Characterization of SNPP OMPS Cross-Track Uncertainty

C. Pan, F. Weng, T. Beck, S. Ding and A. Tolea

NOAA/NESDIS/STAR

August 26, 2015
• Observed OMPS NM Cross-track Errors
• Methodology for Reducing the Cross-track Dependent Errors
• Characterization of OMPS Cross-track Error Using TOMRAD
• Impacts of Improved OMPS SDR on EDR
• Path Forward for SNPP Further Improvement
Cross-Track Dependence in SO2 Index
Derived from OMPS NM SDR

SO2 Index Comparison before Wavelength Update
Previous wavelength LUT cause errors in cross-track position.

- Irradiance error is percent difference between observed solar flux and modeled synthetic solar flux.

\[
\text{Error} = \left(1 - \frac{\text{flux}_{\text{observed}}}{\text{flux}_{\text{synthetic}}}\right) \times 100
\]

- Figures show the errors for 3 different cross-track positions relative to the nadir position.

- Solar flux and wavelength data were read from Nov. 06, 2013 SDRs to demonstrate cross-track position error.
- The OMPS NM synthetic solar flux is computed by convolving the lab band-passes with the high-resolution solar reference spectrum.
• The cross-track errors are primarily associated with bandpass shape/bandwidth changes.

• We reduced/minimized the errors by aliased wavelength shifts.

• The new NM (TC) wavelength LUT and day-one solar LUT minimizes radiance/irradiance cross-track direction errors.

• Additionally, the new radiometric calibration LUTs improved radiance consistency between NM & NP in 300-310 nm.
LUTs Updated for NM

- NM GND-PI and LUT updates as indicated below.
 The new NM (TC) wavelength minimizes radiance/irradiance cross-track direction errors. The new radiance coefficients for NM account for ground to orbit thermal loading changes, as well as radiance consistency between NM and NP in 300-310 nm. The new day one solar LUT accounts for new radiance cal coefficients.

- **WAS:** OMPS-TC-WAVELENGTH-GND-PI
 npp_20141005000000Z_20140905000000Z_ee00000000000000Z_PS-1-O-CCR-14-2052-NOAA-JPSS-002-PE-ID000-V001-001_noaa_cv0_all-all.bin

 IS: OMPS-TC-WAVELENGTH-GND-PI
 npp_20150718000000Z_20150701000000Z_ee00000000000000Z_PS-1-O-CCR-15-2547-NOAA-JPSS-003-PE-ID000-V001-001_noaa_cv0_all-all.bin

- **WAS:** OMPS-TC-OSOL-LUT
 npp_20141005000000Z_20140905000000Z_ee00000000000000Z_PS-1-O-CCR-14-2052-JPSS-NOAA-003-PE-noaa_cv0_all-all.bin

 IS: OMPS-TC-OSOL-LUT
 npp_20150718000000Z_20150701000000Z_ee00000000000000Z_PS-1-O-474-CCR-15-2547-NOAA-JPSS-004-PE_noaa_all_all-all.bin

- **WAS:** OMPS-TC-CALCONST-LUT
 npp_20020101010000Z_20020101010000Z_ee00000000000000Z_PS-1-D-NPP-1-PE_devl_dev_all-all.bin

 IS: OMPS-TC-CALCONST-LUT
 npp_20150718010000Z_20150701010000Z_ee00000000000000Z_PS-1-O-474-CCR-15-2547-NOAA-JPSS-002-PE_noaa_all_all-all.bin
LUTs Updated for NP

- NP GND-PI and LUT updates as indicated below.
The new radiance coefficients for NP account for ground to orbit thermal loading changes, as well as radiance consistency between NM and NP in 300-310 nm. The new day one solar LUT accounts for new radiance cal coefficients. The new NP wavelength is computed in accordance with the new day one solar LUT.

- WAS: OMPS-NP-WAVELENGTH-GND-PI
 npp_20141005000000Z_20140905000000Z_e0000000000000000Z_PS-1-O-CCR-14-2053-NOAA-JPSS-002-PE-ID000-V001-001_noaa_cv0_all_all.bin
 IS: OMPS-NP-WAVELENGTH-GND-PI
 npp_20150718000000Z_20150718000000Z_e0000000000000000Z_PS-1-O-CCR-15-2548-NOAA-JPSS-003-PE-ID000-V001-001_noaa_cv0_all_all.bin

- WAS: OMPS-NP-OSOL-LUT
 npp_20120412114100Z_20120702120000Z_e0000000000000000Z_PS-1-O-474-CCR-12-0458-JPSS-DPA-NGAS-002-PE_noaa_all_all_all.bin
 IS: OMPS-NP-OSOL-LUT
 npp_20150718000000Z_20150723000000Z_e0000000000000000Z_PS-1-O-474-CCR-15-2548-NOAA-JPSS-003-PE_noaa_all_all_all.bin

- WAS: OMPS-NP-CALCONST-LUT
 npp_20020101010000Z_20020101010000Z_e0000000000000000Z_PS-1-D-NPP-1-PE_devI_dev_all_all.bin
 IS: OMPS-NP-CALCONST-LUT
 npp_20150718010000Z_20150723010000Z_e0000000000000000Z_PS-1-O-474-CCR-15-2548-NOAA-JPSS-002-PE_noaa_all_all_all.bin
Wavelength LUTs are modified for both NM and NP.
• Develop the “truth” simulated from the forward radiative transfer model at OMPS EV location (Macropixel)
 • The Microwave Limb Sounder (MLS) is well calibrated
 • The temperature profile from MLS was assumed to be accurate
 • The MLS ozone profile was assumed to be accurate
 • The OMPS sensor were co-located, within 50 km, to measurements from the MLS sensor

• Radiative transfer model must include comprehensive scattering and absorption processes at UV regions
 • Roma scattering would be significant and

• Accurate understanding of atmospheric and surface status at OMPS EV location.

• The difference between observations and simulations is used as an estimate of on-board calibration accuracy
OMPS EV Radiative Transfer Simulations

- **TOMRAD-2.24**: TOMS (Total Ozone Mapping Spectrometer) Radiative Transfer Model
 - Rayleigh scattering atmosphere with ozone and other gaseous absorption
 - Spherical correction for the incident light
 - Molecular anisotropy and Raman scattering

- **Inputs to TOMRAD**
 - Wavelength, solar and satellite viewing geometry, surface albedo, temperature and ozone profile
 - Climatology temperature profile
 - Ozone profile from Aura Microwave Limb Sounder (MLS)
 - Collocated OMPS/MLS data generated at STAR using NASA algorithm
 - a) reflectivity < 0.10 to eliminate cloud effects
 - b) Latitude: -20 ~ 20 degrees

- **Outputs from TOMRAD**
 - Normalized radiance \((NR = \text{reflected radiance/solar flux})\) or N-Value \((N = -100 \times \log_{10} NR)\)
Co-located OMPS/MLS Temperature and Ozone Profiles
The left plot shows the calculated OMPS normalized using MLS ozone and temperature profiles colocated with OMPS for cross-track position 19. The middle plot shows percent difference between observed and calculated data. In the right plot, the relative percent difference between position 19 and 18.
The bias in cross-track direction is generally less than 2% except at shorter wavelengths where simulations may become less accurate due to complex scattering process. The bias is also larger in side pixel locations.
The biases at far wing positions (1-4 and 33-36) are out of specifications at wavelengths less than 320 nm. The causes can be related to complex RT processes, etc.
Observation minus Simulation near Center

The biases near center all meet specifications at all wavelengths.
The bias characteristics simulated from NOAA (left red curves) and NASA (left blue curves) are consistent in cross-track direction and wavelength domain.
Error vs. Scan Position

\(\lambda = 303 \) (nm)

\(\lambda = 316 \) (nm)

\(\lambda = 328 \) (nm)

\(\lambda = 341 \) (nm)

\(\lambda = 353 \) (nm)

\(\lambda = 366 \) (nm)
Cross-Track Difference for Earth View N-Value or Radiance

Wavelength-dependent Cross-Track Normalized Radiance Error Meets Requirement

- Normalized radiance error is percent difference between Observed and Calculated N-values
- Figures show the errors for 6 different cross-track (CT) positions
- Errors were minimized < 2% for most of the channels.
- Exception is CT#36 on wavelength > 360 nm. Soft calibration are being implemented to eliminate this residual error.

Wavelength-dependent normalized radiance errors are within 2% (except for FOV 36) which meets the performance requirement.
Previous wavelength LUT cause errors in cross-track position.

Updated wavelength LUT eliminates errors in cross-track position.

Solar irradiance error in cross-track direction is eliminated.
Reduced Cross-Track Dependence in OMPS NM Derived EDR (SO2)

SO2 Index Comparison before and after Wavelength Update

- SO2 index cross-track variation was minimized from -13 ~ 13 to 6~7/8.

- Residual error are caused by EDR V7 TOZ algorithm, that inappropriately exaggerates the impact of wavelength variation.

- The residual error can be corrected by EDR V8 algorithm with an appropriate n-value adjustment.

- Data comes from OMPS NM EDR products INCTO SO2 2015/07/01
Radiometric Calibration Coefficients is Improved

- Radiance/irradiance coefficients were modified to account for ground to orbit wavelength shifts, as well as normalized radiance consistency between NP and NM.
- Updated day-one solar LUT accounts for updated irradiance cal coefficients.

Updated radiance coefficient LUTs improve normalized radiance consistency up to ~10% between NP and NM in 300-310 nm.
Radiance consistency is improved by 2-10%.

The improvement was validated via SDR products from both NP and NM.
EV Radiance from NP and NM are collocated spatially and spectrally.
1174 granules (globe coverage) were used for validation.
Radiance is computed via old LUTs (V0), updated wavelength & day one solar (V1) and updated wavelength, day one solar, radiance/irradiance LUTs (V2).

NM & NP consistency in SDR radiance is improved by ~2-10%.
Summary

• **OMPS EV SDRs meet SDR performance requirement as well as EDR products requirement**
 - The cross-track direction normalized radiance accuracy meets spec and the error is less than 2.0% with updated wavelength and day one solar LUTs
 - The NM and NP consistency in 300-310 nm has been improved by 2-10% with updated radiance calibration coefficients
 - Sensor orbital performance is stable and meet expectation

• **OMPS EV SDRs have following features**
 - On-orbit sensor performance is characterized
 - SDR product uncertainties are defined for representative conditions
 - Calibration parameters are adjusted according to EDR requirement
 - High quality documentation is completed
 - SDR data is ready for applications and scientific publication

• **Both OMPS NM and NP EV SDRs are declared as validated-maturity products**
NASA OMPS J1 team
(as of now)

Haken, L-K. Huang, Janz, Jaross, Kelly, Kowalewski, Linda, Mundakkara, Su, Warner

OMPS Integration
Dec. 22, 2014

Courtesy of BATC
OMPS integration is complete

- OMPS FM2 Delivery June 2014
- OMPS Integration on JPSS-1 Jan. 2015
- HRD Stress Test June 2015
- 1553 Stress Test July 2015
- JPSS Compatibility Test – 1a July 2015
- JCT – 2a Oct. 2015
- JPSS1 Environmental Testing - start Nov. 2015
- JCT – 3 Mar 2016
- JCT – 4 ~July 2016

1553 Stress Test
- Confirmed 409.6 kbps operations

JCT1a
- Verified nominal on-orbit commanding

JCT2a
- Will verify nominal EV operations and data collection

JCT3
- Will verify Cal. and Diag. operations

JCT4
- ???

*a portions: Flight
*b portions: Ground

Not clear when b occurs
Performance summary

<table>
<thead>
<tr>
<th>Reqt ID</th>
<th>Requirement</th>
<th>Value</th>
<th>Performance</th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_PRD-11307</td>
<td>Albedo Calibration (λ-independent)</td>
<td>≤ 2% rms</td>
<td>NM: 1.39%</td>
<td>0.61% (31%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NP: 1.59%</td>
<td>0.41% (21%)</td>
</tr>
<tr>
<td>O_PRD-11308</td>
<td>Relative accuracy (λ-dependent)</td>
<td>≤ 0.5% rms</td>
<td>NM: 0.44%</td>
<td>0.06% (12%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NP: 0.41%</td>
<td>0.09% (18%)</td>
</tr>
<tr>
<td>O_PRD-11309</td>
<td>Prediction of absolute calibration change in 7 year period</td>
<td><3%</td>
<td>≤ 2.3%/7 years (0.69% per measurement)</td>
<td>≥ 0.7% (23%)</td>
</tr>
<tr>
<td>O_PRD-11373</td>
<td>Short-term Radiometric Stability</td>
<td>≤ 1%</td>
<td>NM: 0.03%</td>
<td>0.97% (97%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NP: 0.03%</td>
<td>0.97% (97%)</td>
</tr>
<tr>
<td>O_PRD-11429</td>
<td>Response Uniformity</td>
<td>≤ 1%</td>
<td>< 0.7%</td>
<td>≥ 0.3% (≥ 30%)</td>
</tr>
<tr>
<td>O_PRD-11349</td>
<td>Signal-to-Noise Ratio (NM)</td>
<td>≥ 1000</td>
<td>≥ 1519</td>
<td>≥ 519 (≥ 51.9%)</td>
</tr>
<tr>
<td>O_PRD-11350</td>
<td>Signal-to-Noise Ratio (NP)</td>
<td>≥ 35 (252 nm)</td>
<td>48</td>
<td>13 (37.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 100 (273 nm)</td>
<td>229</td>
<td>129 (129%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 200 (283 nm)</td>
<td>403</td>
<td>203 (102%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 260 (288 nm)</td>
<td>486</td>
<td>226 (86.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 400 (292-306 nm)</td>
<td>≥ 722</td>
<td>≥ 322 (≥ 80.5%)</td>
</tr>
<tr>
<td>O_PRD-11437</td>
<td>NM: Stray Light Rejection</td>
<td>≤ 2%</td>
<td>≤ 1.56%</td>
<td>≥ 0.44% (≥ 22%)</td>
</tr>
<tr>
<td>O_PRD-11438</td>
<td>NP: Stray Light Rejection</td>
<td>≤ 2%</td>
<td>≤ 1.83%</td>
<td>≥ 0.17% (≥ 8.5%)</td>
</tr>
</tbody>
</table>

Selected parameters

26 Aug, 2015

JPSS Science Team Meeting

Courtesy of BATC
Trending Results

No significant trends observed in:

- Irradiance sensitivity (see plots)
- Readout noise
- Dark current
- Gain
- Detector full-well
- LED output

OOTT Results

Last report was just after integration

Nadir Profiler

Total Column

Test Number

Test Number

Courtesy of BATC
OMPS goals for JCT2

• Conduct nominal EV measurements
 - Construct and execute CSMs for orbital operations (a)
 - Collect and store 2400 NM Hi-res, 400 NP Med-res images per orbit (a)
 - Collect and store open-door dark currents (a)
 - Confirm that IDPS creates Hi-res, Med-res RDRs (b)
 - Confirm that SDR aggregates NM to Med-res and creates product (b)
 - Confirm creation of NP SDR (b)

