the maximum correlation and minimum
standard deviation by shifting one of the spectra in a given
shift factor.

Detection of ERDS from CrlIS SDRs

AV = i%QR Siﬂ(@zemth) COS(A)‘Sin(¢azimuth )"

v . channel frequency; €2: Earth angular velocity
R: Earth’s radius; A: Latitude

D Satellite azimuth angle; 0,,,...- Satellite zenith angle.

azimut zenit

Doppler shift at near Equator

Latitude (deq)

Time series of spectral shifts with respective to FOV5
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(ADL reprocess).

* Time series spectral shift for IDPS SDRs from 09/22/2012 to 04/27/2014,
and ADL reprocess SDRs with updated non-linearity coefficients and ILS
parameters from 05/01/2013 to 09/26/2013 (with CMO update daily).

e Bands 1 and 2 FOV 5 spectral shift is determined by using cross-
correlation (CC) method between CRTM simulations and observations.

* The Neon ZERO shift time is determined by the Correction Matrix
Operator (CMO) update on Dec 19, 2012. The vertical lines indicate four
CMO update times in IDPS: 12/19/2012, 07/10/2013, 11/14/2013, and

o Offsets of +3.5 ppm (2.1 ppm) for bandl and +4.5 ppm (2.7 ppm) for
band2 from the CC results are used to match the Neon result in IDPS
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Effect of spectral shift on CrlS brightness temperature for a typical warm
scene with respect to an effective BT of 287 K for three different spectral
shifts (1 ppm, 2 ppm, and 3 ppm) at CrIS three bands for both unapodized
and apodized spectra.

Conclusion

This study assesses the CrlS spectral calibration accuracy and
stability using relative and absolute correlation methods. Earth-
rotation Doppler shift can be detected by using CrlS observations
which indicates CrlS spectral iIs very stable. FOV to FOV relative
spectral shift is consistent within 1 ppm for bands 1 and 2. Absolute
spectral shift has 3.5 ppm (2.1 ppm) offset wrt CRTM for LWIR,
and 4.5 ppm (2.7 ppm) offset for MWIR for IDPS (ADL
reprocess). The spectral uncertainty at both bands meet requirement
(10 ppm). Long-term CrlS SDR spectral stability i1s very high
during the satellite mission.
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OMPS ozone validation by the NOAA ground-based ozone network

By |. Petropavlovskikh®2, B. Evans?, G. McConville?, A. McClure'?, E. Beach3, L. E. Flynn#

1 Cooperative Institute for Research in Environmental Sciences, U. of Colorado, Boulder, CO, 80305

2 Global Monitoring Division, NOAA/ESRL, 325 Broadway, Boulder, CO, 80305

3 IMSG, Inc. @ Center for Satellite Applications and Research, NOAA/NESDIS, 5830 University Research Court, College Park, MD 20740

4 Center for Satellite Applications and Research, NOAA/NESDIS, 5830 University Research Court, College Park, MD 20740

Abstract. The National Polar-orbiting Partnership satellite (S-NPP) was launched on October 28, 2011.
Measurements from the satellite have been used to derive total ozone products (e.g., OMPS-TC-
EDR/OOTCO and OMPS-TC-Oz-Fist-Guess-IP/INCTO). Several long-term NOAA Dobson stations
were selected for the first round of total column ozone (TCO) validation due to an almost real time
processing option that became recently available with the Dobson automation system upgrade at several
stations to an automation system designed by the Japanese Meteorological Agency. Three stations are
located at MLO, Hawaii (tropics), Lauder, New Zealand (Southern Hemisphere middle latitudes), and
In Boulder, CO (Northern Hemisphere middle latitudes), and are part of the WMO/GAW network.
Dobson direct sun observations are used to derive the best Dobson ozone product (precision is better
than 1%). The TCO observations are typically taken three times a day, excluding overcast conditions
and weekends, when Zenith sky measurements are used to derive TCO. The number of direct sun (AD-
pair) observations at Boulder, MLO and Lauder observatories in 2012 and 2013 are 1334, 1604 and 475
respectively. These same three stations also make measurements of the Umkehr effect, from which an
ozone profile over the station is derived. The overpass satellite product corresponding to the ground-
based station value is one determined within 12 hours and within area of +/- 5 degrees in latitude and
longitude centered on a station location. During the first stage of the comparisons the OOTCO and
INTCO datasets continued to be modified and adjusted through calibration and algorithm changes. It
was noticed that the average difference between OMPS and Dobson at MLO prior to middle of June
2013 was at +15DU, while after that, it changed to 4 DU. At the same time difference between OMI
(NASA Ozone Monitoring Instrument on EOS Aura) and Dobson at MLO was on average at 13 DU
before, and remained close at 11 DU after the change in OMPS output. At MLO the correlation (R?)
between Dobson and INTCO (OMI) is 0.88 (0.9) for the period between January 1 2012 and July 30,

2013, where mean Dobson, OMPS and OMI TCOs are 262, 268 and 273 DU. Similar correlation results

are found for Boulder, CO. However, over Lauder station the Dobson TCO daily correlations are 0.98
and 0.97 with OMI and OMPS overpass ozone respectively. The differences could be due to the
altitudes of the stations and the surrounding topography: Lauder (370 mmsl) to Boulder (1640 mmsl)
and MLO (3400 mmsl). Profile comparisons were also performed for Boulder station and show some
biases, most likely due to treatment of the stray light in both satellite and Dobson Umkehr data.
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Figure 1 a) Scatter plot between
daily Dobson observations and
OMPS or OMI overpass over
Boulder, CO, b) same as a), but for
MLO, HI, c) same as a), but for
Lauder, NZ
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Figure 2 a) Scatter plot between
only direct-sun Dobson observations
and OMPS or OMI overpass over
Boulder, CO, b) same as a), but for
MLO, HI, c) same as a), but for
Lauder, NZ
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Abstract Goals and Objectives

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments onboard the Suomi National
Polar-Orbiting Partnership (Suomi NPP) spacecraft, which was successfully launched on October 28, 2011.

Goals - Build a site that can easily be edited to house an evolving set of metrics for each satellite instrument. kot sy g Figure 4. Suomi NPP VIIRS H-
To support the post-launch calibration and validation of VIIRS, the Integrated Calibration / Validation System Our goal was to build a site that was maintainable, extensible, and simple for instrument monitoring teams to populate and o “ Factor trending showed
Long-Term Monitoring (ICVS-LTM) was developed at NOAA STAR and made available online. This poster manage. 5 discrepancies from the Aerospace
introduces the scope of the user friendly STAR ICVS web page, which extends to anomaly detection and future Objectives — H-Factor trends. The H-Factor
sensor improvements. 1) Search engine optimization - Better chart metadata and consistent labeling for satellite and instrument names has made the | from Aerospace (left figure)

showed flattened curves in
February and March of 2014,

ICVS system very ‘discoverable’ via web search tools.
2) Compliant with Section 508 - STAR ICVS web page is compliant with Section 508 accessibility standards and other

The quality of satellite radiances is essential for direct radiance assimilation in numerical weather prediction
models, for retrievals of various geophysical parameters, and for climate trend studies. It is also a

M3 0.60

measurement of the success of the engineering and science efforts of our operational satellite program. Past reqwremepts assoqlgted W'tr},a properly compliant government web3|te" E espemally_ln the M1 and M2
: : . . : : : : 3) Animation capability - use "Slide Show of All Charts for Selected Date" button = | bands, while the H-factor from
efforts in post-launch calibration and validation took a piecemeal approach, focusing on onboard calibration, : . _ . : : : : NS — ; . :
- - - - - - - 4) Brcwsers and deVIceS Support = IE8 and neWer, Flrefox, Safarl, Opera, IPhOne and AndrOId mObIIe dEVICeS 00;_;37001;2012 I 0714/2012 I 12;25,-2012 I uf;;u?‘,ugmg . ||,|3‘Jgg|3wo|4 ICVS (rlght flgure) ShOWed

with much less attention paid to the quality of radiance data of earth observations. Many instrument related : , . : : ; :

: : : : i : 5) Access to metrics across S-NPP’s entire operational history through the calendar decreasing curvature in 2014.
artifacts were left to the users to discover and evaluate the impacts. The lack of on-orbit calibration standards 6) Intelligent error handling by listing missing files and providing contact e-mail for communication
and methodology for radiance verification also aggravated the problem. In order to meet the challenge of the J 9 by 9 9 P 9 -t i g 2 .

increasing demand for better satellite data quality, an integrated system that incorporates pre-launch, post-
launch, onboard sensor calibration and long-term monitoring, as well as forward calculation of radiances are
needed.