• Exercise table loads
 - MOST to halt CSMs and load updates
 - SOC generation of paired sample tables and gain tables (a,b)
 - GND-PI sample table switch-over to NM Low-res output (b)
 - Load and execute NM Med-res flight tables (a)
 - Load and execute NM Low-res flight tables (a)
 - Confirm SDR output is unchanged with flight table load (b)

a portions: Flight
b portions: Ground
Not clear when b occurs
OMPS goals for JCT3

• Conduct nominal Cal measurements
 - Construct and execute CSMs for operations of all cal. orbits (a)
 - Collect and store 2400 NM Hi-res, 400 NP Med-res images per orbit (a)
 - Collect and store open, closed-door darks, 1-orb and 3-orb solar cals, LEDs (a)
 - Confirm that IDPS creates nominal and diag. Cal. RDRs (b)
 - Confirm Cal. data processing in GRAVITE (b)

• Execute extended-orbit EV
 - Load and execute new CBMs to support longer EV orbital operations (a)
 - Confirm SDR processes additional granules (b)

• Execute diagnostic activities
 - Full-frame
 - PRNU ice radiance
 - Full orbit (EV360)
Proxy data processing status

• **OMPS 43 and MDR 40 data**
 - Based on BBMEB and NPP OMPS data from Feb. and April, 2014
 - NM Hi-res and Low-res; NP Med-res and Low-res images
 - BBMEB data are entirely J1 OMPS, but have no signals
 - NASA DPES synthesized RDRs by combining BBMEB and NPP flight data and fusing J1 OMPS headers to NPP flight images

• **OMPS SIPS processed BBMEB data**
 - Successfully processed into 43 Level 1A orbits
 - 12 images failed to decompress; corrupted at BATC
 - Re-transferred data processed correctly

• **OMPS SIPS still working on RDR processing**
 - Creating production rules for automated processing
 - RDRs still contain corrupt images
J1 OMPS SCDBs

Macropixel information removed from all DBs

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Final delivery date</th>
<th>Changes from NPP OMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>2/5/2014</td>
<td>Extended to all pixels</td>
</tr>
<tr>
<td>SRG</td>
<td>5/5/2014</td>
<td>Extended to all pixels</td>
</tr>
<tr>
<td>BPS</td>
<td>5/5/2014</td>
<td>NASA will remove 295 nm and refit; add dichroic corr.</td>
</tr>
<tr>
<td>STB</td>
<td>5/16/2014</td>
<td>NASA replacing all EV tables; Cal. tables unchanged</td>
</tr>
<tr>
<td>RAD</td>
<td>9/23/2014</td>
<td>NASA smoothing albedo cal. in dichroic region</td>
</tr>
<tr>
<td>SLT stitched</td>
<td>12/18/2013</td>
<td>DB unchanged; 417 nm added</td>
</tr>
<tr>
<td>SLT recon.</td>
<td>12/18/2013</td>
<td>DB unchanged; 417 nm added</td>
</tr>
<tr>
<td>SLT tuned</td>
<td>12/18/2013</td>
<td>DB unchanged; 417 nm added</td>
</tr>
<tr>
<td>IRD</td>
<td>4/30/2014</td>
<td>DB unchanged</td>
</tr>
<tr>
<td>GON</td>
<td>4/23/2014</td>
<td>Fine structure added; angle grid changed to 1° from 0.5°</td>
</tr>
<tr>
<td>LED</td>
<td>5/16/2014</td>
<td>DB unchanged</td>
</tr>
<tr>
<td>DCT</td>
<td>-</td>
<td>discontinued</td>
</tr>
<tr>
<td>ZIO</td>
<td>-</td>
<td>discontinued</td>
</tr>
</tbody>
</table>

All SCDBs and associated documentation available from the Data Management team (DMO) under the NASA JPSS Flight Project gsfc-jpss-dmo@mail.nasa.gov

26 Aug, 2015

JPSS Science Team Meeting
• Albedo Cal. (RAD/IRD) doesn’t look like diffuser BRDF
• Anomaly may be related to H2O contamination problem during pre-launch cal.
• Similar “straightening” on NPP OMPS shows improved MLS comparisons
• Approach:
 - Divide out PRNU from RAD
 - Low-order poly fit to center 15° albedo cal.
 - Derive albedo correction and apply to full NM swath in RAD coefficients
 - Reintroduce PRNU

NPP OMPS correction required some post-launch iterations; J1 OMPS may as well
BATC uses Legendre polynomials to extend the 5x5 (spectral x spatial) observed bandpass functions to all pixels.

Fit residuals indicate an anomaly in 295 nm observations.

Root cause appears to be an unusually wide 295 nm bandpass (no such anomaly in NPP OMPS).

The BATC approach of stitching multiple measurements together removes the effect of spectral gradients (e.g. dichroic cutoff) on the BPS functions.

NASA is reintroducing the spectral response into the NM and NP BPS after the new NP surface fit.
OOR ghost correction simpler with 417 nm

Broadband VIS source (410 nm cutoff filter)

Witness Filter spectrum shifted 122 nm

Measurements at 417 nm provide a more direct measure of longer line signals

NPP OMPS estimates based on 370, 380 nm
Limited Life Items and Consumables

<table>
<thead>
<tr>
<th>Program Phase</th>
<th>Motor Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadir ATP</td>
<td>1,145,000</td>
</tr>
<tr>
<td>ISS I&T + Nadir Re-calibration</td>
<td>1,074,000</td>
</tr>
<tr>
<td>Observatory I&T (estimate)</td>
<td>317,000</td>
</tr>
<tr>
<td>Total Ground Usage (actual + estimate)</td>
<td>2,536,000</td>
</tr>
<tr>
<td>Margin vs. Ground Allocation Budget</td>
<td>601,000 (19%)</td>
</tr>
</tbody>
</table>

Courtesy of BATC
IM2/OOTT Overview

<table>
<thead>
<tr>
<th>Run</th>
<th>Date</th>
<th>ΔT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 August 2012</td>
<td>–</td>
<td>Pre “cleaning” test</td>
</tr>
<tr>
<td>2</td>
<td>6 March 2013</td>
<td>7 months</td>
<td>Post cleaning test</td>
</tr>
<tr>
<td>3</td>
<td>28 March 2013</td>
<td>3 weeks</td>
<td>EGSE measurement for calibration transfer</td>
</tr>
<tr>
<td>4</td>
<td>11 April 2013</td>
<td>2 weeks</td>
<td>Redundant MEB measurement for calibration transfer</td>
</tr>
<tr>
<td>5</td>
<td>15 April 2013</td>
<td>4 days</td>
<td>Primary MEB measurement for calibration transfer</td>
</tr>
<tr>
<td>6</td>
<td>24 April 2013</td>
<td>1 week</td>
<td>-20°C CCD temperature, OOTT #1</td>
</tr>
<tr>
<td>7</td>
<td>1 July 2013</td>
<td>10 weeks</td>
<td>OOTT #2 with LCC serial number 001</td>
</tr>
<tr>
<td>8</td>
<td>2 July 2013</td>
<td>–</td>
<td>OOTT #3 with LCC serial number 002</td>
</tr>
<tr>
<td>9</td>
<td>1 October 2013</td>
<td>3 months</td>
<td>Post TVAC test, OOTT #4</td>
</tr>
<tr>
<td>10</td>
<td>25 November 2013</td>
<td>8 weeks</td>
<td>Post EMI test, OOTT #5</td>
</tr>
<tr>
<td>11</td>
<td>17 December 2013</td>
<td>3 weeks</td>
<td>Abbreviated IM2, pre-G&I testing</td>
</tr>
<tr>
<td>12</td>
<td>18 February, 2014</td>
<td>4 weeks</td>
<td>Full IM2, post-G&I testing</td>
</tr>
<tr>
<td>13</td>
<td>8 April, 2014</td>
<td>7 weeks</td>
<td>Post Nadir level testing, OOTT #6</td>
</tr>
<tr>
<td>14</td>
<td>26 September, 2014</td>
<td>24 weeks</td>
<td>Post storage test, OOTT #7</td>
</tr>
<tr>
<td>15</td>
<td>31 January, 2015</td>
<td>18 weeks</td>
<td>Post installation onto spacecraft, OOTT #8</td>
</tr>
</tbody>
</table>

Courtesy of BATC
Ozone Mapping and Profiler Suite (OMPS)

Overview

Dr. Sarah Lipsy
Ball Aerospace and Technologies Corp.
OMPS Instrument Scientist &
OMPS Deputy Program Manager
August 26, 2015
Ozone Mapping and Profiler Suite (OMPS)

S-NPP OMPS

Nadir Sensor:
Nadir Mapper (NM) Spectrometer
&
Nadir Profile (NP) Spectrometer

Limb Profile (LP) Spectrometer

Main Electronics Box (MEB)

S-NPP Spacecraft

Satellite Velocity Vector

OMPS

CERES

ATMS

CrIS

VIIRS
OMPS Configurations and Views

- OMPS sensors - nadir and limb - use the same electronics box
- Nadir spectrometer footprints overlap

S-NPP OMPS: Nadir and Limb sensors
- Launched October 2011

JPSS-2 OMPS: Nadir and Limb sensors

JPSS-1 OMPS: Nadir sensor only
Ball Aerospace’s Role in OMPS

- **Spectrometers:**
 - Design
 - Integrate & Align
 - Characterize & Calibrate
 - Environmental Test
 - Modeling
 - Day 1 Calibration Tables (SCDBs)

- **Focal Plane Assemblies:**
 - Procure Chip-on-Carriers
 - Design and build FPA
 - Environmental Test
 - Modeling

- **Electronics:**
 - Design
 - Integrate & Test
 - Environmental Test
 - Modeling

- **Integrated Sensor Suite:**
 - Integrate
 - Environmental Test
 - Modeling
 - Day 1 CONOPS Tables

- **Post-Delivery Support:**
 - Pre-Launch Support
 - Post-Launch Support
OMPS Sensors: **Nadir Mapper and Profiler**

- **Nadir Profiler** (250 - 310 nm)
- **Nadir Mapper** (300 - 380 nm)
- Shared telescope; separate spectrometers and FPAs
- Shutter-less
- Changes S-NPP OMPS to J1 OMPS:
 - Diffuser: Al to QVD; ~67% reduction in irradiance and albedo calibration uncertainty due to decreased fine structure effects
 - Data Rate: Maximum rate increased from 196 kbps (NPP) to 409.6 kbps (J1)
 - Data compression capability added
 - NM Calibrated Wavelength Range: 380 nm to 417 nm (~420 nm)
OMPS Sensors: **Limb Profiler**

- Limb Profiler (290-1000nm)
- Single Focal Plane Assembly (FPA)
- Shutter-less
- No Limb Profiler on JPSS-1
OMPS Focal Planes

- Operated at -45C (NP and LP) or -30C (NM)
- Custom split frame transfer CCDs operated in backside illuminated configuration. Two halves read out separately.
 - Binning can occur only along readout
- Equipped with anti-blooming drains
OMPS Image Data Flow

Uploadable Tables Control:
- Linear correction (on/off & table to apply)
- Co-adding (on/off & number)
- Reordering (on/off)
- Gain Correction (on/off & table to apply)
- Sub-Sampling & Binning (a.k.a. Sample Table; on/off & table to apply)
- Compression (on/off)

Ozone Mapping and Profiler Suite
OMPS Flexibility

- With the uploadable tables, OMPS is very flexible
 - TPGs: Integration times, Coadds, Binning, Sub-sampling, and Linearity Correction Tables

<table>
<thead>
<tr>
<th>BATC-delivered Image Data Products</th>
<th>Along-Track Resolution</th>
<th>Cross-Track Resolution</th>
<th>Spectral Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM – NPP Earthview</td>
<td>Image every 7.5 seconds – (6 co-added frames of 1.25 seconds)</td>
<td>Each macro-pixel is binned from 20 individual pixels</td>
<td>196 wavelength pixels</td>
</tr>
<tr>
<td>NM – J1 “Hi-Res” Earthview</td>
<td>Image every 1.25 seconds - (No co-adding)</td>
<td>Each macro-pixel is binned from 5 individual pixels</td>
<td>210 wavelength pixels</td>
</tr>
<tr>
<td>NP – NPP Earthview</td>
<td>Image every 37.4 seconds – (3 co-added frames of 12.5 seconds)</td>
<td>All spatial pixels binned into a single “spatial” column</td>
<td>148 wavelength pixels</td>
</tr>
<tr>
<td>NP – J1 “Hi-Res” Earthview</td>
<td>Image every 7.5 seconds – (No co-adding)</td>
<td>Spatial pixels binned into 5 different “spatial” columns</td>
<td>148 wavelength pixels</td>
</tr>
</tbody>
</table>

With increased data rate allocation and available on-board data compression for OMPS J1, we have increased along-track resolution of Nadir Mapper Earthview image product by ~6x, and the cross track by ~4x – in addition to sending ~420 nm wavelength pixels.