Figure 5. Suomi NPP VIIRS SDSM
SD and SDSM Sun Normalized DN
showed discontinuity for the M4
band. The discontinuity started on
4th April.
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The STAR ICVS — VIIRS LTM has become an important tool for monitoring VIIRS data quality and instrument
performance. It provides critical support for producing the products of sea surface temperature, ocean color,
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cloud imagery, vegetation, aerosols, and others, which will improve product quality to meet the growing need Deta| I ed ACthlty SC h ed U I - Load Detec'“ on

for high quality satellite data.
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Soe M08, IS e CISISEDT EHEEEE ST LI The VIIRS lunar intrusion was expected for two orbits: 10th April - Figures 8 and 9. VIIRS solar diffuser count for M12 to 16, |14 and 15 bands showed decreased SD count at
orbit 12711 from 07:02:52 to 07:03:07 and orbit 12712 Suomi NPP VIIRS performed a maneuver for lunar calibration 5:00 - 7:00 UTC:
. SDSM signal of solar diffuser and the Sun in from 08:44:37 to 08:44:52 on April 11, 2014. We received on orbit 12704 with VIIRS sector rotation (encoder offset) to Figures 10 and 11. VIIRS high and low gain of M4 and M5 bands switch position for blackbody count and
every orbit bit 12711 (t0701585_e0703227_b12711), which is th - - i i - ’
orbit 12711 ( _€ — ), which is the view sector (target time 20:53:17 UTC). This includes thirteen Figure 12. VIIRS blackbody count NE delta N for M4, M5 showed data missing during and after the solar
| | right middle rectangle of the four green rectangles, and minutes of sector rotation, from 20:47:46 to 21:00:47 UTC, eclipse:
Space View Counts VIIRS observation Space view DN for |1-15, M1- 21 bands Background signal 122%}5 (t084424|1_e(28ﬁ54;83_b12712), Wh'ChI Is the Iﬁft which impacted VIIRS SDR and EDR data quality and twelve Figures 13 and 14. VIIRS mirror, telescope, and mainframe scan cavity temperature declined during the
M16 bands midale rectangle ot the four green rectangles, in the minutes of geo-location pointing off nadir, i.e. maneuver, solar eclipse.
above time frame showed the Moon has corrupted the from 20:48:16 to 21:00:16 UTC. We received good geo-

_ Dark Noise NEAN for space view signal for 11 to L space view. Besides the two predicted lunar intrusion location data for the day, but the geo-location data received
Space View Count NEAN 1, "\11 {5 M16 bands 2lbands  Darknoise signal orbits, the adjacent orbits are also contaminated with from 20:47:46 to 21:00:50 are not useful (filled values) -- Future Develo pment
lunar intrusion. The unpredicted lunar intrusion was

which is the white area on the map where lunar calibration

Blackbodv Count VIIRS observation blackbody DN for I1 to 15, M1 21 band R aain derivai observed on the VIIRS Lunar Intrusion map for orbit was performed
R o M16 bands o S TR numbers 12710 (t0048094_e0049336_b12650) and 12713 We are looking for anomalies daily through the NOAA STAR ICVS VIIRS web page. The convenience of the
(t0410080_e0411322_b12652). North Grumman team is NOAA STAR ICVS VIIRS SDR database allows all the scientists to flip through the calendar and find the
Blackbody Counts NEAN Noise NEAN for black body signal for [1 to 15, M1 21 bands IR NEDT derivation aware of the extra lunar intrusion issue and they are parameters of interest for their research projects. We received very positive user feedback. The need of
y to M16 bands working on a solution to fix it. VIIRS RDR data monitoring is in high demand in order to find the root causes of instrument malfunction.

NOAA STAR ICVS VIIRS team is developing a tool to monitor VIIRS RDR data.



http://www.star.nesdis.noaa.gov/icvs/status_NPP_VIIRS.php
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1. Introduction 3. Individual Sites Analysis

In this study we utilized VIIRS Surface Reflectance match-up data set to evaluate Top
Of Canopy (TOC) Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) at the local scale of Aerosol Robotic NETwork (AERONET)
sites. Match-up data are pairs of VIIRS Surface reflectance (SR) and SR derived by
atmospheric correction of VIIRS Top Of Atmosphere (TOA) Reflectances using
AERONET ground measurements of key input parameters of 6S atmospheric
correction algorithm (aerosol, water vapor and others). Match-up data are generated
under condition that VIIRS and AERONET measurements fall within +/- 45 min
window. Match-up data utilized in this study are 101 x101 pix subsets at VIIRS
Imagery resolution (375m) over period Jan 1, 2013 through March 31, 2014. The
overall objective of this study is to characterize the performance of VIIRS TOC Vs at
the local scale of AERONET sites as function of performance of atmospheric
correction under constrains specified by Cloud Mask, Aerosol Product and Snow
Mask.

2. Global Analysis
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Time Series Accuracy and Precision for TOC NDVI and TOC EVI are shown: while VIIRS
TOC EVI matches well to AERONET based reference (low values for accuracy and
precision over whole length of time series), TOC NDVI exhibits systematic positive bias and
precision value is 3-4 times higher. Analyzing inputs to atmospheric correction algorithm we
found that Water Vapor uncertainties are immaterial, but uncertainties in AOT result in
overcorrection of visible channels. By design TOIC EVI provides resistance to residual
atmospheric contamination, however, TOC NDVI does not.
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The views, opinions, and findings contained in this poster are those of the author(s) and
should not be construed as an official National Oceanic and Atmospheric Administration or
U.S. Government position, policy, or decision.
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Evaluation of the Performance of VIIRS Top of Canopy
Vegetation Indices over AERONET Network

Nikolay Shabanov?!, Marco Vargas®

IIMSG, °NOAA/NESDIS/STAR

nikolay.shabanov@noaa.gov
May 12-16, 2014 |

ID=439, Nome=Harvard_Forest(MA, USA), Biome=Brdl. Forests, Geo={42.532N, —72.188W)
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Time Series of VI, SR and key parameters of atmospheric correction
algorithm (AOT, Water Vapor) are shown for Harvard Forest site (broadleaf
forest) in Massachusetts (42.5328° N, 72.1885° W). Time series of TOC
NDVI and TOC EVI exhibit strong seasonality. Effect of atmospheric
correction is to increase (already high) TOA NDVI. Time series of AOT from
AERONET measurements generally have low values (<0.1), but have
significant impact on NDVI over dark target (dense forest). In summer
VIIRS tends to overestimate AERONET AOT, however this is artifact of AOT
retrievals in vicinity of clouds (c.f. next section). In contrast to TOC NDVI
performance, TOC EVI is virtually insensitive to AOT overestimation,
therefore VIIRS and AERONET-based TOC EVI match well.
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Time Series of VI, SR and key parameters of atmospheric correction
algorithm (AOT, Water Vapor) are shown for Sede Boker site (barren) in
Israel (30.855° N, 34.782° W). As common to the barren site, Red
reflectance is comparable to NIR reflectance. BRDF effect has strong
influence on channel data, as VZA form 0-75 form day-to-day. Time series
of TOC NDVI and TOC EVI are flat and show very low value. However both
TOC NDVI and TOC EVI are insensitive to BRDF effect- time series are flat.
Time series of AOT indicates strong variability: usually AOT is ~0.1,
however for selected days can rise to 0.25-0.5. This could be due
suspended sand in the air. While for majority of days VIIRS and AERONET
AOT measurements agree, significant over- under- estimation (up to 0.3 or
higher) occurs for selected days. Nevertheless, this inconsistency incurs
minor effect both on TOC NDVI and TOC EVI.
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Match-up data over Harvard Forest
were analyzed to understand
overestimation of TOC NDVI. Top-
left image shows TOC NDVI
covered by clouds at bottom-left.
Top-middle mage shows TOC NDVI
screened with Cloud State (only
Conf. Clear pixels are retained).
Effect of clouds seems screened
out. However, constructing
anomaly, VIIRS TOC NDVI minus
AERONT TOC NDVI and applying
the above mask one can see large
discrepancies in vicinity of clouds.
Those discrepancies are due to
abnormally high values of AOT
(bottom row) observed in vicinity of
clouds. Screening TOC NDVI data
with Cloud Shadow and Cloud
Adjacency (mask at the right
column) helps to  minimize
anomalies. TOC EVI is not affected
by AOT anomalies (cf. plots below)
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Match-up data for Harvard Forest were analyzed to evaluate performance of Cloud and Snow masks.
In case of TOC NDVI, performance of Cloud and Snow masks is reasonable, without over-screening.
Of high values of TOC NDVI (left-most figure below). However, in case of TOC EVI, the mask is efficient
to remove snow covered pixels (and especially TOC EVI outliers), however over-screen valid high TOC
EVI (middle and right-most figure).
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5. Conclusions

Over the length of match-up time series utilized in this study (Jan 1, 203 - March 31, 2014) APU
statistics for TOC NDVI were (0.012, 0.040, 0.040) and for TOC EVI (-0.003, 0.014, 0.013). Those
statistics were derived based on screening to retain only Confidently Clear and Snow free regions.
The reason for substantial difference in performance of Vis is different sensitivity of VIs to residual
atmospheric contamination. Namely, TOC EVI exhibits good resistance to (1) anomalous AOT at cloud
edges and resulting visible channels overcorrection and (2) residual snow contamination. While VIIRS
Vis will benefit from improvement of Cloud, Aerosol and Snow algorithms, this study also suggest to

develop VI-specific Quality Control,

sensitivities.

which most efficiently screens data for Vis with various



Snowfall Rate Retrieval using S-NPP ATMS Measurements

Huan Meng! (Huan.Meng@noaa.gov), Ralph Ferraro?!, Cezar Kongoli?, Nai-Yu Wang?, Jun Dong?, Banghua Yan3 ando¥ottes
INOAA/NESDIS/STAR; 2ESSIC/CICS/University of Maryland; 3NOAA/NESDIS/OSPO

ATMS Snowfall Detection W

Wlth Cold Cllmate Extensmn

S-NPP ATMS takes passive microwave (MW) measurements g e e Limited validation has been conducted for the ATMS SFR product.
at certain high frequencies (88.2~183.31 GHz) that are et o :. | . ' " Validation sources included StagelV radar and gauge combined
sensitive to the scattering effect of snow particles and can e coives [N REST ~- 7 . ' hourly precipitation data, NMQ radar instantaneous precipitation

be utilized to retrieve snowfall properties. An ATMS land """ | 5 ion_| o R o data, and station hourly accumulated precipitation data. Snowfall
snowfall rate (SFR) algorithm has been developed in a ' product validation is especially challenging due to the spatial and
project supported by the JPSS Proving Ground and Risk temporal differences between satellite retrieval and validation
Reduction (PGRR) Program. The ATMS SFR, combined with data, and errors in the validation data etc.

the operational AMSU/MHS (aboard NOAA-18/-19, and

MetOp-A/-B) SFR product, can provide up to ten snowfall (éggf?i'?it(';? Bias (mm/hr) (r'f]'\r:?h'i)
estimates at any location over global land at mid-latitudes. =R T e Stage IV
There are more estimates from overlapping orbits from Statistics of Showfall Detection Component 02/21/2013 0-80 0.05 0.83
ATMS and at higher latitudes from ATMS and AMSU/MHS. Probability of False Alarm Heidke Skill Stage IV 0 65 007 096

Detection (%) Rate (%) Score 3/5/2013 ' | -
W Rv;/g{rr:e . ) 0 63 fta“on e 0.80 0.04 0.73
? , . : 0.6 -

1. Detect snowfall using principal component analysis (PCA) R(e:gilr?]e 56 13 0.45 e >°

and logistic regression model (Kongoli et al., 2014). Input _ NS Y _ é;;:

includes temperature and water vapor sounding channels. W B _f 0.1 -

Output is the probability of snowfall. In addition, a set of gl - . IS | 005 115225535 4 45 3

Snowfall Rate (mm/hr)

filters based on NWP model temperature and water vapor The SFR product can impact users mainly in two

profiles are used for further screening. A cold snowfall communities:

extension was also developed which is a major advancement >Gl.ol.0al blendea prgcipitation products.
compared to the AMSU/MHS SFR. traditionally do not include snowfall derived

from satellites because such products were not
available operationally in the past. The ATMS
and AMSU/MHS SFR can provide the winter

2. Cloud properties are retrieved using an inversion method

with an iteration algorithm and a two-stream Radiative

Transfer Model (Yan et. al, 2008). precipitation information for these blended
AIWP precipitation products. NCEP/CPC CMORPH is §e 2
T & : : dd) 18:30 Z an(e)19:30 Z
AD, ATg,, IWP: ice water path the first such data set to include the SFR | : =
— 5 f : : : (GOES Images are courtesy of M. Folmer)
A823 A B31 De' ICE partlde EffECtIVE dlamEter prOd UCtS, Time sequence of a snowstorm in the Northern Plains. (a) and (f): the AMSU/MHS SFR product at around
_ _ c: emissivit o 17:05Z _and 19:40Z, respectively; _(b)-(e) GOES-lE_S IR images a’F 17:002,_17:302, 18:30Z, and 19:392,_
— respectively. The yellow arrow points to the most intense snow in the IR images. The IR sequence indicates
Ae ‘(ATA+ E) 1AT‘ A | Y »The SFR products can fill in the gaps where tively. The yell 1S to the most int the IR The IR dicat
= = A Jacobia N matrix that the snow max rotated counter-clockwise and moved north between the two SFR observations. This is
Agg, ATg e E' " traditional snowfall data are not available to confirmed by the second satellite pass at 19:40Z.
. error matrix : : :
A&, AT en, | weather forecasters. The products can also be SFR Application in Hydrology
+ TB: brlghtness temperature . o CMRPH/Ruir? _ ox CMRF’H/Sno{w _. o Stoge IV Radar
A& g, used to confirm radar and gauge snowfall data. o o ] ] ] & |
- - - . NASA SPoRT led a project to evaluate the o
3. Compute snow particle terminal velocity (Heymsfield and Pro) g N A o
Westbrook, 2010) and determi 1 rate b AMSU/MHS SFR at NWS Weather Forecast " WP 5 %
estbroo and determine snowftall rate : . : : A b Lo Sk | . . Al
J y Offlces and NESDIS/SAB In the paSt Wlnter Wlth 140 130W 120W 110W 100W 9OW  8OW %w GOW 50W 'O\iOW 130W 1Z0W 110W 100W OOW BOW 70w 60W  5OW 140W 1(3:: 17_9\: 110W 1;0:) g::: 8OW dmR :ow 5“)
: : : % ourtesy of P. Xie and R. Joyce
numerically solving a complex integral. very valuable feedback. The ATMS SFR will also BN o
- Heymsfield, A.J. and C.D. Westbrook, 2010, Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field . . . . NCE_P_/CF_)C CMORI_DH blended precipitation product usgs both A_TMS and AMSU/MHS SFR for its winter
Measurements. J. Atmos. Sci., 67, 2469-2482 doi: 10.1175/2010JAS3379.1 be evaluated N the neXt Wlnter N CO||ab0ratIOn prec!p!tat!on analysis. In this snowfall event, the correlation coefficient between the CMORPH 3-hour
- Kongoli, C., H. Meng, J. Dong, R. Ferraro, N. Wang, 2014, A Snowfall Detection Algorithm over Land utilizing High-frequency Passive . . . precipitation and Stage [V reaches 0.62.
Microwave Measurements — Application to ATMS. To be submitted to Journal of Geophysical Research - Atmospheres. W|th SPORT N a pr‘OJeCt SuppOr‘ted by NASA.