- Stored Command Sequences (CBM): allow modification to on-orbit timing
 - i.e. begin/end of Earthview imaging or calibration or change to activities on dark-side
OMPS Status

- S-NPP OMPS: Performing on-orbit
- JPSS-1 OMPS: January 2015 successful integration to spacecraft
- JPSS-2 OMPS: Delivery Planned August 2018
2015 STAR JPSS Annual Science Team Meeting

JPSS-1/OMPS Operations Plan

T.J. Kelly, G.R. Jaross

August 24-28, 2015
From OMPS Instrument Commands to NOAA Operational Products

- Support from NASA/JPSS to NOAA/OSPO concludes at the L+90 days Operational Hand-over
NomOps Begin at L+90 days:
Door Closed Phase = ~33 days
Door Open Phase = ~48 days
Some Cal/Val items may remain

Begin Cal/Val:
Door Closed Phase
L+9

OMPS Initial Power-On

Ground Testing
(inc. Block 2.0 access)

Begin Cal/Val:
Door Open Phase
L+42

Pre-Tests of Science Data & Solar Cal collections
Dark & LED Cals, transient detection, SAA mapping

Cal/Val: Begin
Day-1 Solar Cal + Min/Max SolAZ
Hi-Res Ev Compression Optimization
Cal/Val Ev + Low-Res & Med-Res Ev

Begin NomOps
L+90

Diffuser Wheel Mech Opens

OSPO: OMPS
Activity Scheduling

Hand-Overs: MOST → MOT
NASA/JPSS → NOAA/OSPO

• Pre-tests provide NomOps-like data flow thru Ground Systems
• Pre-test of 3-orb Solar Cal waits until after Orbit-Raising Campaign concludes
Post-Launch Tests (PLT) for Hand-Over: Subset of Cal/Val Activities

<table>
<thead>
<tr>
<th></th>
<th>Activity</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Closed Phase</td>
<td>Instrument Activation</td>
<td>Demonstrate basic instrument functionality</td>
</tr>
<tr>
<td></td>
<td>Trending</td>
<td>Instrument health and safety; pixel statistics of Dark & LED Cals, including LED lamp warm-up behavior</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Instrument characterization: Dark & LED Cals, pixel statistics, transient detection, SAA, LED linearity, biases</td>
</tr>
<tr>
<td></td>
<td>CBM pre-tests</td>
<td>Preparations for Door Open Phase</td>
</tr>
<tr>
<td>34 days</td>
<td>Door Open Phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trending</td>
<td>Add monitoring of wavelength registration</td>
</tr>
<tr>
<td></td>
<td>EV Data Rate Optimization</td>
<td>Monitor compression rates, evaluate trial NM EV ST</td>
</tr>
<tr>
<td></td>
<td>Noise Characterization</td>
<td>SNR estimates</td>
</tr>
<tr>
<td></td>
<td>Dynamic Range</td>
<td>Check for possible saturation in EV and Solar</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Add wavelength registration, Day-1 Solar, PRNU</td>
</tr>
<tr>
<td></td>
<td>Geolocation/Pointing Accuracy</td>
<td>Evaluate location of pixels’ observations</td>
</tr>
<tr>
<td>42 days</td>
<td>OAR at L+85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete data collections</td>
<td>Processing & analyses completed for OAR</td>
</tr>
</tbody>
</table>

PLT responsibilities belong to BATC, NASA & NOAA
J01/OMPS NomOps Activity Highlights:
Similar to SNPP/OMPS

Science Data: Default for All Orbits

<table>
<thead>
<tr>
<th>Orbits</th>
<th>Dayside</th>
<th>Dark Cals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-14/15</td>
<td>EV_HI_RES</td>
<td>Door Open</td>
</tr>
</tbody>
</table>

Potential Remaining Cal/Val Measurements:
- EV Data Rate Optimization (seasonally dependent)
- PRNU (seasonally dependent: Solstice ±~6 weeks)
- Full-Frame EV Measurements

Preliminary Calibration Schedule

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Semi-Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Closed Dark</td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future mod: Extend all EV Xtrack-FOVs past SolZA=88°

Dark Cals: Compare Door Open with Door Closed
Solar Cals: Compare J01/QVD vs SNPP Aluminum diffuser
J01/OMPS NomOps:
Science Data w/Dark & LED Cals

- No LP on J01
- NomOps: **EV_HI_RES**
 - Default Science Data collection activity
 - Not “Extended-EV” past sub-satellite SolZA=88
 - Need to start ~75 sec prior to STC (2 EV-TPG loops)
 - Finish at NTC is similar
 - Open Door Dark Cals
 - Storage Region 2 sets of images in twilight
 - 5 images with IT = 30 sec
 - 5 images with IT = 10 sec
 - Image Region in S/C Night:
 - 41 images with IT = 30 sec
 - 21 images with IT = 10 sec
- Closed Door Cals:
 - **EV_CLOSED_DARK** is Closed Door version
 - **EV_CLOSED_LED** collects LED Cals
 - Same dayside EV coverage
No LP instrument on JPSS-1/OMPS NomOps:

- **3orb_EV_WRK_SCAL** or **EV_WRK_SCAL**
- **New QVD Diffuser**
 - Decreased diffuser features vs SNPP/OMPS
 - Evaluate on-orbit
- **Differences are**
 - EV_WRK_SCAL runs in single orbit
 - 3 Solar Measurements per 7 NM/TC Diffuser Positions
 - 9 per NP DiffPos
 - Closed Door Dark Cals
 - 3orb uses 3-orbits
 - 16 or 17 measurements per NM/TC DiffPos
 - Except 23 for TC4 and 16 for NP
 - Closed & Open Door Dark Cals
 - Similar image & Storage Dark Cals
 - Solar Cals take a bite out of EV near NTC
EV High-Res Data Collection

• EV Hi-Res Situation:
 – Maximize spatial resolution:
 • 147, BF=5 macro-pixels
 • 210 wavelength pixels
 • 30870 pixels (at data rate limitation)
 – Reduced Frame limits λ’s from 295-423 nm
 – Limit insensitive λ’s
 • Sparse spectral: 2 λ regions

Possible enhancements:
• BATC assumes 2X compression, believe 2.2X achievable
• No BF=2 aerosol wavelengths (~4 λ’s; ~892 additional macropixels)
• No accommodation for off-nadir FOV swell
OMPS Activity-Schedule Flow

CSM Generation Input
- Southern Terminator Crossing (STC) information
- LP lunar observations predictions (only for SNPP & J02)
- OMPS observations schedule (~4-week cycle)
- Approximate semi-annual Solar Ref Cals, special obs., etc.

SOC develops OMPS activity schedule & delivers to MOT

SOC verifies activity schedule from CLG-report

Activity Schedule updated on OMPS website when DAS is uploaded

MOT builds load on the Command Load Generator (CLG) tool

MOT validates load on Flight Vehicle Simulator (FVS)

MOT uploads DAS to OMPS

Weekly update cycle CSM covers 23 days DAS covers 16 days
OMPS Table Flow: General Case

- Responsibilities:
 - OMPS/SOC handles SCTs
 - NOAA/STAR handles PCTs
 - Special Cases: Paired tables
- NOAA/STAR handles all ground tables EXCEPT PCT-paired tables
Block 1.2 to 2.0

GND_PI Table Transitions

<table>
<thead>
<tr>
<th>GND_PI TABLES</th>
<th>BLOCK 1.2</th>
<th>BLOCK 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>SOC</td>
<td>SOC</td>
</tr>
<tr>
<td>Macro</td>
<td>“</td>
<td>SOC</td>
</tr>
<tr>
<td>Timing Pattern</td>
<td>“</td>
<td>SOC</td>
</tr>
<tr>
<td>CF_Earth</td>
<td>“</td>
<td>STAR</td>
</tr>
<tr>
<td>Wavelength</td>
<td>“</td>
<td>STAR</td>
</tr>
<tr>
<td>LUTS</td>
<td>STAR</td>
<td>STAR</td>
</tr>
<tr>
<td>DARKS</td>
<td>SOC → STAR</td>
<td>STAR</td>
</tr>
</tbody>
</table>

- Paired tables:
 - EV Sample table
 - EV Macrotable
 - EV Timing Pattern

- Block 2.0/Aggregator changed some PCT-paired tables to PCT only:
 - CF_Earth & Wavelength

- Block 2.0 changes go forward and are independent of J01 changes
• Aggregator will exist for SNPP irrespective of any new FSW upgrades
• Paired tables include both the input and output tables:
 • Input matches data
 • Output matches SDR
• 3 paired tables:
 • EV ST
 • EV Macrotable
 • EV Timing Pattern Table
• For output-side of paired tables, per NOAA/STAR’s instructions:
 • SOC can supply output side of paired tables, or
 • STAR can supply to SOC
Backup Slides

- Notional On-Orbit Commissioning Timeline
- EV_HiResO3 Data Compression Sample: 1 Orbit
- EV Hi-Res ST Optimization
- Risk Mitigation
Notional On-Orbit Commissioning Timeline

L+0 to L+10
JPSS-1 Launch

Spacecraft Bus Commissioning

- Spacecraft Subsystem Performance Tests

L+10 to L+40
Instrument Activation and Outgassing

- Initial Power-On
 OMPS/VIIRS: L+10
 CrIS/ATMS: L+11
 CERES: L+12

- Final Orbit Insertion
 Outgassing
 OMPS: L+10 to L+48
 VIIRS: L+10 to L+39
 CrIS: L+11 to L+39
 CERES: L+12 to L+39

- Initial Instrument Performance Tests
 ATMS: L+11 to L+33
 Roll Calibration Maneuvers

L+40 to L+75
Instrument Commissioning

- VIIRS/CrIS
 L+40 Door Deploy
 CERES
 L+42 Covers Open
 OMPS
 L+48 Diffuser Open

- JPSS-1 Instrument Specification Testing
 ATMS: L+42 - L+50
 CERES: L+42 - L+56
 OMPS: L+49 - L+63
 VIIRS: L+40 - L+75
 CrIS: L+40 - L+75

- Calibration Maneuvers

L+75 to L+90
NOAA Operational Science Testing

- JPSS-1 Instrument “Operationally Ready”
 ATMS: L+55
 CERES: L+55
 OMPS: L+63
 VIIRS: L+75
 CrIS: L+75

- L+80 to L+90
 MOST-to-NOAA Operations Transition

- **L + 85**
 JPSS-1 Operational Acceptance Review (OAR)

L+90
JPSS-1 Operational Handover Review

JPSS Program to NOAA/OSPO

Post Launch Testing (PLT)
EV_HiResO3 Data Compression
Sample: 1 Orbit
EV Hi-Res ST Optimization

Data Rate Estimates: Compression-Rate Dependent

| BATC tests used a non-optimized value = 2 | 30870 EV macro-pixels |
| Non-compressed estimate = 15435/coadd_IT | coadd_IT = 1.25 sec |

<table>
<thead>
<tr>
<th>Data Compression Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Rate</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>Net No. of Pixels</td>
</tr>
<tr>
<td>15435</td>
</tr>
</tbody>
</table>

- **Optimization Limitation:**
 - If can’t get the compressed packets thru in time, the TP halts & Science Data stops

- **Create** trial EV Hi-Res STs w/more pixels (& compression rate needs)
 - Run trial STs on-orbit as Diagnostic Science data
 - Configuration: Use available, alternate ST slots
 - Benefits:
 - Pre-load STs in advance (avoid space weather delays)
 - Monitor with MOT ground controllers
Risk Mitigation, etc.

- **Risk Mitigation**
 - Diffuser Wheel Mech stays closed until just prior to Door Open Phase
 - *All-Mech-Positions-Closed* MECH OPTIONS TABLE loaded (follow in APID 544)
 - Solar *peeks* not in current plan, but could be (done on SNPP)
 - Tracking of Diffuser Wheel Mech movement budget
 - Follow instrument TLM health and safety (follow in APID 544)
 - SOP: No NVM table uploads during S2 solar activity level or greater
 - SOP: OMPS is safed in case of any maneuver (RMM, CoIA, DMU, etc.)
 - BATC can test new ST/GT/TP/etc. on BB in advance

- **Optimizations**
 - Pre-load CBM activities when possible
 - Diag EV CBM to test *trial* EV ST
OMPS J01 SDR Algorithm Implementation

OMPS-TC-SDR and OMPS-NP-SDR
Trevor Beck
August 26, 2015
• NOAA STAR responsible to provide updates for IDPS SDR processor to handle JPSS1 OMPS for TC and NP
• JPSS1 OMPS has significant changes in the RDR format, primarily Rice compression of instrument counts.
• Star developed code updates for TC and NP SDR using ADL.
• The SDR processor has been implemented and passed important tests using J01 proxy data and J01 electronics test data.
• Backward compatible with NPP is required: One executable handles both NPP and J01
• This work has three broad components:
 1) Understanding the J01 RDR format and test data
 2) NP SDR Changes: 5x5, new tables, spacecraft ID
 3) TC SDR specific changes: sparse spectral, aggregation, new tables
• Summary of results and methods.
J01 TC-SDR Updates

- New APID values.
- Updated image/engineering headers for FSW6
- Rice Decompression on instrument counts
- Pixel aggregation, temporal and spatial.
- Updated straylight algorithm to handle sparse spectral
- J01 GroundPi and LUTs (work in Progress)
- Wavelength table improvement using thermal model.
- 13 orbits medium resolution TC-RDR tested
- 13 orbits high resolution TC-RDR tested.
103 x 15 TC SDR Radiance

J01 OMPS TC Normalized Radiance at 317.93nm

55.00 79.00 103.00 127.00 151.00 175.00 199.00
J01 NP-SDR Updates

- New APID values.
- Updated image/engineering headers for FSW6
- Rice Decompression on instrument counts
- J01 GroundPi and LUTs (work in Progress)
- 13 orbits medium resolution NP-RDR (NPP Proxy)
- 13 orbits medium resolution NP-RDR (BBMEB)
NP-SDR 5x5 Radiance
OMPS RDR Format Change

- J01 OMPS will use FSW6.0 (Flight SoftWare 6.0).
- FSW6.0 introduces compressed instrument counts using Rice Compression (SZIP2.1).
- Image/engineering headers very similar but code to parse them needs to be updated.
- FSW6 introduces at least 14 new APIDs, two existing APID values have a modified format.
- Eight of the new APID will not be implemented in ADL/IDPS.

<table>
<thead>
<tr>
<th>Version</th>
<th>APID</th>
<th>J01</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSW 3.6</td>
<td>560 TC-RDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSW6.0</td>
<td>560 TC-RDR</td>
<td>x</td>
<td>NO</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>592 TC-RDR-RF</td>
<td>x</td>
<td>NO</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>608 TC-RDR-RF</td>
<td>x</td>
<td>YES</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>616 TC-RDR</td>
<td>x</td>
<td>YES</td>
</tr>
</tbody>
</table>
OMPS RDR Format Change

- J01 nominal RDR will be compressed
- Instrument vendor supplied documentation on how the counts were compressed
- The compression algorithm is the same as VIIRS but the implementation is simpler for OMPS, they use different compression parameters.
- Szip compression is part of the CCSDS standard.

<table>
<thead>
<tr>
<th>Version</th>
<th>APID</th>
<th>J01</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSW 3.6</td>
<td>561 NP-RDR</td>
<td>x</td>
<td>NO</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>561 NP-RDR</td>
<td>x</td>
<td>NO</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>593 NP-RDR-RF</td>
<td>x</td>
<td>NO</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>609 NP-RDR-RF</td>
<td>x</td>
<td>YES</td>
</tr>
<tr>
<td>FSW6.0</td>
<td>617 NP-RDR</td>
<td>x</td>
<td>YES</td>
</tr>
</tbody>
</table>
OMPS RDR Test Data

- NASA Test data group created 42 hour test with 26 orbits useful for developing J1 OMPS capability in the IDPS SDR processor.
- First task: create a J1 RDR reader to find out what is in the data.
- High level summary of the test datasets used

<table>
<thead>
<tr>
<th>Description</th>
<th>NmacroPixel</th>
<th>Spectral x Spatial</th>
<th>nTimes</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC RDR MedRes</td>
<td>10042</td>
<td>61 x 156</td>
<td>30</td>
<td>NPP</td>
</tr>
<tr>
<td>TC RDR HiRes</td>
<td>30870</td>
<td>147 x 208</td>
<td>30</td>
<td>J1 Electronics</td>
</tr>
<tr>
<td>NP RDR MedRes</td>
<td>894</td>
<td>147 x 5</td>
<td>5</td>
<td>NPP</td>
</tr>
<tr>
<td>NP RDR MedRes</td>
<td>942</td>
<td>157 x 5</td>
<td>5</td>
<td>J1 Electronics</td>
</tr>
</tbody>
</table>
• Two source of test data: NPP measured or BBMEB in lab prototype with J1 electronics
• TC has medium spatial resolution and high spatial resolution.
• Data was supplied in both compressed and uncompressed formats.
• TC data uses a timing pattern of 30 scans per 37 second granule. Current NPP TC-RDR uses 5 scans per 37 seconds granule.
• NP data uses a timing pattern of 5 scans per 37 second granule.
OMPS TC SDR in IDPS has a size restriction of 260 wavelengths by 15 scans along track by 105 cross track pixels. Both OMPS J01 spatial dimensions are expected to exceed this limit in the nominal earthview mode.