- Yan, B., F. Weng, and H. Meng, 2008. Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit, J. This study was partia/ly supported by NOAA grant NAO9NES4400006 (Cooperative Institute
Geophys. Res., 113, 19206, doi:10.1029/2007D009559. for Climate and Satellites -CICS) at the University of Maryland/ESSIC.
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Introduction

Green Vegetation fraction (GVF) is defined as the fraction of a pixel covered by green vegetation if it were viewed
vertically. Real-time GVF is needed in the numeric weather, climate and hydrological models. The current NOAA
operational GVF product is derived from AVHRR top of atmosphere NDVI data at 16-km resolution. In the Suomi
National Polar-orbiting Partnership (SNPP) era, there is a need to produce GVF as a NOAA-Unique Product (NUP)
from data from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor for applications in numerical weather
and seasonal climate prediction models at the National Centers for Environmental Prediction (NCEP). The retrieval
algorithm uses VIIRS red (I11), near-infrared (12) and blue (M3) bands centered at 0.640 ym, 0.865 ym and 0.490 um,
respectively, to calculate the Enhanced Vegetation Index (EVI) and derive GVF from EVI. This poster describes the
GVF algorithm that is used for GVF retrieval. To meet the data needs of NCEP and other potential users, GVF will be
produced as a daily rolling weekly composite at 4-km resolution (global scale) and 1-km resolution (regional scale).

VIIRS GVF Algorithm

The basic retrieval strategy of the GVF processing system is to produce green vegetation fraction from VIIRS
observations. Dally VIIRS surface reflectance data are composited weekly and EVI is calculated based on the
composited data. GVF is then calculated by comparison of weekly EVI to the global maximum and minimum EVI
values.

The GVF processing system generates weekly Green
Vegetation Fraction through the following steps: VIIRS surface
reflectance granule

Step 1. VIIRS swath surface reflectance data in

bands |1 (red), 12 (NIR), and M3 (blue) during a calendar

day (0000 — 2400 UTC) are mapped to the native GVF

geographic grid (0.003 degree plate carree projection) to Daily gridded

produce a gridded daily surface reflectance map. reflectance

Step 2: At the end of a 7-day period, the daily surface

reflectance maps of the 7 days are composited to W/

produce a weekly surface reflectance map using the _

MVA-SAVI compositing algorithm, which selects, at each Composited

GVF grid point (pixel), the observation with maximum reflectance

view-angle adjusted SAVI value in the 7-day period. The

/-day compositing Is conducted daily using data in the l

previous 7 days as input data, which is called daily rolling

weekly compositing. | Daily rolling
weekly EVI

Step 3: EVI is calculated from the daily rolling weekly
composited VIIRS surface reflectance data in bands I1, W/

12 and M3. — /’ WV
NIR —Red < 15 weeks of > Smoothed EVI

EVI =25
NIR +6Red —7.5Blue +1 EVI K \I{

Step 4. High frequency noise in EVI is reduced by

applying a 15-week digital smoothing filter on EVI.
Global Max &/- GVF
Step 5: GVF is calculated by comparing the Min EVI 7]
smoothed EVI against the global maximum (EVI,,) and K
minimum EVI (EVI,) values assuming a linear J/
relationship between EVI and GVF.
VIIRS GVF (
cvE - EVI—EVl, climatology \ > Aggregated GVF
EVI_—EVI,

Step 6: GVF Is aggregated to 0.009 degree (1-km)
and 0.036 degree (4-km) resolution for output maps.
Potential gaps on the output maps at high latitudes are

filled using monthly VIIRS GVF climatology. Flow chart of GVF system

Global GVF product

20130814-20130820

Regional GVF product

20130814-20130820

» Has a regional coverage once a day, covering latitude 7.5° S to 90°
N degrees, longitude 130° E eastward to 30° E

»Has a spatial horizontal resolution of 1km

20130504-20130510

» Has a global coverage once a day

» Represents the fractional area of the grid cell
covered by live (green) vegetation

» Has a spatial horizontal resolution of 4km
»Has an accuracy of 10%
» Has a measurement range from 0-100%

» Has a data latency of 1 day immediately after the 7-
day compositing period, updated daily

» Data are stored for geographic grids and data files
are in netCDF format

20130504-20130510

GVF time series
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Introduction - VIIRS RSB Radiometric Calibration RSB Spatial Characterization TEB Calibration Stability Trending
. ° ° . ° ° . L4 L4 ° ~ ~ . . .
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the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft integrating lunar 1images using the pre-launch gain coefficient. ‘
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S-NPP VIIRS SDSM Screen Transmittance Determined
from both Yaw Maneuver and Regular On-orbit Data
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Introduction: S-NPP VIIRS uses an on-board solar diffuser (SD) to carry out radiometric calibration of its reflective solar bands (RSB). The SD bidirectional reflectance distribution function (BRDF) degrades over

time. An on-board solar diffuser stability monitor (SDSM) 1s used to determine the degradation coefficient. The SDSM observes the sun through a pinhole screen and the SD at almost the same time and thus 1s able to
determine the SD BRDF degradation. As a result, accurate knowledge of the SDSM screen transmittance 1s essential to allow the SDSM to determine the degradation coefficient accurately. Yaw maneuver data has large
step size 1n the projected solar horizontal angle and therefore is not able to yield details of the transmittance. We use yaw maneuver data determined SDSM screen transmittances as anchors and use a portion of regular
on-orbit data (~ 3 months) data to determine the SDSM pinhole screen transmittance at very fine angular step sizes. The BRDF degradation coefficient versus time curve determined with the new SDSM screen

transmittance 1s much smoother than that computed with yaw maneuver data determined SDSM screen transmittance.

Regular on-orbit data Combine non-yaw tau from the segments
G [

For an SDSM detector d per unit time: - 'k = (1) Divide the regular on-orbit data (~3-month) Into | combine non—yow tou v7 phiv=0.0000 det= 8
T 2 —\‘ g . - - : y
. S i 5 segments with each covers one yaw maneuver orbit
Tspsm eff (4n (1), @y (); ) [ 2] de g, (1)R (1) S _4f! b E >CY y _ _
. (¢ (t ) ¢ (t )'t ): 1+ bl(t_t0)+ b2 (t _tO) * ] (t )Rz(t ) o - . °© : In SOIar ang|eS 105_ interpolated yaw-tau |
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I I I & Cr B - - o e e \
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a small segment (in time) of on-orbit data g ot : solar angles. 1.00| interpolated non-yaw-tats
(Change INn RSR IS negllglble over the yaw data or a small Segment) i; _145_ : (3) Tau(yaw) and Tau(non_yaw) differ by a Scale factor e
Detector 8 has the largest b, and |b,). 0 200 400 600 800 1000 1200 1400 due to drifts In solar power and the SDSM detector 0.95 - )
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(solar spectral power drift is folded in b, and b.) transmittance in detail. (4) Combine tau(non-yaw) with linear adjustments. ‘
Yaw maneuver data Mismatch at the jumps Shift in phiV to make a better match Smoother BRDF degradation coefficients
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S-NPP Solar Vector Error with the Common GEO Code:
The Correction and the Effects on the VIIRS SDR RSB Calibration
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Introduction Fixing the Error in the SDR Code Effect of Solar Vector Correction on H-factors Effect of Solar Vector Correction on F-factors

in the cosine of the angle solar and lunar vectors as found in the OBC files as input. These vectors are

of solar incidence to the in spacecraft frame” coordinates. They are then “de-rotated” to TOD frame .
SD panel normal. This coordinates using Spacecraft Diary information. Then the TOD frame vector Acknowledgements Conclusions and Further Effort

The Visible Infrared Imaging Radiometer Suite (VIIRS) uses the Sun as The SDR code calculates the solar vector (the vector from NPP to the Sun)
the primary radiometric calibrator for the Reflective Solar Bands (RSB). The and lunar vector (Moon to NPP) in TOD coordinates using the Common GEO
calibration relies upon the once-per-orbit measurements of sunlight incident upon routine topo_planet() (from the USNO “NOVAS-C” package). This inputs for Effect of Fixing Solar Vector on Yaw Data LUT H
the Solar Diffuser (SD), which happens once per orbit. Further, the status of the this package include the time, the spacecraft position (from the Spacecraft T T T I 1
reflectivity of the Solar Diffuser relies upon the measurements made with the Diary), and polar wander parameters. 0.004 - — 0.0041= OM1 OM2 OM3 OM4 OM5 OMB  OM7 T}LFSNIEEB ] -
Solar Diffuser Stability Monitor (SDSM), which also uses the Sun as the The Common GEO package includes a similar routine called local planet(). It - . . . s
calibration light source. Both calibrations, as well as several EDR data products, uses the same input parameters, but it produces output in the J2000 coordinate 2 00s B s ol 7
require an accurate solar (and/or lunar) position vector in order to calibrate their system. Replacing topo planet() with local planet() the two times it occurs in 5 | = | i}
SDR and/or EDR products. The vector is used in the transmission functions of the code fixes the problem. = 5 - .
. .. o o
the SD and SDSM screens, the calculation of the SD BRDF, and solar incident The fix was tested using routines from the NASA/NAIF “CSPICE” package. 0,000 R
angles. In early 2014, 1t was shown that the NPP solar vector was in error. The test data does not include polar wander and invoked a different method to $ °
interpolate the spacecraft attitude rotation data, which leads to the small ‘%‘ L
. - ifferen n below. —0.002 —0.002
Geocentric Inertial Reference Frames differences seen below
. . Comparison of “Fixed” Solar Vectors ~0.004 - - “oanal- -
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X ol -if N However, the rotation from ECI to the - : o ; I - | I ]
"“x/\"\-\ 3\ f"‘ 3 3 )\ spacecraft coordinates 1s in  J2000 Ttomenen! . : . 0.002 0.002 -
'\ \3\ % \ coordinates, where the axes are locked to el emenent L L : e o o o ' % E - -
Nt their positions at 12 UT 01/01/2000. ° ” Yo " : 5 s
W - L
\\\ The TOD and J2000 systems are identical Figures 3 (left) and 4 (right). The difference in the solar vector components (.in percent; é 0-000 v 4000
”;(’ ‘//_ N at that time, but drift apart due to the left) and the SDSM Sun View elevation and azimuth angles (in degrees; right) for a X 3
Nod LA : . : sample 48-scan granule. X =
Vernal / — changing orientation of the poles and the 4 _q002 =
Equinox . . R . ] . —(1.002
Ecliptic Plane  orientation of the Earth’s orbit. The error in | |
Equatonal Plane eaﬂy 2014 had grown to ab()ut 0.2 degrees. ooto™ :' T .I ':'.'-?r'c' B R 'é'ﬁp'u'n's?r]' ARIREARARARS °v°°03§' AR T '?r'c' T i |
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Magnitude of the Solar Vector Error 1 View it Ao (Deq 0 200 e -
: 0005_ R A e S ) _mmf Figures 7 (top) and 8 (bottom). The difference in H-factors from before and after Figures 9 (top) and 10 (bottom). The difference in f-factors from before and after
R ] B * E the solar vector correction as a function of time (top) and SDSM Sun View azimuth the solar vector correction as a function of time for the VISNIR bands (top) and the
025 T T T T T T — T T ] S ST T NUU TR TNTTNI | B R TUOUIIE SOUUORTTOTTT: | angle (bottom). The change in H-factors over the lifetime of the mission is dominated SWIR bands (bottom). The change in cosOp, cancels for the VISNIR bands, but for
- SDSM Azimuth SDSM Flevation - Scan of Doy Sean of Doy by the seasonal variation, which is itself dominated by the change in cosOgp,. the SWIR bands, the value of H 1s forced to be 1.
0.20— V . ) . , , . .
g M 1 Figure 1. The difference Figures S (left) and 6 (right). The difference in the solar vector comp onents (in percent; Revising the H-factors requires more than just fixing the input solar As for the H-factors, the 14n*BRDF, screen for the main VIIRS detectors
= a5l 1 in the SDSM Sun View left) and the SDSM Sun View elevation and azimuth angles (in degrees; right) for a full o . . . ) = )
g oL 1 elevation and azimuth day. The periodic larger differences are due to the different quaternion interpolation vector. The screen transmission functions are defined by data from the had to be derived again from the beginning to incorporate the effects of the
> ol 4 angles as a function of methods (the VCST method uses the “slerp” method commonly used by 3-D animation yaw-maneuvers and other on-orbit data. If the screens were created change in solar vector. The F-factor 1s proportional to H and cosOgp, and for
3 L ] time between the “wrong” software).  The offset is due to the VCST method not including polar wander. The with the original solar vector data, then they are incompatible with the the VISNIR bands (M1-M7, 11-12 and the DNB) the H-factor is proportional
1:-? ok 4 value returned by the SDR dlfferences, how.ever,.are much smaller t.han the 0.02 degree uncertainty in the spacecraft new, fixed solar vectors. to 1/cosfgp, so the effects cancel out. The offset -0.001 offset in the VISNIR
g r 1 code and the “fixed” attitude data as given in the Spacecraft Diary. . : .. B :
< : 1 values after recalculation. Therefore, VCST re-created the g, and 14,*BRDF, functions from bands is due to the renormalization of the H-factors at t = 0, which means
g QOO T ] The error grows with time, on-orbit data using the corrected solar vector throughout the process. that normalization factor 1s not removed.
g Coosl - butlthere is also an annual Revising the Mission Data Archive The results are shown above. The dominant feature is the seasonal For the SWIR bands, the assumption 1s that the SD panel does not degrade at
- i e variation in the change in H-factors, which is a result in the change in those wavelengths. As a result of that assumption, Hgy = 1. That means
‘“"”D_ — T : The solar vector error has been in the SDR code since launch. All OBCIP cosbgp, (see Figure 2). The H-factor is proportional to 1/cosbgp, which there is no canceling of the cosdgy, effect.
Days Since Launch ﬁles Contain this Solar and lunar Vector error. iS Why the SCaSOl’lal VariatiOIlS arc the OPPOSite Of What iS SCCn il’l
One solution 1s to recreate all the OBC files using a revised SDR code. There Figure 2 There 1s a slow growing offset, too, but this is small in An important additional note: The change in the F-factors seen here 1s not
are practical concerns on the amount of computing time and bandwidth comparison to the seasona.1 trend. | enough to resolve the differences between the F-factors derived by lunar and
03 necessary for the reprocessing and delivery of the product. Tl.le. H.—factors are normalized to H = 1 for all bands at launch. This SD methods (see poster by Z. Wang). It will not even directly explain the F-
D; . A For internal use, VCST has developed an algorithm that takes the present minimizes the effects of the offset in angles from before launch. factor seasonal fluctuations over the year for the SD VISNIR bands.
o 1gurce 2. € dirrerence
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error to the screen all, of the seasonal variation seen in the F-factors.

transmission values.