NASA PEATE proposed a solution using pixel aggregation.

Along track pixels will be temporally aggregated to reduce spatial resolution.

Across track pixels will be aggregated to fit within the 105 spatial limit.

NASA PEATE supplied demonstration code and NOAA STAR implemented and tested it in the ADL/IDPS framework.

Pixel aggregation is done in units of counts. It occurs as part of the VerifiedRDR creation. Pixels are aggregated and geolocation is established prior to the SDR science code.
• In the current J01 Block2 SDR implementation the TC-RDR temporal aggregation takes 30 scans per granule and aggregates to 15 scans per granule, it effectively doubles the ground pixel size in the along track dimension.

• The across track dimension is aggregated to 103 spatial pixels. Both high resolution mode and medium resolution TC earthview modes will be aggregated to 103 spatial cross track by 15 along track.

• The NP SDR processor will not have spatial aggregation, it fits within the existing 5 scans by 5 across track size limit defined by the IDPS.
A new feature of the J01 TC-SDR is the sparse spectral coverage. There will be groups of measurements that will not be downlinked to ground.
• The straylight algorithm was updated to work with sparse spectral measurements.
• The following image shows the SDR radiance for a sparse spectral case, there are eight spectral gaps.
• Test data has 61 measurement wavelengths.
Sparse Spectral for TC

- Our medium resolution test data has 61 wavelengths. The aggregation maps the 61 values onto the full spectral range of 364 wavelengths.
- This allows the RDR to limit spectral coverage in order to increase spatial resolution.
- Sparse spectral is handled as part of the spatial aggregation algorithm. The sample table and macro tables will double in size relative to the NPP SDR tables. The dual tables have an input component that describes the where the measurements originate on the CCD detector. The output component of the dual table describes where the pixels will map to on the CCD detector.
- At runtime the dual tables control how the pixel aggregation is performed.
- There is a timing pattern dual table that controls how the temporal pixel aggregation.
- In summary there are three dual tables that control pixel aggregation:
 - OMPS-TC-TIMINGPATTERN-GND-PI
 - OMPS-TC-MACROTABLE-GND-PI
 - OMPS-TC-SAMPLETABLE-EV-GND-PI
NP SDR goes from 1 pixel per granule to 25 pixels per granule

TC SDR goes from 35x5 ground pixels per granule to 103x15 (from 175 ground pixels to 1545 ground pixels per granule)

Following slides demonstrate qualitative increase in spatial resolution for TC-SDR. In the next slide the TC-SDR has been aggregated to 35 x 5. The subsequent slide is aggregated to 103 x 15.
Three orbits with current low resolution 35 cross-track x 5 along-track FOVs.
Four orbits with current medium resolution 103 cross-track x 15 along-track FOVs.
Summary

• NOAA STAR worked in collaboration with multiple partners to develop and implement the JPSS1 OMPS TC and NP SDR processor.

• The NASA Peate provided the initial aggregation algorithm. BATC provided us the necessary documentation to understand the format. Raytheon helped implement the changes for ADL/IDPS. Star AIT assisted with testing and code deliveries.

• Algorithm readiness review in September.

• J01 SDR algorithm is ready for both TC and NP
 • Algorithm has been Tested for software validation and a limited amount of geophysical validation
 • Delivered to DPES for further operational testing
 • Currently in block2 integration

Path Forward
• We are working to further test and verify the algorithm lookup tables
• End-to-end RDR to EDR test in progress.
OMPS Nadir Radiometric Calibration

Colin Seftor, Glen Jaross, Liang-Kang Huang, Rama Mundakkara, Mark Kowitt
Both the NM and NP sensors are extremely stable.
Both the NM and NP sensors are extremely stable
Adjustments needed to account for changes in throughput, particularly in dichroic region.
V1 OMPS/MLS matchup comparisons showed problems unrelated to dichroic adjustment

- MLS ozone/temp profiles from matched up dataset used in radiative transfer calculations of normalized radiances
- Calculated NR compared to OMPS measured NR
- N values difference compared
 - \(N = -100\log_{10}(NR) \)
 - \(\Delta N = -2.3\% \) radiance difference
Adjustments needed to account for “unphysical” behavior of cal coefficients
V2 OMPS/MLS matchup comparisons showed better performance with new coefficients.

- Includes corrections for dichroic region
- Includes corrections for stray light
J1 calibration coefficients show the same type of unphysical behavior.
Corrections for incorrect S-NPP NP bandpasses are being evaluated

- Data provided by Ball contain errors in channel bandcenters
 - J1 also had problems with measurements around 295 nm
- The following changes are currently being evaluated to determine their effect on S-NPP NP retrieval performance
 - Weighted average bandcenter correction
 - Fit with/without 295 nm measurements
 - Adjustment for change in sensitivity across dichroic region

Comparisons of synthetic solar flux convolved with weighted average bandcenter correction to solar flux without correction
Path forward for NPP nadir sensors

► Version 2

- Freeze current NASA processing
- Includes dichroic adjustments, stray light correction, wavelength shift corrections into L1b processing stream
- Includes “soft calibration” adjustments for V2 processing.
- Includes new “Day 1” measured solar flux
 - Created using solar measurements from April/May of 2012
 - Used to create normalized radiances for retrieval algorithms
- Run through 2015 “ozone hole season”

► Version 2.1

- Use updated NP bandpasses
 - Only if evaluation indicates such a change is necessary
- Incorporate “tweaked” stray light correction
- Add a few “enhancements” to L1B processor
 - Determine FOV corners, add to L1B file
Status Update:
Wavelength Calibration at NASA for S-NPP/OMPS Nadir Mapper (NM) and Profiler (NP) Sensors

Mark Kowitt, NASA Contr. (SSAI)
26 August 2015
For the NOAA STAR JPSS Annual Science Team Meeting
College Park, MD
Agenda

• Brief review of wavelength registration approach
• What’s new since the last Science Team Meeting?
 • Solar CBCs updated for new Initial Reference solar Flux [IRF] tables
 • Irradiance residuals
 • Radiance residuals
 • BPS grid parameter frozen and unfrozen
 • Improved intraorbital wavelength shift results (and chi-squared) for NM
 • NP much less sensitive to unfrozen BPS grid
 • For NM EV, studying correlations among reflectivity (or reflectance) fluctuations, BPS grid differences, and changes in a0
 • Implemented CBC generation routine for Nadir L1B (SDR)
 • NM: Based on tabulated intraorbital EV wavelength variation (no seasonal component)
 • NP: Based on tabulated seasonal solar wavelength variation (no intraorbital component)
• Plans for further development
 • Root hardware cause of NM temperature sensitivity, and fixes for J1 and J2 (from BATC)
• A high-res solar spectrum (initially sampled at 0.01 nm) developed by KNMI for OMI is convolved with the preflight bandpasses centered in turn at each band center and separated by a variable grid parameter to form a synthetic solar spectrum.

• For OMPS NP, solar activity corrections are applied to the synthetic spectrum.

• A polynomial scaling function (useful for solar calibration, essential for EV) morphs synthetic irradiance into synthetic radiance.

• An implementation of the Levenberg-Marquardt nonlinear least squares algorithm used to minimize the difference between synthetic and measured irradiance or radiance.

• The final optimizing CBC and the spectral calibration coefficients used to constitute it at each spatial index are the principal products.
Dispersion Relation (Update)

• For both nadir sensors, each spatial index has an independent band center solution whose coefficients are applied as follows:

\[
CBC(i\text{Spat},i\text{Spec}) = a_0(i\text{Spat}) + a_1(i\text{Spat})(i\text{Spec}-i\text{Spec0}) + a_2(i\text{Spat})(i\text{Spec}-i\text{Spec0})^2 + a_3(i\text{Spat})(i\text{Spec}-i\text{Spec0})^3
\]

where iSpat is the spatial pixel index, iSpec the spectral pixel index, and iSpec0 is the spectral pixel index of the fitting window lower bound.

• The current version of the algorithm varies only the constant offset term, a0, freezing a1, a2, and a3 at the values underlying the original BATC CBC. Small spatial irregularities in a0 reflect analogous structures along the slit edge found by BATC in prelaunch studies.
Spectral and Spatial Bounds used for NM and NP Irradiance and Radiance Fitting Windows

- NM solar calibration (Full-Frame)
 - Spatial Indices 16-763 (except for smear rows 370-409)
 - Spectral Indices 137-282 (about 315-375 nm)
- NM EV (Full-Frame)
 - Spatial Indices 16-763 (except for smear rows 370-409)
 - Spectral Indices 220-282 (about 349-375 nm) – avoids ozone
- NM EV (nominal and EV360)
 - Spatial Indices 0-35
 - Spectral Indices 108-182 (about 344-375 nm)
- NP solar calibration (Full-Frame)
 - Spatial Indices 36-135
 - Spectral Indices 64-164 (about 252-294 nm)
- NP EV (Full-Frame)
 - Spatial Indices 36-135
 - Spectral Indices 82-158 (about 259-292 nm) – avoids ozone
- NP EV (nominal) – 1 spatial index
 - Spectral Indices 26-102 (about 259-292 nm)
NM Irradiance Residuals

• Flux residuals here refer to the of measured flux / model flux from 1.
• Residuals demonstrate the quality of CBC and bandpass solutions
• Although a few “features” ~2% persist for different IRFs, different features on this scale appear when synthetic flux uses a different high-resolution reference solar flux (e.g., Kurucz-Chance 2010 (SAO) vs the KNMI flux used for OMI and preferred by NASA for OMPS
 • Most of these features appear to be artifacts of the high-res solar spectrum rather than of the algorithm used to derive the CBC
 • If they were caused by diffuser features, they should appear in both models
 • In any case, a0 (and therefore CBC) values generally differ by <0.01 nm when different high-resolution solar spectra are used.
NM Day 1 Solar Flux (IRF) and Model Flux

NM IRF 2012_March_April_SLC and Model Irradiance (middle 4 full-frame rows)
NM IRF Irradiance Residuals using Hi-Res Solar Flux from KNMI vs SAO (Kurucz-Chance)

NM IRF 2012_March_April_SLC / Model Irradiance (middle 4 full-frame rows); (HiRes=KNMI)

NM IRF 2012_march_april_SLC / Model Irradiance (HiRes=SAO)
NM IRF and Model Flux – Free vs Frozen BPS grid parameter

• Even with the BPS grid parameter free, the high-res SAO spectrum generates synthetic flux with significantly larger residuals than the KNMI spectrum (whether or not the BPS grid parameter is frozen); only examples using the KNMI high-res spectrum will be shown.

• The free grid parameter produces significantly smaller residuals with the KNMI spectrum. This is the current model used for OMPS Nadir wavelength registration at NASA.
NM Measured (IRF) plus Model Flux with free (bps1) or frozen (bps0) grid parameter
NM Measured/Model Irradiance
BPS Grid Free or Frozen

NM iSpatFF=365 IRF/Model Irradiance

IRF/Model Irrad vs Wavelength [nm]

IRF/bps1, IRF/bps0
NP Irradiance Residuals

• The following slides compare NP irradiance residuals with and without BPS grid variation, solar activity corrections, and models using the SAO high-res solar spectrum as well as the KNMI spectrum.

• Unlike NM, NP is almost insensitive to bandpass grid variation.

• Note: Our composite IRF uses solar flux for 4 different dates, each with its own Mg II index; test used a date (April 17, 2012) with Mg II index ~mean.

• Show current a0 as a function of date, compare with N_T_Telescope.
NP Irradiance – IRF and Various Models: BPS grid frozen or free, solar activity corrected or not
NP Irradiance Residuals Near Nadir

NP IRF/Model Flux near nadir (iSpat=85), BPS grid free and frozen; also shown is a BPS free-grid example w/o solar activity correction (NoMg2).
Seasonal Variation of NP Wavelength Scale

NP Solar Calibration -- Seasonal Variation of Wavelength Scale Offset a_0

Seasonal Variation of da_0, that is, $a_0(t) - a_0$ for 28 Jan 2012
NM Radiance Residuals

• The [NASA] OMPS Nadir wavelength registration algorithm was designed for solar calibration, but can be used effectively (not necessarily in real time) for direct solutions of EV wavelength scale when spectral fitting windows are limited to wavelengths not absorbed by ozone.

• Steering clear of the “dichroic region” is desirable for solar as well as EV wavelength registration.

• For NM, a useful EV window is about 349-375 nm; whereas for solar calibration, 315-375 nm can be fitted and may be compared with a fit using the EV window.

• The following chart compares residuals (meas/model flux) for full-frame EV and for the IRF for the EV spectral fitting window for spatial index 365. They are of similar magnitude and appear topologically similar, which may be an artifact of the high-resolution solar spectrum (KNMI) used to construct the model flux in both cases.
Measured / Model Flux for NM IRF and full-frame EV near nadir

Residuals for NM IRF and NM FF EV o09942 (ispat=365)
NM mid-EV a0 values when BPS Grid Spacing is Free (a0_bps1) or Frozen (a0_bps0)
NM BPS Grid Parameter Variation and a0

Bandpass grid parameter solutions for NM_FF_EV using BANDPASS_GROUND vs BANDPASS_FLIGHT (original BATC estimate)

Differences between a0 for frozen vs free BPS grid parameter for NM_FF_EV, using BANDPASS_GROUND as the baseline
NM EV vs Solar Cal Cross-Track Spectral Divergence

• The NM EV intraorbital wavelength offset, a0, converges to solar a0 except for the diffuser positions whose data are acquired beyond the range of nominal EV...
a0 for last EarthView frame vs a0 for the IRF

Note divergence of EV and solar a0 for spatial indices to the far right

da0 vanishes except for diffuser positions at SZA > 90 degrees

NM_FF_EV-o09942 a0 for last frame vs a0_IRF

Spatial Pixel Index [without smear]
a0 (EV360), spatial macropixel=0, frames 0-416, and a0 for the IRF binned in new mCBC
NM EV spatial and temporal dependence of a0 and BPS grid for nominal EarthView

NM_EV-o07231, a0 as a function of macropixel spatial index and frame

NM_EV-o07231, BPS grid as a function of spatial index and frame (baseline was BANDPASS_GROUND)
Task 5 Conduction to / from the Calibration Assembly is a Major Contributor

The baffles go through larger temperature swings than the telescope structure. Conduction to and from the Calibration Mechanism Assembly causes localized deformation on the front of the total column housing.
Backup Slides
NM Radiance Residuals vs Ring Effect?

Mid-EV NM radiance residuals for TC_EV 007231, nominal EarthView

Ring effect near NM EV fitting window and spectral res., from Wagner, Chance, et al., Proc. of 1st DOAS Workshop, 1/2001, p. 6
Integrated Cal/Val System (ICVS) for OMPS

Ding Liang, Ninghai Sun, Fuzhong Weng, Chunhui Pan, Wanchun Chen, Lori Brown
August 26, 2015
Outline

• Calibration principle
• Key performance parameters monitoring
• Solar degradation monitoring
• Instrument health and safety related parameters monitoring
• Summary and future plan
The NM/NP Calibration Principle

\[Q_{jk}^c = \frac{Q_{jk}^{ADC} - Q_0}{g m_{jk}} - Q_k^s - Q_{jk}^{dark} \]

- \(Q_{jk}^{ADC} \): raw counts at the output of the analog-digital-converter
- \(g \): non-linearity of the electronics chain
- \(Q_{jk}^{dark} \): observed dark
- \(Q_0 \): zero input response
- \(m_{jk} \): relative pixel gain level
- \(Q_k^s \): observed smear (contain the offset)

\[L_{jk}^m = \frac{Q_{jk}^{r} k_{jk}^{r}}{\tau_{jk}(t)} \]

- \(L_{jk}^m \): calibrated earth radiance
- \(Q_{jk}^{r} \): corrected earth radiance counts
- \(k_{jk}^{r} \): pre-launch measured radiance calibration coefficient
- \(\tau_{jk} \): sensor response changes

\[E_{jk}^m(t) = \frac{Q_{jk}^{i} k_{jk}^{i}}{g_{jk}(\theta, \phi) \rho_{jk}(t) \tau_{jk}(t)} \]

- \(E_{jk}^m \): Calibrated solar irradiance
- \(Q_{jk}^{i} \): corrected solar irradiance counts
- \(k_{jk}^{i} \): pre-launch measured irradiance calibration coefficient
- \(g_{jk} \): goniometric response
- \(\rho_{jk} \): long-term solar diffuser reflectivity changes
Key Performance Parameters

ICVS monitoring of mean value and standard deviation for offset and smear
ICVS monitoring of NM/NP dark current LUT updates:

- Timely weekly updates of the dark current LUT for calibration
- Implementation of the weekly dark LUT (transition from red to green) into the Earthview SDR
- Expected steady increase of the dark current
Expected Anomaly Detection

Automated anomaly detection and email warnings are established for radiance and key performance parameters.

Solar eclipse as identified by OMPS eclipse flag

Transient in OMPS NP dark smear on orbit 18362 and image 24 for May 14, 2015
• OMPS Sensor stability are monitored by observing the changes in the observed solar flux via a reflective working diffuser for short-term monitoring and via a reflective reference diffuser for long term monitoring.
• Nominally, The working diffuser is deployed once every two weeks. The reference diffuser is deployed twice per year.
• The diffuser moves through seven different positions to cover the entire sensor FOV of 110 degree.
• Plots on the right are solar calibration sample table which shows the CCD pixels collected during the solar calibration when diffuser moves from positions 1 to 7.

Diagram of seven solar diffuser positions in OMPS Nadir solar measurement.
Solar Flux value are normalized by the first day measurement. Solar Flux Measurements show minimal degradation in NM and NP. These plots show the expected patterns of annual cycles associated with the spacecraft orientation.
Normalized Solar Flux from NP Diffuser

Solar Flux value are normalized by the first day measurement.
Normalized Solar Flux from NM Diffuser

Solar Flux from NM diffuser position 1 and normalized by the first day measurement.
ICVS monitoring of parameters important to instrument health and safety, such as temperatures, electronic voltages and currents, and scan motor encoder output.
<table>
<thead>
<tr>
<th>Module</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMPS SDR</td>
<td>EV Radiance</td>
<td>Global radiance map</td>
</tr>
<tr>
<td></td>
<td>Sensor Performance</td>
<td>Average and standard of Dark current, offset, smear</td>
</tr>
<tr>
<td></td>
<td>Chasing Orbit Comparison</td>
<td>Reflectance comparison between SBUV/2 and OMPS</td>
</tr>
<tr>
<td></td>
<td>SDR Quality Flags</td>
<td>Solar eclipse events</td>
</tr>
<tr>
<td></td>
<td>Dark Look-Up Table</td>
<td>Dark LUT statistics</td>
</tr>
<tr>
<td></td>
<td>Linearity Calibration Reference LED</td>
<td>Reference LED counts statistics: left side, right side, earth view, full frame</td>
</tr>
<tr>
<td></td>
<td>Solar Degradation</td>
<td>Solar flux Working diffuser and reference diffuse</td>
</tr>
<tr>
<td>OMPS RDR</td>
<td>SDR Data Flags</td>
<td>Linearity correction, gain correction, bin imager, reorder image</td>
</tr>
<tr>
<td></td>
<td>Instrument Operational State</td>
<td>Fixed coadd count,</td>
</tr>
<tr>
<td></td>
<td>SDR Table Version and ID</td>
<td>Gain correction, linearity correction, sample</td>
</tr>
<tr>
<td></td>
<td>Instrument Temperatures</td>
<td>Housing, window, conduction bar, CCD</td>
</tr>
<tr>
<td></td>
<td>Instrument Voltages</td>
<td>TEC error</td>
</tr>
<tr>
<td></td>
<td>Instrument Currents</td>
<td>TEC, CCD output reset bias, CCD output drain bias</td>
</tr>
<tr>
<td></td>
<td>OMPS Nadir System Operational State</td>
<td>Active Nadir Profile ID</td>
</tr>
<tr>
<td></td>
<td>OMPS Nadir System Table Version and ID</td>
<td>Active timing pattern table version, timingpattern table ID</td>
</tr>
<tr>
<td></td>
<td>OMPS Nadir System Temperatures</td>
<td>Signal board, timing board, telescope, calibration housing, diffuser motor</td>
</tr>
<tr>
<td></td>
<td>OMPS Nadir System Voltages</td>
<td>CCD, signal board, timing board</td>
</tr>
<tr>
<td></td>
<td>OMPS Nadir System Currents</td>
<td>Phase A motor drive, phase B motor drive</td>
</tr>
<tr>
<td></td>
<td>OMPS Suite Software Version Control</td>
<td>Flight software version</td>
</tr>
<tr>
<td></td>
<td>OMPS Suite Operational State</td>
<td>Calibration LED state, active main electronics box side</td>
</tr>
<tr>
<td></td>
<td>OMPS Suite Temperatures</td>
<td>Motor driver board, SBC board, processor interface board</td>
</tr>
<tr>
<td></td>
<td>OMPS Suite Voltages</td>
<td>TEC driver/reference, motor driver, CPE, motor/resolver electronics</td>
</tr>
<tr>
<td></td>
<td>OMPS Suite Currents</td>
<td>Active calibration LED, CPE, TEC total</td>
</tr>
</tbody>
</table>
Introduction

Near real-time and long-term performance monitoring for SNPP/OMPS since 2011

http://www.star.nesdis.noaa.gov/icvs/status_NPP_OMPS_NM.php
Summary and Future Plan

• Comprehensive near real time and long term instrument status and performance monitoring
• Real time support for sensor calibration activities
• Automated anomaly detection and email warnings are established for radiance and key performance parameters
• New parameters will be monitored according to requirements from OMPS SDR team
• J1 proxy data will be tested
SNPP Limb sensor performance update and Level 1 status

NASA OMPS Limb instrument & L1 team

G. Chen, DeLand, Haken, Janz, Jaross, Kahn, Kelly, Kowalewski, Kowitt, Linda, Moy, Taha, Warner

Additional Material:

N. Gorkavyi, D. Soo

Wavelength: 290 – 1000 nm

Bandwidth: 1 – 30 nm

Vertical range: 105 km (0-60 km permanently)

3 vertical slits; view aft

Primary error sources

- Pointing
- Stray light
6 images collected on detector

Of the 250,000 photosensitive pixels, fewer than 70,000 are sent to the ground (mostly within the 6 aperture regions)
Original Gain stitching has been modified as of v2 release

Combining LoGain and HiGain created radiance discontinuities

Current operations (since Dec., 2013):
HiGain (280 - 500 nm) LoGain (450 - 1020 nm)
Gain 1 & Gain 3 Gain 2 & Gain 4

At-launch gain design

Gain Levels
1 2 3 4

Gain 1 HiGain Long
Gain 2 LoGain Short
Gain 3 HiGain Long
Gain 4 LoGain Short
Stepped IT timing sequence

Current Timing:
- Short – 0.04 s x 15
- Long – 1.25 s x 10

\[\text{time of median photons close to half of report interval} \]

Proposed Timing:
- 12.7 s
- 1.13 s
- 0.04 s
- 0.34 s
- 0.10 s
- 3.78 s

\[\text{time of median photons varies with altitude and wavelength} \]

Flight hardware has the ability to discard saturated ITs on per-pixel basis

SNR vs. Signal Rate

- Current
- Stepped

Flight hardware has the ability to discard saturated ITs on per-pixel basis
New timing reduces sampled pixels

Current v0.8 Sample Tables
- Long: 62,000 pixels
- Short: 26,500 pixels
Total: 88,500 pixels

Stepped IT Sample Table
- Merged Long + Short
- 68,400 pixels
- Could eliminate high alt. VIS / NIR
- Could eliminate 2 UV slits

Implementation is still TBD
Level 1 Products

Level 1A

Counts-short [pixel x time]
Counts-long [pixel x time]

Level 1B

Radiance [pixel x time]
Irradiance [pixel x time]
Wavelength [pixel x time]
Geolocation [pixel x time]

Level 1G [release product]

TOA Reflectance [TH x WVL x time x slit]
Recon. Radiance [TH x WVL x time x slit]
View conditions [time x slit]

Associated **L1_ANC** contains colocated temperature, pressure, ozone
Variation in telescope temperature causes CCD images to shift.

Slit images at focal plane shift due to stress on the telescope mirrors.

Thermally expanding entrance baffle.

Telescope mirrors.

Shifts occur when sunlight illuminates the entrance baffle.

Courtesy of BATC.
Spectral shifts have been characterized

Mean Intraorbital Spectral Shift (rel. to SolarCal) (Pixels)

- Orbit dependence is highly repeatable

Measured Seasonal Shifts

Corrections in Level 1B product

<table>
<thead>
<tr>
<th>Intra-orbital</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Shift</td>
<td>Parameterized v. time in orbit</td>
</tr>
<tr>
<td>Spatial Shift</td>
<td>Parameterized v. orbit number</td>
</tr>
<tr>
<td></td>
<td>Parameterized v. solar beta angle *</td>
</tr>
</tbody>
</table>

26 Aug, 2015

JPSS Science Meeting

26 Aug, 2015

JPSS Science Meeting
Irradiance Scale factors derived from Hi-res reference spectrum – tabulated vs. spectral shift.

Comparisons between a measured UV solar spectrum and the Day 1 spectrum are best when it is adjusted to the new wavelength scale.
We understand pointing changes caused by internal mirror shifts (using slit edge images).

Slit Edge offsets (km)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Gain</td>
<td>-0.30</td>
<td>-0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>High Gain</td>
<td>0.55</td>
<td>0.45</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Additional pointing errors have been detected

350 nm Scene-based offsets (km)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Gain</td>
<td>1.40</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>High Gain</td>
<td>1.20</td>
<td>1.40</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Limb points higher than SC Diary indicates
Comparison to VIIRS

OMPS Residual vertical offsets (arcsec)

<table>
<thead>
<tr>
<th></th>
<th>East</th>
<th>Center</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoGain</td>
<td>78</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>HiGain</td>
<td>72</td>
<td>84</td>
<td>90</td>
</tr>
</tbody>
</table>

Mean (pitch) = 85 arcsec

Difference (roll) = 124 arcsec

SNPP-VIIRS Angle adjustments
(transformation is yaw, roll, pitch order)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Current (arcsec)</th>
<th>Proposed (arcsec)</th>
<th>Delta (P – C) (arcsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaw</td>
<td>33.2</td>
<td>95.4</td>
<td>62.2</td>
</tr>
<tr>
<td>Roll</td>
<td>41.2</td>
<td>-227.3</td>
<td>-268.5</td>
</tr>
<tr>
<td>Pitch</td>
<td>-59.3</td>
<td>153.2</td>
<td>212.5</td>
</tr>
</tbody>
</table>

From VIIRS SDR/GEO LUT Update 002
Feb. 2, 2012

26 Aug, 2015
JPSS Science Meeting
Stray light correction \cong stray light model

- Low signal levels
- Physically close to other apertures
- Increased reflection within detector
- Etalon effect makes scattered light difficult to characterize
Stray light verifications

Stray light correction evaluated using non-optical regions on detector

Optical Region

Stray light errors remain in high-altitude VIS / NIR
Residuals have stray light signature

Residual 674 nm for **Frame 20**, Daily average for **March 25** and **October 13 (dashed)**, 2013

If residuals are interpreted as SL error, we are missing a significant source of SL in our model

Could also be errors in RTM or pressure profiles
Pitch-up suggests additional stray light source

VIS backscatter signal drops one decade per 20 km

180 km $\rightarrow 10^{-9}$

There should be only background signal

SL source must be prior to entrance slit

Primary telescope mirror
Current SL correction ignores telescope scatter

Composite PSF measurements

Spectrometer scatter
Primary mirror (telescope) scatter

Vertical Point Spread Functions

Greatest difference is for source pixels far from target (e.g. Earth surface)

Largest Earth limb vertical contrast is in the NIR, so largest error occurs there
Pitch-up confirms sun intrusion at end of orbit

Occurs earliest in Right slit (closest to sun)

As low as SZA=78°

Expect it to be worst in early July, but have not investigated
Summary of L1G changes for next release

<table>
<thead>
<tr>
<th></th>
<th>Version 2</th>
<th>Next Release</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric</td>
<td>Calibrated radiances on uniform grid</td>
<td>Sun-normalized radiances on uniform grid</td>
<td>L-T trend corrections</td>
</tr>
<tr>
<td>Wavelength registration</td>
<td>Varies intra-orbitally & seasonally</td>
<td>same</td>
<td>L-T trend corrections using solar cal.</td>
</tr>
<tr>
<td>Altitude registration</td>
<td>Static offset corrected via early RSAS analysis; intra-orbital variation</td>
<td>Zero all 3 slits using updated RSAS (100-300m); remove small seasonal cycle using slit edge</td>
<td>Intra-orbital & L-T drifts; still measuring the moon</td>
</tr>
<tr>
<td>Stray Light</td>
<td>Jacobian based on delivered PSFs</td>
<td>Simple empirical scaling of correction</td>
<td>Correction for telescope SL and >1μm leakage; sun leakage corr.</td>
</tr>
<tr>
<td>Transients</td>
<td>No flagging</td>
<td>Smear transient flagging</td>
<td>Pixel transient rejection</td>
</tr>
</tbody>
</table>
Extra slides
Stray Light improvements
CPC Ozone Applications

Craig S Long
Jeannette Wild, Hai-Tien Lee, Shuntai Zhou
NOAA/NWS/NCEP/Climate Prediction Center
Ozone Data Sets Used at CPC

- CPC has been monitoring ozone since the mid 1970’s.
- Monitoring / Evaluation / Intercomparison
- SBUV/2
 - Operational v8.0
 - Recalibrated v8.0
 - Recalibrated v8.6
- SBUV(/2) Merged Cohesive CDR
 - Provided to NCEI
- OMPS
 - Nadir Profiler (v6, waiting for v8)
 - Nadir Mapper (v7 OOTCO, waiting for v8)
 - Limb Profiler (waiting to be provided operationally)
- GFS ozone analyses/forecasts
 - Evaluate what is assimilated and quality of forecasts
- NDACC Lidar
- Reanalyses
 - CFSR, MERRA, ERA-I, JRA-55, etc
Operational / Recalibrated SBUV/2