Change in cos(8_ 4 (Fixed — Original, Percent)

time period (day, orbit, or granule) to be read in replacing the present data.
There are other aspects of the solar and lunar vector error that are not

addressed here (such as the effect on lunar intrusion into the Space View
port), so further work is required.

value is used in both the is rotated to the J2000 frame by the known transformation between the two.
D'ﬂg_ ?}?eSMn?;gnistEdilgoghﬁé Finally, the Spacecraft Diary attitude data are again used to rotate the vector | o ) | | | | |
- . 1_ change (about 0.4% peak- back into spacecraft frame. This correction is fast and can be done “on the We thank members of Fhe VCST GEO Team, §sp601a11y Ma.sahlro Mash The solar vector error 1s .large.: enough to require car.eful consideration of its
- to-peak) is a potentially fly” if one has the Spacecraft Diary information available. leh1hama 'and Qary Lin for their valuable assistance, especially their help effe?c.ts on the RSB. cahbr.atlon.. The changes will not 'cause wholesale
larger effect than the angle Alternatively, a separate solar/lunar vector LUT could be created for each in the 1dentification of topo_planet() as the source of the error. revisions of the radiometric calibration, but it may explamn some, but not

| | “Note: Many of the calibration algorithms assume “instrument coordinates”,
200 o Since Launch 800 which are slightly rotated from “spacecraft coordinates”, but this rotation is
not presently included in the SDR code.
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How Is the VIIRS C-RDR Produced?

The VIIRS C-RDR is produced by applications developed using the Application Development Library (ADL). ADL provides the data
structures and processing framework needed to marshal the VIIRS-SCIENCE-RDR and SPACECRAFT-DIARY-RDR granule inputs. It is
generated on a continuous operational basis as files are obtained by subscription from NOAA’s Comprehensive Large Array-data
Stewardship System (CLASS). The processing includes validation of each VIIRS C-RDR file as part of the workflow.

Introduction

F”:f..
i
|
] |
iy
il

The Climate Raw Data Record (C-RDR) Project at NOAA’s National Climatic

Data Center (NCDC), under the auspices of the Climate Data Record Program
(CDRP), is producing a NOAA Level 1b (NASA level 1a) dataset for the VIIRS
instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite. A
Level 1b dataset contains “unprocessed data at full resolution, time-referenced,
and annotated with ancillary information including data quality indicators,
calibration coefficients and georeferencing parameters.” [FGDC-STD-012-2002]
This dataset is being produced operationally and is being archived and made
available for public use.

As each VIIRS Science RDR HDF5 file is obtained from CLASS, it is unpacked into VIIRS-SCIENCE-RDR and SPACECRAFT-DIARY-RDR
granule files with accompanying ASCIl metadata. The crdrPacker application then reads the granule files, organizes the information

into time series arrays, and writes them as variables to a C-RDR file. One VIIRS C-RDR file nominally contains four granules of VIIRS
Science RDR data.

science data. The contents of the CCSDS Space Packets have not been unpacked The crdrUnpacker application uses the VIIRS C-RDR file just produced

The NOAA Interface Data Processing Segment (IDPS) produces Raw Data Record The crdrPacker application also produces a set of VIIRS-SCIENCE-RDR- T orstie

(RDR), Sensor Data Record (SDR), and Environmental Data Record (EDR) datasets Verified (VRDR) granule files with associated ASCIl metadata - one for —

for the VIIRS instrument. The RDR dataset is processed to NOAA Level 1a (NASA each VIIRS-SCIENCE-RDR granule. The VRDR granules are the inputs / —

level 0), and it contains time-sequenced and indexed Consultative Committee for used by all of the IDPS VIIRS SDR algorithms. ADL_Unpacker 3] VIIRS-SCIENCE-RDR —raer 5] C-RDR Validated

Space Data Systems (CCSDS) Space Packets containing the VIIRS engineering and \ e | Of,t%a”“‘ve
= 4

at this level. to create VRDR and SPACECRAFT-DIARY-RDR granule files with

False-colodr imdage crea:_:ed ;‘ror3n7;he raw I:;a;d 5, fl, a:nd 2t (ustetjJI ::s blute;, accompanying metadata. The SPACECRAFT-DIARY-RDR granules files SPACECEQTJIZLARYT f@i&?gﬂfﬁig) R'/// SN

The SDRs contain data that has undergone calibration transformations, some of \g/:f::’c?;D;;I;rﬁf:; S‘::r‘,:)ﬁme r;f;;:;%ﬁ’:f:;;f; :8’ ;gﬂ. y and metadata should be identical to those extracted from the VIIRS oo G| o= ’
which are complex, and the engineering data that was used in the operations Science RDR HDFS5 file, and the VRDR granule files and metadata
have not been preserved within the datasets. As a result, those who wish to use different calibration values or algorithms must start from should be identical to those produced by the crdrPacker application. \
the VIIRS Science RDR, which is complex to use and requires a significant custom code base. — %

If the VRDR and Spacecraft Diary RDR files are found to match one B e e
Those who want to do diagnostic studies of the VIIRS instrument have to deal with the same issues as those who wish to produce their another, the VIIRS C-RDR file is considered to be validated and is \\
own SDRs or EDRs from scratch. The VIIRS C-RDR solves these problems by providing an easy to use source for the raw science and submitted to the archive system for long-term storage and crarUnpacker &
engineering measurements. public access. : ’

Where Can | Get VIIRS C-RDR Files?
What Does the VIIRS C-RDR Contain? VIIRS C-RDR files can be obtained from the NCDC Hierarchical Data Storage System (HDSS) Access System (HAS). The current

ST holdings start from October 19, 2013, with plans to extend them back to the beginning of VIIRS science mode operation. HAS
. . . G . Descripti . . . . .
The VIIRS C-RDR contains raw, unpacked engineering and roup Variables Saalii allows you to search for and order VIIRS C-RDR files based on time. (See the “For more information” section at the end.)
science data from VIIRS Science RDR granules, along with Per-scan counts of missing packets, bad check-
satellite position Velocity attitude and operation state data Quality_Measures 4 sums, and discarded packets, and the per-scan
’ ’ ’ RDR quality measure. i}

from associated Spacecraft Diary RDR granules, stored as time- — How Do | Read a VIIRS C-RDR File?| .