• Operational orbital SBUV/2 products are assimilated into the GFS/CFS and CPC analyses.
 – GFS : ozone forecasts : UV Index
 – CPC : ozone analyses : ozone hole area
• End-of-month recalibrated SBUV/2 products are used for monitoring long term trends
• CPC monitors both and inform OSPO and STAR when the two differ significantly.
Diff between OSPO and STAR

- OSPO: operational processing
- STAR: end of month reprocessing
- Disagree at 2 hPa
- 252nm channel
 - OSPO uses
 - STAR does not
- Which is right?
- Importance: OSPO is put into CLASS
 - STAR is used for long term monitoring
Diff between OSPO and STAR

Disagreement in upper stratosphere

STAR JPSS Annual Science Team Meeting – Aug 24-28, 2015
Diff between OSPO and STAR

Agreement in middle stratosphere
OMPS Ozone Analyses

Total Column Mapper

Analysis using Total Profile
OMPS Ozone Hole Monitoring

SNPP orbit allows for earlier observation of ozone hole than N19
Long Term Total Ozone Monitoring
Merged Cohesive SBUV(/2) CDR

v8.6
unadjusted
5 hPa O3MR

v8.6
adjusted
5 hPa O3MR

unadjusted
5 hPa O3MR anomalies

Adjusted
5 hPa O3MR anomalies

STAR JPSS Annual Science Team Meeting – Aug 24-28, 2015
Long Term Profile Ozone Monitoring

Ozone Profile Trends (%/Decade)

![Graphs showing ozone profile trends from 1979-1997 and 1998-2012.](Image)

1979-1997

1998-2012

From Harris et al, 2015
Utilization of NDACC Ozone Lidar for Validation

Comparison of monthly mean adjusted zonal O3MR with monthly mean Lidar Obs
GFS Large O-G Episode

- Obs-Guess is used for monitoring the operational GFS ozone production
- Was high between June 25 and Jun 30, 2015 at 2 hPa
- What was cause?
 - Model or data?
- An unusual wave one pushed the 2 hPa max values off of the pole favoring the Australia quadrant.
Anal – Fcst Plots at 2 hPa

- Anl files for 2015070200
- F06 (Guess) files for 2015070118
- Analyses differ from forecast only where observations occur.
- Analysis adds ozone
- Analysis contours every 0.5 mg/kg
 - Blue is 5.0 mg/kg
 - Red is 11.0 mg/kg
- Difference contours every 0.05 mg/kg
 - 0 diff is contoured
Anal – Fcst Plots at 2 hPa

STAR JPSS Annual Science Team Meeting – Aug 24-28, 2015
Global mean O3MR anomalies time series shows discontinuities in ozone sources. Is assimilation of multiple sources better? Need to have similar characteristics.
Summary & Pros about OMPS

- CPC has been monitoring ozone since the mid1970’s.
- CPC monitors ozone on various time scales.
- CPC primarily monitors ozone via the SBUV(2), OMI, and now OMPS.
- OMPS will continue SBUV/2 ozone monitoring heritage.
- OMPS provides additional ozone products to monitor ozone.
- OMPS Limb provides finer vertical resolution and extend down to cloud top
 - Needs to be assimilated ASAP after NM and NP
 - Also means that NESDIS needs to provide in operations
 - Will help NCEP AQ forecasts.
- Reprocessed OMPS needs to be available for users and reanalysis
 - Preferably in CLASS
OMPS Limb Profiler L2 Products

Pawan K. Bhartia
Earth Sciences Division- Atmospheres
NASA Goddard Space Flight Center
Operational Products

• O_3 Vertical Profile (cloud-top to 60 km)
 – V2 algorithm released in mid 2014
 – Number density vs alt profiles are primary. Mixing Ratio vs p produced using assimilated GPH and temp data from NASA GMAO (MERRA)
 – No explicit aerosol correction
 – Central slit data are best

• Cloud-top Height
 – New product

• Aerosol Extinction Profile
 – V0.5 algorithm ready, data are currently reprocessed

• Pressure/temperature profile (40-70 km)
 – Under development
LP Altitude Registration Methods

- **350 nm radiance ratio method (aka RSAS)**
 - @350 nm $I(32 \text{ km})/I(20 \text{ km})$ varies by ~12%/km
 - Not affected by instrument drift or diffuse upwelling radiation, but affected by aerosols.
 - Works best in the S. polar region.

- **305 nm/60 km radiance method**
 - Less accurate than RSAS but works at all latitudes

<table>
<thead>
<tr>
<th>Absolute Accuracy: ±200m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Accuracy: ±100m</td>
</tr>
<tr>
<td>Precision: ~50m</td>
</tr>
</tbody>
</table>
Key Results

Tangent height error (km)
(after slit edge correction)

<table>
<thead>
<tr>
<th>Gain</th>
<th>Left Slit</th>
<th>Center Slit</th>
<th>Right Slit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>High</td>
<td>1.2</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Central slit: 1 km \equiv 1 arc-min pitch error
Left/right-central slit: 80 m \equiv 1 arc-min roll error

Time dependence: 100 m shift on April 28, 2013
- occurred when both star trackers were used for the first time indicating 12 arc-sec pitch bias between them.
Lat dependence: \sim300 m variation (after slit edge correction)
Along-orbit variations in altitude error

Shows the corrections that need to be applied to the V2 high gain data, which were adjusted by -1.65 km based on preliminary RSAS results.

Event numbers are counted from the southern to northern terminator. They are 1.1° apart in latitude, except in the polar regions.
Comparison with High Trop Ozonesondes

LP has ~ 1.8 km vertical and ~200 km horizontal res
Comparison with Payerne (47N, 7E) Ozonesondes
Comparison with Antarctic Ozonesondes

Dist = 60 km NEUMAYER 20121011
OMPS LP
Sonde
71S, 8W

Dist = 92 km SYOWA 20121226
OMPS LP
Sonde
69S, 40E
Summary of MLS comparison

OMPS LP vs Aura MLS

- Amplitude of the Seasonal cycle LP, nd(%) (Left)
- Differences in amplitude of SC, LP-MLS, (%) (Right)
- Amplitude of the Seasonal cycle MLS, nd(%) (Bottom left)
- Mean Differences, LP-MLS(%) (Bottom right)
Aerosol Scattering Index (ASI)

\[\text{ASI} = \frac{(I_m - I_R)}{I_R} \leq \frac{I_a}{I_R} \]

- N/S bias is caused by difference in scattering angle
- Produces >10 times variation in ASI for same aerosol extinction
Retrieved Aerosol Extinction

- Retrieved extinctions are approx hemispherically symmetric
Cloud-top Height

Cloud index (CI)

\[CI = \frac{d \ln I(\lambda_1, z)}{dz} - \frac{d \ln I(\lambda_2, z)}{dz} \]

\[\lambda_1 = 674 \text{ nm, } \lambda_2 = 868 \]

CI > 0.15 is defined as clouds
Summary

- V2 Ozone algorithm is about a year old
 - TH and aerosols are the primary error sources
 - TH errors are reasonably well known. Correction can be easily applied to the processed data. Aerosol correction is under investigation.
- V0.5 Aerosol product will be available soon
- Cloud-top height dataset is available
- An algorithm to estimate 40-70 km pressure profile is being developed.
OMPS Additional Trace Gases: \(\text{NO}_2 \) and \(\text{SO}_2 \) Products

Kai Yang
University of Maryland College Park

JPSS Annual Science Team Meeting, August 26, 2015
Suomi NPP/OMPS-NM

OMPS–NM Radiance

OMPS–NM Sun–Normalized Radiance

O_3 Absorption Cross Section

SO_2 Absorption Cross Section

NO_2 Absorption Cross Section

BrO Absorption Cross Section

$HCHO$ Absorption Cross Section

$OCLO$ Absorption Cross Section
Suomi NPP/OMPS-NM

- Stable performance
- High signal-to-noise ratio
- But significant stray lights, and other instrumental artifacts
Objectives

Retrieve NO$_2$ and SO$_2$ from SNPP/OMPS with sufficient quality to extend Aura/OMI record.

• Standard Products
 – SO$_2$ Vertical Columns
 • Volcanic SO$_2$ at various altitudes
 • Boundary Layer SO$_2$
 – NO$_2$ Vertical Columns
 • Tropospheric, Stratospheric, and Total NO$_2$

• Near-Real-Time (NRT) Products
 – SO$_2$ Vertical Columns
To achieve high product quality, Direct Vertical Column Fitting (DVCF) Algorithm:

• State-of-the art algorithm physics: accurate of radiative transfer including RRS scattering (Ring effect)

• Effective schemes to account for varying instrumental effects: wavelength registration, spectral response, under sampling, and spectral interferences
Direct Radiance Fitting

OMPS–NM Radiance

Percent Residual

L (mW m²-nm·sr)

ΔL / L (%)

Radiance:
Model (Blue) vs. Measurement (Red)

Residual Standard Deviation: 0.3%
Spectral Ranges

Direct Vertical Column Fitting (DVCF)

1. O$_3$ and SO$_2$: 308 – 360 nm
 - SO$_2$/O$_3$: 308 – 333 nm
 - Reflectivity/cloud fraction, aerosol index: 333 – 360 nm

2. NO$_2$: 345 – 378 nm
 - Full range: NO$_2$: 345 – 378 nm
 - reflectivity/cloud fraction, pressures, aerosol index: 350 – 378 nm

By-Products: O$_3$ profile and column, and surface parameters: reflectivity/cloud fraction, aerosol index, and pressure
Spectral interference

• Due to measurement imperfection and instrumental artifacts, such as stray lights, ghosting, etc.
• Spectral interference is the main factor limiting the sensitivity and accuracy of the retrieved trace gas columns.
Spectral interference: Signal Dependence

\[\log \left(\frac{L + \Delta L}{F} \right) = \log \left(\frac{L}{F} \right) + \frac{\Delta L}{L} \]
Characterizing Spectral interference

Error Covariance Matrix:

\[
\text{Cov}[i,j] = \langle \varepsilon(\lambda_i) \cdot \varepsilon(\lambda_j) \rangle
\]

where \(\varepsilon(\lambda_i) \) is the residual:

\[
\varepsilon(\lambda_i) = \text{Log}\left[\frac{I_{\text{measured}}(\lambda_i)}{I_{\text{modeled}}(\lambda_i)} \right]
\]

\(I_{\text{measured}} \): Sun-normalized radiance measurements

\(I_{\text{modeled}} \): Radiance from accurate RT modeling

Covariance Matrices: constructed for various conditions, such as solar and viewing angles, and scene reflectivity
Mitigating Spectral Interference

Fitting of the first few Eigen functions would significantly reduce the impacts of spectral interference.

- 1st Eigen function of the Covariance Matrix
- 2nd Eigen function of the Covariance Matrix
- 3rd Eigen function of the Covariance Matrix
OMPS Boundary Layer SO$_2$: Without Correction
OMPS Boundary Layer SO₂:
With Correction

SO₂ (DU)
Unprecedented SO$_2$ Sensitivity: Pollution over US

SNPP/OMPS
October 2013
Monthly Mean
DVCF Algorithm
NO₂ Measurement Sensitivity:
Cross Section \times Air Mass Factor

NO₂ Differential Cross Sections

Sensitivity to tropospheric NO₂: OMI 4 to 10 times > OMPS

Altitude-Resolved AMFs
OMPS NO$_2$ Measurement Sensitivity

Precision of slant column:
- OMPS $\sim 1 \times 10^{15}$ molecules/cm2
- OMI $\sim 1 \times 10^{15}$ molecules/cm2

Precision of vertical tropospheric column:
- OMPS $\sim 0.5 \times 10^{15}$ molecules/cm2
- OMI $\sim 1.0 \times 10^{15}$ molecules/cm2
NO$_2$ Strat-Trop Separation (STS): Orbit-Based Technique

Basic idea

- Localized (small scale) features in the strat fields are attributed to tropospheric signals due to shape factor prescription mismatch.
- Smoothing out these localized features improve both strat and trop NO$_2$ fields.

Procedure

- Initial STS done using tropopause and shape factor
- Two smoothed strat fields from sliding median of each cross-track position of an orbit: ~2° and ~20° latitude bands
- The excesses (+) and deficits (−) of strat NO$_2$ are the difference between the two smoothed fields.
- Trop columns adjustment: strat excesses are added to and deficits are subtracted from the trop fields, whilst accounting for their different measurement sensitivities.
OMPS: NO\textsubscript{2} Total Slant Columns

03/21/2013

09/22/2013

10^{15} molecules/cm2
OMPS: NO$_2$ Strat Vertical Columns

03/21/2013

09/22/2013

NO$_2$ molecules/cm2
OMPS: NO₂ Trop Vertical Columns

03/21/2013

09/22/2013

NO₂ \(\leq 10^{15} \) molecules/cm²
Comparison: OMI vs OMPS
Monthly Mean: December 2013

The graph shows a comparison of NO2 (10^15 molecules/cm^2) concentrations measured by OMI and OMPS across different longitudes. The data indicates a significant peak in NO2 concentration for both OMI and OMPS, with OMPS showing slightly higher values. The peak is centered around longitude 100 degrees.
Near-Real-Time SO₂ Product

- NRT SO₂/Ash are processed with the reliable Linear Fit (LF) algorithm. Data available at Ozone SIPS and LANCE.
- LF algorithm successfully transferred to NOAA.

Eruption of Kelud 2014/02/14. Figures from J. Niu (NOAA STAR)
Summary

• Advanced algorithm with more complete algorithm physics treatment and many improvements, including state-of-the-art radiative transfer modeling, accurate treatment of instrumental effect, and advanced soft calibration, have been developed and implemented for OMPS processing.

• These advances have enabled sensitive and unbiased measurements of tropospheric SO₂ and NO₂ from SNPP/OMPS-NM, achieving data quality that matches or exceeds those of its predecessors.

Acknowledgement

This work is supported by NASA.
Rapid Refreshing of Anthropogenic NO\textsubscript{x} Emissions to Support NWS O\textsubscript{3} Forecasting

Daniel Tong, Emission Scientist
NOAA National Air Quality Forecast Capability (NAQFC)
NOAA Air Resources Lab/UMD/GMU

With contribution from:
ARL Team: Li Pan, Charles Ding, Hyuncheol Kim, Tianfeng Chai, Min Huang, Youhua Tang and Pius Lee
NWS: Ivanka Stajner and Jeff McQueen
NESDIS: Shobha Kondragunta, Larry Flynn
NASA: Lok Lamsal and Kenneth E. Pickering
NOAA National Air Quality Forecast Capability (NAQFC)

- Developed by OAR/Air Resources Laboratory; Operated by National Weather Service (NWS) (PM: I. Stajner).

- Provides national numeric air quality guidance for ozone (operational product) and PM$_{2.5}$ (particulate matter with diameter < 2.5 µm);

http://airquality.weather.gov/

NAQFC is one of the major gateways to disseminate NOAA satellite observations and model prediction of air quality to the public.
Time lag is a major obstacle for NAQFC emission forecasting.