. . . Engineering Data 542 All the raw VIIRS engineering measurements import ucar.nc2.*;
series variables in Network Common Data Form 4 (netCDF-4) - with time stamps. _ o o import ucar.ma2.*;
files. The netCDF-4 format is platform-independent, binary, The raw earth view and calibration view for the 5 Ac.cessmg.the measurerT\ents within a VIIRS C'RDB ﬁle.ls
hierarchical, and self-describing. Each variable within a VIIRS mage-s/5m ° e ot oy O tme qUIEEISEraI Bt RWand Since th.e MEHERI= fo.rmat 15 ol // Open the VITRS C-RDR file.
C-RDR file is annotated with a description of the measurement on top of the HDF5 format, existing applications that &
. _ _ . - . The raw earth view and calibration view for the can read either netCDF-4 or HDFS files can be used to NetcdfFile oDataFile = NetcdfFile.open (sInputFilePath, null);
it contains, information about the source, and specifications of mage. 750m._DualGain @ 7 VIRS dual-gain moderate-resolution bands, _
valid limits and fill values - - along with gains, time stamps, and band control read VIIRS C-RDR files. As an example, IDL and MATLAB // Find the calibration view variable for the 750 m dual-gain

. e bOth Support these formats. The H deIEW applical‘ion // image group. This variable has dimensions of band, calibration
The raw earth view and calibration view for the d d bv th D b g // source, line number, and number of samples.
The image data, which were differentia”y encoded and Image_750m_SingleGain 8 9 VIIRS single-gain moderate-resolution bands, produced by the HDF Group can also be used to access //
Compressed using the RICE algorithm by the VIIRS on-board along with time stamps and band control words. and view the contents. Variable oVar = oDataFile.findVariable (“Image 750m DualGain/calibview”);
g > The raw earth view and calibration view for the . . :
processing, are decompressed, decoded, and stored as multi- | VIIRS day/night band, along with time stamps, _ . - // Get the dimensions of the variable.
band images in the VIIRS C-RDR files. Each VIIRS C-RDR file also mage_DayRen! . aggregation mode, active sample counts, and I e i el e e yelr @i e ieaten, It tes (/t [] anCount v tShape ()
' band control words. . 10 ant.ounts = ovdar.ge ape )
contains 70 elements of file-level metadata conforming to the T ————— only a few lines of code to open and read the contents y
. . . € satellite position, veloCity, ana attituae ' - 1 - Create an array of start indices. They all have the wvalue
Climate and Forecast (CF) metadata conventions, the Attribute Spacecraft_Diary 10 vectors, a selection of housekeeping telemetry of 2 Va.”abl.e from a VI_I RS C-RDR file. NetCDF-4 and/or // index value of zero.
Convention for Dataset Discovery (ACDD) and the JPSS RDR/ elements, and accompanying time stamps. HDFS5 libraries are available for Mmany Ianguages (C, C++, /)
’ [ '
SDR metadata standards Spacecraft_Diary/ADCS_Hous ekeep- 3 Full APID 8 packets, along with the packet FORTRAN; Java; and python to name a f@W) The Process int[] anStarts = new intl[anCounts.length];
| ing_Telemetry sequence counter and fill percentage metadata. . U . .
is similarly straightforward in other languages. /) Read the values from the variable.
.. . . . Spacecraft_Diary/Bus_Critical_Teleme- Full APID O packets, along with the packet //
3 |
The measurements inside a VIIRS C-RDR file are organized into iry SEEURFEE CanEr #d) Tl pereer EEe miEkEc. Array oValues — oVar.read(anStarts, anCounts):
groups of measurements that share a common type or theme. Spacecraft_Diary/Ephemeris_ Attitude_ 3 Full APID 11 packets, along with the packet For More Information
Telemetry sequence counter and fill percentage metadata. If you would like to know more about the VIIRS C-RDR, you can go to its NCDC product page at:

http://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasets/c-rdr-viirs
This page provides links to the data access portal, documentation, and a demonstration Java application that can be used to investigate a VIIRS C-RDR file once you download it. You can also go directly to the HAS data access portal at:
http://has.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=3658 01
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Validation of VIIRS Vegetation Index EDR Using In Situ Radiation Sensor Data

Jiao Wang?!, Tomoaki Miura!, Anna Kato?!, and Marco Vargas?
1. University of Hawail at Manoa
2. NOAA/ NESDIS / STAR

H M

Satellite vegetation index time series datasets have been used to monitor and characterize seasonal vegetation 1. NDVI and EVI / EVI2

dynamics in regional to global scales. Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data VIIRS Flux tower[1]

Records (EDR) include two vegetation index (V1) products: Top of the Atmosphere (TOA) Normalized Difference Rnir—Rred _Rnir—Ryis

Vegetation Index (NDVI) and the Top of the Canopy (TOC) Enhanced Vegetation Index (EVI). Validation of the NDVIZW

VI EDR is critical to assure product accuracy and consistency throughout the mission. Ground observation

networks are emerging, providing well-calibrated time series measurements at high temporal resolution and data EVI=2.0*——mirRrea  J py\/|p=p gx_ Fnir—Rred EVI2=2 5x— fnirRvis
gy s ) ) : : : Ryir+6*Ryoq—7.5%Rpiyet+1 Rpir+2.4%Rypq+1 Ry ir+2.4%Ryis+1

availability, as well as covering a wide range of vegetation types and climates. FLUXNET includes over 500 towers

worldwide. Some towers are mounted with sensors measuring radiation which can be processed into VIs. 2. VIIRS Data pre-processing (Quality Flags: ice, snow, shadow and cloud)

3. Data post-processing (95% confidence interval for noise removal and moving average for filling missing data)
4. Phenological Metrcis-SOS and EOS

Kendall grassland
NDVI-NDVIpin

NDVITatiO :m 1 ——05 ¢ NDVI ® NDViratio
The objective of this study was to validate VIIRS Vis (i.e. TOA NDVI and TOC EVI) by evaluating how well VIIRS The threshold of 50% of NDVI ratio was used in g0
VIs capture the seasonal dynamics of vegetated surfaces in comparison with those depicted by in situ VI time this study. The increase in greenness is believed g
series measurements from flux towers: | | to be the most rapid at this threshold[2]. 5os
1. Visually compare the seasonal changes of VIIRS Vs with those from flux tower VIs. depict the seasonal 3 .,
dynamics
2. Examine correlations between VIIRS and flux tower Vis
3. Compare phenological metrics (i.e. SOS: Start of Season and EOS: End of Season) derived from VIIRS _ _
and flux tower Vls Figure 2. SOS and EOS extraction
Jdlc JITTPatii Y UC Flux towers: 10 Vegetation cover types: 5 Data period: daily from April to December 2012
1. Spectral bandpass: 2. Geometry:
Flux tower broad bandwidth vs. VIIRS narrow bandwidth Flux tower hemispherical vs. VIIRS directional
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3. Footprint size: 4. Land surface:

Flux tower---varies at each site with radius from 23 m to 293 m, homogeneous vs. heterogeneous | v
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Figure 3. Locations of study sites '(_Photo credits: Ameriflux website).
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Figure 1. Differences in Spectral bandpass, geometry, footprint and land surface.

T

About 1/3 of VIIRS data were left after running with quality flags and noise removal.

2. Both flux towers and VIIRS present similar seasonal trends for each site and vegetation cover. At croplands and grasslands, VIs showed a unimodal pattern. At homogeneous evergreen needle forest, VIs were relatively constant. At
woody savanna and open shrublands, VIs showed multimodel patterns (Figure 4).

3. Scatterplots between VIIRS Vs and flux tower derived VIs showed that these two datasets scattered near the 1:1 line at most sites, except for US-NR1 which is at evergreen needle forest area (Figure 5).

4. Out of 10 sites, 4 were used to extract SOS and EOS, including 3 at croplands and 1 at grasslands. At these 4 sites, both VIIRS and flux tower captured the SOS and EOS during the temporal range from April to December. The

differences between SOS were froml to 10 days, and between EOS were from 0 to 5 days (Table 1 and Figure 6). Sites with SOS earlier than April or no distinct SOS or multi-model growing season were excluded for this study.
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Table 1. SOS and EOS dates for NDVI from VIIRS and flux towers.

SOS (DQOY) TOCNDVI TOANDVI FIuxNDVI EOS (DOY) TOCNDVI TOANDVI FIuxNDVI
US-WKkg 196 205 195 US-WKkg 304 304 304
US-Nel 151 151 149 US-Nel 244 242 246
US-Ne2 153 152 148 US-Ne2 246 244 241
US-Ne3 160 161 168 US-Ne3 254 255 254
Minimum Difference 1 2 Minimum Difference 0 0 Massman; US-Nel,
Maximum Difference 8 10 Maximum Difference 5 US-Ne2 and US-Ne3:

Mean Difference 0 Mean Difference Andrew Suyker; US-
Standard Deviations 560 Standard Deviations _ Figure 6. 95% confidence interval for SOS and EOS extracted from NDVI. NR1: Peter Blanken

and Russ Monson;
US-SRM, US-Whs;
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1. FLUXNET measurements can be used to validate VIIRS ViIs. [1] Huemmrich, K.F., Black, T.A., Jarvis, P.G., McCaughey, J.H. and Hall, F.G. 1999. High temporal resolution NDV! This work was

2. Daily Vls from flux towers and VIIRS were comparable and both captured similar seasonal dynamics of phenology from micrometeorological radiation sensors. Journal of Geophysical Research 104:27935-27944. supported by a NOAA
vegetation. [2] White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation STAR JPSS contract

3. Phenological metrics (i.e. SOS and EOS) extracted from flux towers and VIIRS were within 10-day responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217-234. and NASA NPP grant
differences. NNX11AH25G.

4. The methodology presented can serve as a basis for validating medium resolution satellite products.




SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance

Jungiang Sun'-#* and Menghua Wang!
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Introduction SDSM Calibration SD Calibration Lunar Calibration

» VIIRS is one of five instruments onboard the Suomi H (t) = Toun * dCsp F(t) = - RVSB,SD 'IRSRB (%)'LSD (1)-d4 F(B,M,t) = g(B)-Ny
National Polar-Orbiting Partnership (S-NPP) satellite that - . . . - _ 12 | S L, (B,D,S,n)d(M,M,)
launched from Vandenberg Air Force Base, Calif., on Oct. fsD COS(QSD) BRFsosu - dCsuy (CO +Cp-dn+C, -dn ) j RSRg (4)-d4 D%:,n P "
28, 2011. » BRF¢q,: SD prelaunch BRF for SDSM view L) =1 (A1) Tor -cOS(Boc )- BREanr -h(A)/ 02 2
» The VIIRS is a whiskbroom radiometer that provides » 7. VF of the sun view screen SD( ) sun{4) Tsp ( SD) rra - N(4) /G I-pI(B’ D,S,n) = ;}Cj(B’ D, M)dny,n (B, D, S, n)
J:

+56.28 degree scans of the Earth view (EV) covering a 12 > 7g,: VE of the SD screen
km (nadir) along track by 3060 km along scan swath each > 0. AOI on SD surface
scan using a rotating telescope assembly and a double- S0
sided half-angle mirror (HAM).

» VIIRS has 22 spectral bands, among which 14 reflective
solar bands (RSB) ranging from 0.41 to 2.25 um, with
spatial resolution of 375 m (bands 11-13) and 750 m
(bands M1-M11).

» RSB are calibrated on-orbit using a Solar Diffuser (SD)
with a Solar Diffuser Stability Monitor (SDSM) and near- h(t)=H(t)/H(t,)
monthly lunar observations.

» BRF; SD prelaunch BRF for RTA view
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Abstract

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments
onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) spacecraft, which
was successfully launched on October 28, 2011.

The calib

single ev

To support the post launch calibration/validation of VIIRS, a comprehensive
knowledgebase has been developed at NOAA and made available online. This poster
Introduces the key components of the knowledgebase and its use for data quality
assurance, anomaly investigation, and EDR applications.

ration knowledgebase has a number of features, including daily orbital

Calibration Knowledge Base Components

VIIRS Event Log Database

ent upset outage in instrument anomaly and diagnosis.

Figure 1 shows the distribution of the SBC lockup events from the database and its

correlation with the SAA. The event log database is powered by MySql and was initially
designed by a summer intern from the Computer Science Department, University of
Maryland.

While the current database only includes instrument related events, the ground
processing related events such as MX updates will be added in the near future.

The Event log database contains all events that occurred to Suomi NPP VIIRS since
launch. This includes major events such as sync loss, single event upset outage, as well
as planned events such as lunar maneuvers, blackbody warm-up cool-down (WUCD),
star tracker realignment, etc. The event log database is very useful for instrument
diagnoses, time series trending and analysis, and future reanalysis and recalibration. We
have used the Event log database to collect lunar maneuver data which has been used
for the lunar band ratio analysis. It is also used to correlate the time and location of the

prediction, simultaneous nadir overpass (SNO) and SNO extension to low latitude (SNOX)
predictions, VIIRS event log database, image gallery, radiometric time series at validation
sites, instrument information, and publication references.
for the VIIRS calibration/validation. For example, the event log database contains the
monthly lunar calibration events through maneuver from 2012 to current. The database
provides the lunar data date and time, location, spectral bands, and event type for users
to search the lunar data from the database. This provides important support for lunar data
analysis which allows us to independently verify the stability of the VIIRS calibration.

It has been used extensively

The VIIRS calibration knowledgebase has become an important component for supporting
the VIIRS SDR data calibration/validation, monitoring VIIRS data quality and instrument
performance. It provides critical support for producing the products of sea surface
temperature, ocean color, cloud imagery, vegetation, aerosols, and others, which will
Improve product quality to meet the growing needs for high quality satellite data.

The URL for the calibration Knowledge Base is https://cs.star.nesdis.noaa.gov/NCC/VIIRS

Figure 1. SBC lockups and other events from the event log database
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Figure 2. Sample images from the image gallery

The VIIRS image gallery is one of the early features developed for the calibration knowledge base
shortly after Suomi NPP launch. The sample images has a collection of observations of major events
such as the Hurricane Sandy, Super Typhoon, solar eclipse, and first light images. The DNB sample
Imagery shows that the quality has improved significantly since launch, with the calibration
Improvements by updating the look up tables, and with the stray-ligth correction implementation.
Figure 2 shows that the Super Typhoon was over the Phillipines on November 8, 2013.

Validation Site Radiometric Time Series

Although VIIRS has onboard calibration for all channels, it is important that the calibrated SDR are

Independently validated. A major effort towards this end is the development of the world-wide validation

site radiometric time series. The goal is to construct the time series for the entire period of the mission
over about 30 vicarious sites to monitor the stability of the VIIRS calibration (Figure 3). Many of these
sites are endorsed by the Committee on Earth Observation Satellites (CEOS) Working Group on
Calibration/Validation (WGCV). Legacy sites such as MOBY are also included. The time series has
already been used for diagnoses for the recent H and F factor trend changes. In addition to the ground
based sites, the time series also includes the Deep Convective Cloud time series, and the Lunar Band
Ratio Time Series.

If any calibration trend is found in the onboard calibration, the vicarious time series will be used to
validate the trend. Conversely, if the time series over the vicarious sites show trends, the information
will be used for the onboard calibration performance analysis.
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Figure 3. Over thirty validation sites included worldwide

Daily Orbital Track & SNO Predictions

The Suomi NPP orbital ground track has been made available since launch. The
prediction is based on the latest SGP4 model and TLEs. This information is used to
locate specific data on a daily basis by image analysts (Figure 5).
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Figure 6. SNOX in the low latitudes.

Red line: AQUA Blue line: NPP

Similarly, the SNO prediction information has been used for intersatellite comparisons
with MODIS and other instruments by VIIRS SDR as well as other SDR teams.

The Suomi NPP calibration knowledge base provides important information for both
VIIRS SDR and EDR users. It has become an indispensible part of the cal/val tool for
the postlaunch verification and validation of VIIRS SDR. The event log database keeps
track of what happened to the VIIRS in its history of operations, while the validation
time series tells us how VIIRS is performing over time. The image quality can be
analyzed using the sample data from the image gallery and through comparisons with
other instruments at the SNOs.

For additional information about the Calibration Knoledge Base, such as calibration
parameters, spectral response functions, publications, documentation, data format,
software, as well as links to VIIRS applications, please visit the website at
https://cs.star.nesdis.noaa.gov/NCC/VIIRS.
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