Forecasters want: *emission of tomorrow*;

Data availability: *emission data 4+ years old*.

(three years labor, one year QA, post-processing and release).

How to overcome this problem?

NAQFC Practices:

Option 1, no update (2007-2011) - Dear price paid;

Option 2, use EPA emission projection (2012-2015).

Option 3, *emission data assimilation* (2016-?).

(Tong et al., Atmos. Environ. 2015)
Impact of the Great Recession on US Air Quality

- **Starting – Ending time:** December 2007 – October 2009;

- **Cause:** Bursting of the housing bubble in 2007, followed by a subprime mortgage crisis in 2008;

- **Impacts:**
 - Income level: dropped to 1996 level after inflation adjustment;
 - Poverty rate: 12% → 16% (50 millions);
 - GDP: contract by 5.1%;

- **Worst economic recession since the Great Depression**

Question: What does it mean to Air Quality (and Emissions)?
Methodology

- **Emission Indicator – Urban NOx in Summer**
 - Short lifetime \Rightarrow proximity to emission sources
 - Urban NO2 dominated by local sources;
 - High emission density \Rightarrow low noise/signal ratio;

- **NOx Data sources**
 - Satellite remote sensing (OMI-Aura NO2).
 - Ground monitoring (EPA AQS NOx);
 - Emission data (NOAA National Air Quality Forecast Capability operational emissions);

- **Deriving the trend:** $(Y_2 - Y_1)/Y_1 \times 100\%$

- **Selection of urban areas**
NOx Changes

Prior to, during and after the Recession

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sources</th>
<th>Atlanta</th>
<th>Boston</th>
<th>Dallas</th>
<th>Houston</th>
<th>Los Angeles</th>
<th>New York</th>
<th>Philadelphia</th>
<th>Washington, DC</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>OMI SP</td>
<td>-11.7</td>
<td>-9.4</td>
<td>-7.5</td>
<td>-5.7</td>
<td>-3.3</td>
<td>-7.5</td>
<td>-0.6</td>
<td>-12.3</td>
<td>-7.3</td>
</tr>
<tr>
<td></td>
<td>AQS</td>
<td>-9.9</td>
<td>-2.1</td>
<td>-5.2</td>
<td>0.7</td>
<td>-2.0</td>
<td>-5.5</td>
<td>-5.5</td>
<td>-18.7</td>
<td>-6.0</td>
</tr>
<tr>
<td>During</td>
<td>OMI SP</td>
<td>-5.5</td>
<td>-7.5</td>
<td>-8.9</td>
<td>-7.9</td>
<td>-13.1</td>
<td>-6.2</td>
<td>-11.7</td>
<td>-13.0</td>
<td>-9.2</td>
</tr>
<tr>
<td></td>
<td>AQS</td>
<td>-17.5</td>
<td>-7.0</td>
<td>-13.0</td>
<td>-14.0</td>
<td>-10.3</td>
<td>-13.6</td>
<td>-7.0</td>
<td>-3.7</td>
<td>-10.8</td>
</tr>
<tr>
<td>After</td>
<td>OMI SP</td>
<td>-6.0</td>
<td>-3.3</td>
<td>-2.1</td>
<td>0.4</td>
<td>-5.0</td>
<td>-3.2</td>
<td>-1.2</td>
<td>-2.3</td>
<td>-2.8</td>
</tr>
<tr>
<td></td>
<td>AQS</td>
<td>1.4</td>
<td>-6.1</td>
<td>0.1</td>
<td>0.2</td>
<td>-6.4</td>
<td>-5.4</td>
<td>-6.1</td>
<td>-5.3</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

- Distinct regional difference;
- Average NOx changes are consistent for OMI and AQS data;
- -6%/yr - -7%/yr prior to Recession;
- -9%/yr - -11%/yr during Recession;
- -3%/yr after Recession (Recovery?).
Inter-Comparison of OMI, AQS and NAQFC

Los Angeles

New York

Philadelphia

Washington, DC

NOx Change from 2005 Level (%)
Feasibility Study: Emission Data Assimilation

(Project funded by OAR USWRP program, PM: J. Cortinas)

Can satellite data be used to rapidly refresh NOx emission?

Approach: Replace EPA projection factors by observation-based factors

Use both satellite and ground observations;

Optimal data fusion algorithm.

\[AF = \frac{\Delta S \times f_S + \Delta G \times f_G}{N_S \times f_S + N_G \times f_G} \]

\(\Delta S\) and \(N_S\) - changing rate and data number of satellite data;
\(\Delta G\) and \(N_G\) -- rate and number of ground data;
\(f_S\) and \(f_G\) -- weighting factors for satellite and ground data;
Why both satellite and ground observations?

Comparison of OMI and AQS (x100) Samples

OMI Preprocessing: 1) Quality filter; 2) Set a cut-off value; 3) Calculate lower and higher 25% percentiles

State-level Projection Factors from OMI and AQS

July 1, 2011 12:00:00
Min= -62 at (278,57), Max= 14 at (315,137)
Performance Evaluation of NAQFC O$_3$ Forecasting

Effect of Using EPA Projection

- Min: -8.458 at (368,214)
- Max: 16.094 at (408,254)

Effect of Using New Factors

- Min: -11.002 at (263,142)
- Max: 13.852 at (55,107)

Difference

- Min: -17.311 at (408,254)
- Max: 11.471 at (55,107)
Model Performance Evaluation

Performance Metrics

Prediction with the new assimilated emission data outperforms the current operational system.
Observed and Modeled Weekday/Weekend Difference in Tropospheric NO$_2$

(Courtesy: S. Kondragunta)
Summary & Future Plan

- Satellite observations can be used to detect emission changes consistent with ground observations;

- Demonstrate the feasibility of assimilating satellite and ground observations to rapidly update anthropogenic emissions;

- The assimilated emission data can improve NAQFC forecasting capability, outperforming the current operational system.

- Future plans include testing with GOME-2 and OMPS NO2 products beyond monthly means (e.g., daily change, over land and ocean).
Total Ozone from Assimilation of Stratosphere and Troposphere (TOAST) Its past, current and future versions

Jianguo Niu
System Research Group@NOAA/NESDIS/STAR

Larry Flynn,
NOAA/NESDIS/STAR

STAR JPSS Annual Science Team Meeting August 26, 2015
TOAST objective analysis

• **Basic consideration:**
 1. IR obs. possess higher sensitivity to lower atmosphere
 2. UV obs. Possess higher sensitivity to upper atmosphere.
 3. Mix the IR and UV retrieved O3 may increase O3 accuracy
 4. Fill in the UV observation gaps

• **Basic procedures:**
 1. Convert IR and UV O₃ pressure scale into same pressure scales.
 2. Coordinate transform from geographic into stereographic.
 3. Objective analysis.
 4. Analyzed global ozone data are transformed back to the geographic coordinate with 1°× 1° resolution.
Fig 1. coordinate transformation from geographic to Stereographic.

\[X = \cos \theta \cdot \cos \phi \cdot \frac{\sin \theta_0 + 1}{\sin \theta + 1} \cdot \text{Re} \left(\frac{N - 1}{\text{mesh}} \right) \] (1)

\[Y = \cos \theta \cdot \sin \phi \cdot \frac{\sin \theta_0 + 1}{\sin \theta + 1} \cdot \text{Re} \left(\frac{N - 1}{\text{mesh}} \right) \] (2)

mesh=24,384/(N-1) km, \(\theta_0=60^\circ \); N is mesh grid number; For CrIS N=245; for OMPS N=65

Any initial value on the grid within radius R and the origin point A determined circle will be corrected by the correction value C, where E is the difference between observation and the initial value at A, W is a weighting factor.

\[C = W \cdot E \] (3)

\[W = \frac{R^2 - d^2}{R^2 + d^2} \] (4)

Fig 2. scheme of objective analysis
The past TOAST: from 2002 to 2014

- Started from 01/01/2002 and has accumulated 11+ years data.
- Provide global $1^{\circ} \times 1^{\circ}$ total O_3
- Provide global $1^{\circ} \times 1^{\circ}$ for eight Umkehr layer O_3 at 31.7, 15.8, 7.93, 3.96, 1.98, 0.99, 0.50, 0.25 mb.
TOAST using TOVS and SBUV-2
(06-08-2013)

TOAST total amount
UTLS
31.7 mb
15.8 mb
7.93 mb
3.96 mb
1.98 mb
0.99 mb
0.5 mb
0.25 mb

TOAST = TOVS + SBUV-2
From 2012, S-NPP provided the following ozone sensors

- CrIS IR sensor monitoring global O3 profiles
- OMPS NP nadir view profiler
- OMPS NM nadir mapper
- OMPS limb

The current TOAST

- Total Ozone from Assimilation of CrIS and OMPS (NP) or SBUV2 in Stratosphere and Troposphere
- Current operational TOAST is running CrIS + SBUV/2 (N19) until OMPS advances into validated maturity.
TOAST using CrIS and OMPS/NP (or SBUV-2)
(06-08-2013)

\[\text{TOAST} = \text{CrIS} + \text{OMPS/NP or SBUV} \]
The upcoming TOAST (CrIS + OMPS/Limb)

• Using CrIS and OMPS Limb (61 one-kilometer-thick layers)
• Provide global 1° × 1° total O₃
• Provide global 1° × 1° O₃ maps of eight Umkehr layers at 31.7, 15.8, 7.93, 3.96, 1.98, 0.99, 0.50, 0.25 mb from OMPS Limb objective analyzed maps
• Provide global 1° × 1° O₃ maps of four Umkehr layers at 1013, 253, 127, 63.3 mb derived from CrIS NUCAPS product.
• Intend to provide 21 layer (V8 layers ~3km) analyzed maps
• Intend to provide Limb 61 layers analyzed maps
TOAST using CrIS and Limb
(09-03-2013)

\[\text{TACO total amount} \begin{array}{ccccccccccc} 1013 & 253 & 127 & 63.3 & 31.7 & 15.8 & 7.93 & 3.96 & 1.98 & 0.99 & 0.5 & 0.25 \text{ mb} \end{array} \]

\[\text{TOAST} = \text{CrIS} + \text{OMPS/Limb} \]
12 Umkehr layers analyzed O_3 09-03-2013

Limb

- 20130902Limb Layer-12 Dobson Unit
- 20130902Limb Layer-11 Dobson Unit
- 20130902Limb Layer-10 Dobson Unit
- 20130902Limb Layer-9 Dobson Unit
- 20130902Limb Layer-8 Dobson Unit
- 20130902Limb Layer-7 Dobson Unit
- 20130902Limb Layer-6 Dobson Unit
- 20130902Limb Layer-5 Dobson Unit
- 20130902Limb Layer-4 Dobson Unit
- 20130902Limb Layer-3 Dobson Unit
- 20130902Limb Layer-2 Dobson Unit
- 20130902Limb Layer-1 Dobson Unit

SBUV

- 20130902SBUV Layer-12 Dobson Unit
- 20130902SBUV Layer-11 Dobson Unit
- 20130902SBUV Layer-10 Dobson Unit
- 20130902SBUV Layer-9 Dobson Unit
- 20130902SBUV Layer-8 Dobson Unit
- 20130902SBUV Layer-7 Dobson Unit
- 20130902SBUV Layer-6 Dobson Unit
- 20130902SBUV Layer-5 Dobson Unit
- 20130902SBUV Layer-4 Dobson Unit
- 20130902SBUV Layer-3 Dobson Unit
- 20130902SBUV Layer-2 Dobson Unit
- 20130902SBUV Layer-1 Dobson Unit
12 Umkehr layers analyzed O₃ 09-03-2013

CrI+S

CrI+S + Limb
SBUV 12-layer vs. analyzed 09-03-2013

SBUV-2 input

TOAST SBUV-2 analyzed
Limb Layer reformed vs. analyzed

Layer reformed Limb input

Limb TOAST analyzed
20 day average of the relative differences to current version from 09-03-2013 to 09-22-2013
What we have achieved

• Limb TOAST and SBUV TOAST show similar global patterns and values in the upper layers (comparison need to introduce retrieval averaging kernels)

• Limb and SBUV2 analysis algorithm functions well from the comparison of the EDR input and analyzed figures

• 20 days of total column Ozone analysis have been conducted

• The averaged relative differences shows Limb TOAST total amount analysis has ±5% difference relative to current operational version (SBUV2 TOAST).
Conclusion

• TOAST has provided global one by one degree total ozone product for 11+ years.
• TOAST using CrIS and SBUV2, as a new version has been in operation and will be shifted to use CrIS + OMPS/NP mode whenever OMPS advances to its validated maturity.
• TOAST using CrIS and OMPS Limb preliminary total column analysis shows promising results.
• TOAST (CrIS+Limb) further work will be on detailed layer analysis by introducing retrieval averaging kernel.
THANKS
OMPS EDR Version 8 Ozone

OMPS-TC-EDR and OMPS-NP-EDR
Trevor Beck, Zhihua Zhang
August 26, 2015
NOAA STAR implemented the SBUV/2 Ozone profile algorithm in ADL/IDPS, unofficially named o3prov8.

MX8.11 will be the first official build with o3prov8.

Results in this presentation use SDR with recently updated tables.

On August 20 new tables were approved by AERB for both TC and NP.

SDR updated tables (provided by NASA PEATE):

1) TC-OSOL Observed Solar
2) TC-Wavelength
3) TC-CALCONST Calibration Constants
4) NP-OSOL Observed Solar
5) NP-Wavelength
6) NP-CALCONST Calibration Constants

Reprocessed several days and updated nvalue adjustments.
• OMPS-NP-EDR in IDPS Ozone profile came the version 6
• Added / Appended V8 code on top of V6, uses same measurement wavelengths as version 6.
• Generated instrument tables using OMPS bandpass functions
• New version 8 outputs appended to existing HDF5 output
• Software validation with off-line version
• Comparisons to NOAA-19 SBUV/2 datasets
 • Matchups
 • Chasing orbits
• Comparisons to EOS-AURA MLS
 • Matchups
Matchups within 150km

NPP OMPS and NOAA 19 for 1 Days, Beginning on 2013/03/20
Within 150.0 km, Ave time diff 2.3 Hours, 93 profiles

Profile Average Difference

StdDev, BLACK

%Diff, BLUE
Final Residual

Average Residuals

NPP OMPS Ave Residual

NOAA 19 Ave Residual
Initial Residual

Average Initial Residuals

NPP OMPS Ave Initial Residual

NOAA 19 Ave Initial Residual

Value Residual

Channel, nm

-10 -8 -6 -4 -2 0 2 4 6

260 280 300 320
Step 2 Ozone

261.1 DU, Step2 Ave for NOAA 19

262.4 DU, Step2 Ave for NPP OMPS
Layer 12 ozone

Layer Amount Along track at 5 hPa

Dobson Unit

Latitude

N19 Red

OMPS Blue
OMPS and MLS Matchups

NPP/OMPS SBUV and MLS
V8 Total Ozone

- STAR delivered a V8 Total Ozone to update/replace existing V7 triplet total ozone algorithm
- Possibility it will make it into MX 8.12 build deadline
Summary

- V8Pro Ozone algorithm in MX8.11 build
- V8Total Ozone algorithm hopefully in MX8.12 build
- New NPP OMPS TC and NP SDR tables produce reasonable NP-EDR ozone profiles
- EDR Will be ready for J01, waiting for Block2 SDR Integration
- J01 NP SDR will operate at medium resolution 5 scans per granule
- Evaluate J01 NP SDR and decide if we will do J01 NP-EDR with 5 scans per granule or 1 scan per granule.
STAR JPSS 2015 Annual Science Team Meeting

OMPS Product Demonstration Site
(OMPS Product Monitoring at the ICVS)
Eric Beach, IMSG@NOAA/STAR
Lawrence Flynn, NOAA/STAR
Aug. 26, 2015
OMPS Product Demo Site URL:
http://www.star.nesdis.noaa.gov/icvs/prodDemos/index.php

General Characteristics of site:

- Depicts performance of OMPS, GOME-2 and SBUV/2 instruments
- Updated daily, weekly, or monthly depending upon the type of plot
- Navigable via menu on left side of page. Pull down menus are available for most plot types to select previous time periods.
- Site is currently being redesigned.
SBUV/2 Operational Performance

- SBUV/2 data products are monitored long term
- Parameters plotted include:
 - Daily zonal mean initial/final residual
 - Daily zonal mean initial/final residual standard deviation
 - Daily zonal mean total ozone pair difference
 - Monthly ozone retrieved apriori profile difference
 - Weekly mean 1 percentile reflectivity
GOME-2 (Metop A/B)

Parameters plotted include:

- Mg-II index
- Daily zonal mean total ozone, aerosol index, reflectivity, step 1 residual
- 4-Weekly mean total ozone, reflectivity, aerosol index, step 1 residual
Ozone Product Comparisons

Plots compare multiple ozone instruments

• Daily zonal mean comparisons

• Chasing orbit comparisons

• Comparisons with Dobson ground stations
OMPS, GOME-2, and OMI Maps

- Daily “postage stamp” images depicting total ozone, reflectivity, and aerosol index
- OMPS V8, INCTO, OOTCO, and OMI products are available
OMPS V8 Total Ozone

- Monitor the performance of the V8 ozone, reflectivity, and aerosol products
- Daily zonal mean and 4 weekly mean plots are available for each product
OMPS INCTO Product

- Monitor the performance of the operational INCTO product
- Graphs produced:
 - Daily zonal mean (Ozone, Aerosol, and SO2 index)
 - 4-weekly mean and daily zonal 1 percentile plots are available for each product
- Percent good rate
- Similar plots are made for the OOTCO product
OMPS V8 Profile Product

- Monitor the performance of the V8 profile product
- Plots produced:
 - Daily zonal mean initial/final residual
 - Zonal mean total column O3 – profile O3
 - Retrieved – A priori plots
OMPS IMOPO Profile Product

- Monitor the performance of the operational IMOPO profile product
- Plots produced include:
 - Daily zonal mean initial/final residual, pair difference, and A,B,D pair total ozone
 - Column – profile
 - Retrieved – A priori
 - Percent good rate
New OMPS EDR Site Features

- Plots and images will have consistent projections, labels, fonts, and sizes
- Navigation improvements will include:
 - Parameters selected via pull down menu
 - Selectable dates or products via forward or reverse buttons. Also enable date selection via a calendar interface
 - For daily image products, animations can be produced
Conclusion

• Quick demo of web site

• Current EDR ICVS URL:
 http://www.star.nesdis.noaa.gov/icvs/prodDemos/index.php

• New EDR ICVS site URL:
 http://www.star.nesdis.noaa.gov/jpss/EDRs/products_ozone.php
OMPS data validation with NOAA ground-based systems

Robert Evans, Bryan Johnson, Irina Petropavlovskikh, Glen McConville Patrick Cullis, Audra McClure-Begley, Allen Jordan (NOAA/CIRES) and Eric Beach, Trevor Beck, Zhihua Zhang, L. Flynn (NOAA/STAR)
NOAA GMD ozone and water vapor group maintains long-term records of total column and ozone profiles at 20+ unique locations around the globe.
As a part of routine quality checks, Dobson and OMPS daily total ozone measurements are compared to long-term averages and standard deviation for each respective station. In the example from Hanford, California, the unusually high total column ozone was observed on March 1, 2015 by both systems. If there is unusually large and abrupt change in the Dobson ozone measurements (outside of two standard deviation limits), the OMPS total ozone maps are used to interpret spatial ozone variability.

Example for ozone column measurements at NOAA Dobson station Hanford, CA (red circles) and OMPS total column ozone reading over the station (Teal lines).

Thin Grey lines represent the climatological two standard deviation limit.

Comparison of Daily Total Ozone Variability
The origin of elevated ozone is also seen from the OMPS daily gridded map for March 1, 2015. The high ozone filament was transported from high latitudes and brought over Hanford CA.
Daily total ozone values (large red dots) from the Dobson Ozone Spectrophotometer (red) at MLO, Hawaii are plotted with co-incident ozone values from Aura/OMI (blue) and JPSS/OMPS satellite data (green). Apparent annual ozone cycle in Dobson measurements is shown with dark line (smoothed). The 1 and 2 STD are shown in grey. This plot is used for assessment of the inter-seasonal ozone variability and identifies measurements that exceed expected variation limits.

Seasonal Comparison with Dobson Total Ozone
Example of comparisons for MLO. Data are matched by date and location. Looking for offset and apparent seasonal cycle caused by temperature sensitivity of ozone cross sections or stray light.
Dobson Total Column ozone measurements have been maintained since 1960 providing a reliable, long-term record of the ozone hole each year. This record is used for understanding of trends and levels of on-going recovery in the ozone layer.
Problem with satellite comparisons in Sept/Oct – difficult to match satellite tracks with SP ozone sonde profiles (matching overpass satellite data are large distance away from SP, or by 8-10 degrees in latitude)
Issues with ground based/satellite comparisons in Sept/Oct – OMPS, OMI, or MLS overpass is lower by 8-10 degrees in latitude from SP location.
TOC*airmass

Distance from stations

Time of satellite overpass

Time difference between satellite overpass and Dobson measurement
Dobson data was first adjusted by Ozone Weighted temperature based on McP and LaBow, 2011 Climo, then a correction is made on the percent difference based on the linear regression slope of difference WRT to time difference reported for Dobson Rep value and OMPS overpass. Daily Representative Dobson values from ADDS obs with slant path ozone of 1000 or less are matched with both OMI and OMPS values on the same day.
Comparisons of vertical ozone profiles between Umkehr, SBUV (NOAA19) and OMPS (IMOPO, V6).
The overpass satellite data are tested for dependence on distance and TO differences.

Boulder, 2012-2014

OMPS/Dobson Bias in layers 4-9 is within +/- 5%

Bias between OMPS or Umkehr relative to SBUV N19 in layers 4-9 increases with altitude, note negative 15-20% offset in layer 8.
Boulder, 2012-2014, OMPS and Umkehr(stray)
Layer 7 + 6, Frequency Comparison, Date matched

- Red = dist<800 & TOdif<5%
- Black = all

Corr=0.91, Corr(dis)=0.91, Corr(dis&TO)=0.9
Boulder, 2012-2014, OMPS and Umkehr(stray)
Layer 7 + 6, Difference, Date matched

Time series, Year

DISTANCE, km

OMPS-UMK TO, %
Boulder, 2012-2014, OMPS and Umkehr(stray)
Frequency Comparison, Matched Date
Profile comparisons show OMPS has different profile shape as compared to Umkehr and SBUV.

Ozone sonde integrated in Umkehr layers has more ozone in layer 5 than in satellite or Umkehr retrieval. Note, improved agreement with AK smoothed sonde.

The plot with high resolution reveals several lamina in the ozone-sonde measured vertical structure. Although OMPS LP does not capture these lamina, it captures profile shape in stratosphere fairly well.
Conclusions

- Ground-based Dobson data have been regularly used to keep track of temporal and spatial variability in overpass OMPS (SDR, level1) ozone column and profile data.
- 5 Dobson stations are currently outfitted with the automation system. Real time data comparison capability is available from the associated WinDobson software package.
- Correlations in TOC are between 0.88 and 0.97 (distance/time).
- The mean bias and seasonal cycle offsets are noticed in MLO, Boulder, and Fairbanks stations. Lauder appear to compare very well.
- The overpass NM INCTO data are created within a box that is +/- 0.5 degrees in latitude and +/- (1/cos(lat*π/180)) in longitude, but it may need to be more restrictive to have adequate comparisons.
- Profile comparisons between NP IMOPO and Umkehr are within +/- 5% in stratosphere (or above 68 hPa pressure level).
- In troposphere and lower stratosphere agreement depends on a priori and algorithm’s difficulty to resolve profile around the tropopause.
- Looking forward to work on validation of the V8 data.
OMPS Gallery

Colin Seftor
2014 Ozone Hole as seen by OMPS
Smoke From US Fires
(OMPS Aerosol Index over VIIRS RGB)

[Images showing aerosol index over the United States on August 21 and August 22, with a color scale from 0.0 to 5.0 for the Aerosol Index.]
Smoke From US Fires
(OMPS Aerosol Index over MODIS RGB)
Canadian Smoke over the US (OMPS AI over VIIRS RGB)
Canadian Smoke over the US (OMPS AI over VIIRS RGB)
Creation of a PyroCb near Lake Baikal
(OMPS AI over MODIS RGB)
Transport of Alaskan Smoke to Greenland, Canadian Smoke to Europe
Transport of Russian Smoke Across Pacific
(OMPS AI over VIIRS RGB)
Smoke From Russian Fires
(Hi Res OMPS AI over MODIS RGB)
Saharan Dust Transport Across the Atlantic

12 June

13 June

14 June

15 June

16 June

17 June

Aerosol Index

5.0

0.0
Ash From Calbuco
(Two days after the eruption)
SO2 From Calbuco
(Compilation, 23-29 April 2015)
OMPS Reflectivity and Aerosol Index
(Super High Resolution Mode – Single Pixel)

OMPS Reflectivity and Aerosol Index

29 January 2012 high spatial resolution data
GSICS Coordination Centre

Supported by JPSS Mission

Manik Bali and Lawrence E Flynn
Introduction

GSICS Coordination Center (GCC)

- GSICS Quarterly Newsletter
 - (3 Special Issues + 2 General)
- Meeting Support
 - (User Workshop Shanghai)
- GPPA and Product Acceptance (Timeliness, WGCV).
- Definition of GSICS Products and Deliverables.
- Awards and Outreach (Call issued for awards)
- How good are GSICS References

GCC and JPSS Mission

- OMPS EDR SDR
- CrIS as a reference
- ATMS- Inter comparison with MSU/AMSU**
- Selection of In-orbit References.
- VIS Integrated method to improve calibration accuracy from multiple vicarious method
- SSU recalibration for CDR development.

GSICS Data Working Group

- Past-Chaired the GDWG
- Satellite ‘Instrument Event Logging
- Archiving GSICS Products.
- Evaluation of doi for GSICS Products
- MW metadata and filenaming conventions
- Support Lunar Calibration WS in Darmstadt (code sharing).
- Proposed Document Management plan to GSICS.

****Contributes to JPSS mission contributes towards JPSS goals and initiatives****

OMPS CrIS ATMS

GSICS
Global Space-based Inter-Calibration System
invited Authors of GSICS Microwave issue to submit articles based on their submission to GSICS Newsletter.

GSICS Quarterly Newsletter Features

• Since Fall 2013, brand new format.
• Since Winter 2014, the Newsletter has a doi.
• Accepts articles on topics related to calibration (Pre and Post launch).
• New Landing page on the GCC website.
• Rate and Comment section: readers and authors can interact.
• Articles are reviewed by subject experts.
• Help available to non native English speaking contributors.
• Since Fall 2014, new navigation features added to the Cover Letter.

Journal of Physics and Chemistry of Earth

invited Authors of GSICS Microwave issue to submit articles based on their submission to GSICS Newsletter.
Retrieval of Spectral Response Function using Hyper-Spectral Radiances

Developed a Method to retrieve spectral response functions using In-Orbit Inter-Comparison with CrIS/IASI/AIRS

\[
\begin{bmatrix}
 a_{1,1} & \cdots & a_{1,n} \\
 \vdots & \ddots & \vdots \\
 a_{n,1} & \cdots & a_{n,n}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
= \begin{bmatrix}
 b_1 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

SRF \((b_i) = A^{-1} B \)

Validation

VIIRS I5 Retrieved SRF

GOES-13 Retrieved SRF 11 Micron

CrIS-VIIRS collocation data curtsey: Likun Wang
Study was done at GCC/NOAA to investigate the reliability of GSICS references instruments by comparing with extremely accurate instrument (A/ATSR, Climate Satellite by design).

Top left image shows that IASI and AIRS (right) are nearly as good as pre-launch references. While the IASI has an offset of nearly 0.073K the AIRS seems to have an offset of nearly 0.

Bali, Mittaz, Goldberg, 2015, Submitted to AMT

IASI and AIRS nearly as good as Pre-Launch reference
Growing need to use instruments that yield climate scale corrections
Diverse requirements across (even within subgroups)
Selecting Reference Instrument Process and a Scoring Scheme

Example of Proposed Scoring Scheme for GSICS Re-Analysis Correction for Meteosat Second Generation IR Channels

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Saturation</th>
<th>MetopA/IASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2013</td>
<td>2013</td>
<td>2006</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>-90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>-180</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>180</td>
</tr>
<tr>
<td>746</td>
<td>2564</td>
<td>650</td>
</tr>
<tr>
<td>2007</td>
<td>2020</td>
<td>Pass</td>
</tr>
<tr>
<td>746</td>
<td>2564</td>
<td>650</td>
</tr>
</tbody>
</table>

Detailed Information

- **OSCAR** provides limited but critical information on instruments.
- Both SAPHIR and ATMS can score the same marks.

Group Considerations

- A sub-group meeting is organized to identify instrument to be monitored.
- Group wishes to monitor GPM satellites spread over a range of roughly 25S to 25N (for example)
- Group evaluates ATMS and SAPHIR.
- Group considers that SAPHIR are the first radimeters in the 183 GHz in low inclination orbit (Wilheit).

More Stable and Accurate References

More stable and accurate references being explored for example AMSU/MSU FCDR.
• MW metadata and filenaming conventions

• NOAA GDWG in collaboration with MW former Chair Cheng-Zhi formulated the MW metadata and filenaming conventions for MW GSICS Products.

• The conventions were accepted by the GDWG members and would be put up on the wiki.

• Proposed Document Management plan to GSICS.

NOAA proposed to GSICS a Document Management Plan based on the DMS existing at NOAA library. Review of this plan underway
Summary

• GCC actively engaged in JPSS Instrument in-orbit calibration.
• GSICS Coordination Center leading efforts in In-Orbit Reference (radiance) Instrument Identification, Cross Calibration Product Maturity and Data Standardizations.
• Developed new technique to retrieve in-orbit SRF.