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Abstract—An updated version of the microwave-integrated re-4
trieval system (MiRS) V11.2 was recently released. In addition5
to the previous capability to process multiple satellites/sensors, the6
new version has been extended to process global precipitation mea-7
surement (GPM) microwave imager (GMI) measurements. The8
main purpose of this study is to introduce MiRS GPM products9
and to evaluate rain rate, total precipitable water (TPW), and10
snow water equivalent (SWE) using various independent datasets.11
Rain rate evaluations were performed for January, April, July,12
and October 2015 which represents one full month in each sea-13
son. TPW was evaluated on four days: 9 January, 1 April, 1314
July, and 1 October, which represents one full day in each sea-15
son. SWE was evaluated for a week in January 2015. Results show16
that MiRS performance is generally satisfactory in regards to both17
global/regional geographical distribution and quantified statisti-18
cal/categorical scores. Histograms show that MiRS GPM rain rate19
estimates have the capability to reproduce moderate to heavy rain20
frequency distribution over land, and light rain distribution over21
ocean when compared with a ground-based reference. Evaluations22
of TPW show the best performance over ocean with the correla-23
tion coefficient, bias, and standard deviation of 0.99, <1.25 mm,24
and <2.4 mm, respectively. Robust statistical results were also ob-25
tained for SWE, with a correlation coefficient, bias, and standard26
deviation of 0.77, 1.72 cm, and 3.61 cm, respectively. The examples27
shown demonstrate that MiRS, now extended to GPM/GMI, is ca-28
pable of producing realistic retrieval products that can be used in29
broad applications including extreme weather events monitoring,30
depiction of global rainfall distribution, and water vapor patterns,31
as well as snow cover monitoring.32

Index Terms—Global precipitation measurement (GPM),33
microwave-integrated retrieval system (MiRS), rain rate (RR),34
satellite.35
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I. INTRODUCTION 36

SATELLITE-BASED observations have provided expanded 37

opportunities for rainfall and hydrometeor monitoring by 38

providing global-scale brightness temperature measurements 39

over land and ocean. Accurate rain rate retrieval around the 40

globe is crucial for applications, such as extreme weather event 41

detection, flood, and drought monitoring. Retrieval techniques 42

based on space-based measurements began in 1970s when mete- 43

orological satellites became operational in greater number and 44

began transmitting radiance data back to the Earth [1]. Due 45

to the advantages of high spatial and temporal coverage rel- 46

ative to ground-based measurements, such as radar and rain 47

gauge, many algorithms have been developed to convert satel- 48

lite measured radiances into geophysical parameters, including 49

precipitation. 50

By estimating the direct interaction of the radiation with liq- 51

uid and frozen water in the atmospheric column, data from 52

microwave radiometers, thus, can be used to provide physi- 53

cally reasonable retrievals of precipitation rate. Wilheit et al. 54

[2] comprehensively examined 16 rainfall intensity retrieval al- 55

gorithms including algorithms that use high-frequency scatter- 56

ing measurements, low-frequency emission measurements, and 57

combinations based on the special sensor mircrowave imager 58

radiances. Weng et al. [3] and Ferraro et al. [4] described the 59

microwave surface and precipitation product system which re- 60

trieves total precipitable water (TPW), cloud liquid water, and 61

ice water path using a physical approach, and evaluated the 62

product based on multiple sensors. The advantages of statis- 63

tical regression-based algorithms are 1) they do not require 64

knowledge of the physical relationship between rain rate and 65

satellite brightness temperature, and 2) assuming there exists a 66

linear relationship between brightness temperatures and rainfall, 67

they always minimize the least squares retrieval error. However, 68

the relationship between rain rate and microwave radiances is 69

known to be highly nonlinear, as well as exhibit seasonal and re- 70

gional dependence. Thus, a physical-based retrieval algorithm 71

was introduced by Petty [5] aimed at inverting multichannel 72

microwave radiances to determine physical information on hy- 73

drometeors. In addition to rain, Surussavadee and Staelin [6] 74

extended the retrievals to snowfall rate and to snow and ice 75

surfaces. The Goddard Profiling Algorithm is a noteworthy sys- 76

tem which uses a Bayesian inversion for all surface types. The 77

method was first developed to retrieve precipitation from the 78

tropical rainfall measuring mission microwave imager [7], and 79

then evolved to a fully parametric approach used operationally 80
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on global precipitation measurement (GPM) microwave imager81

(GMI) [8].82

The microwave-integrated retrieval system (MiRS, https://83

www.star.nesdis.noaa.gov/mirs/) is an inversion algorithm84

based on physical forward modeling and can invert observed85

multichannel radiances simultaneously to determine key com-86

ponents of the atmosphere and surface state, including rain87

parameters [9], [10]. The system has been operational since88

2007 at the National Oceanic and Atmospheric Administration89

(NOAA) and has routinely produced satellite retrieval prod-90

ucts from a growing list of microwave satellites/sensors. The91

most recent released version is V11.2 which extended MiRS92

capability to process GPM/GMI measurements. This study in-93

troduces and evaluates GPM/GMI retrieval products within the94

MiRS framework. Section II introduces 1) the MiRS algorithm,95

2) the GPM/GMI data used as input to the system, 3) other96

datasets that were used as references to estimate performance,97

and 4) the performance evaluation methods. Section III includes98

MiRS-retrieved products and evaluation results. Discussion and99

conclusion are in Section IV.100

II. ALGORITHM, DATA, AND EVALUATION METHOD101

The MiRS is an iterative physically-based one-dimensional102

variational (1-DVAR) retrieval algorithm [11], [12]. The prin-103

ciple is to minimize a two-term penalty function, which is104

composed of the departure of the simulated radiances from105

measurements and the departure of the retrieved parameters106

from their respective a-priori backgrounds. To evaluate MiRS-107

GPM/GMI products, we used various independent data for dif-108

ferent parameters, i.e., Stage-IV radar-gauge composites for rain109

rate (RR), European Centre for Medium-Range Weather Fore-110

casts (ECMWF) global analyses for TPW, and Japan Aerospace111

Exploration Agency (JAXA) advanced microwave scanning ra-112

diometer 2 (AMSR2) data for snow water equivalent (SWE).113

A. MiRS Algorithm114

The 1-DVAR algorithm used by MiRS is an iterative approach115

finding the optimal solution that fits the observed satellite ra-116

diance, subject to other constraints. The cost function to be117

minimized is118

J(X) =
[
1
2
(X − X0)

T × B−1 × (X − X0)
]

+

·
[
1
2
(Y m − Y (X))T × E−1 × (Y m − Y (X))

]

(1)

where X is the retrieved state vector. The first item on the119

right represents the penalty for departing from background X0120

weighted by the error covariance matrix B. The second term121

represents the penalty for the simulated radiances Y departing122

from the observed radiances Y m , weighted by instrument and123

modeling error E.124

Assuming local linearity125

y(x) = y (x0) + K [x − x0 ] . (2)

This leads to iterative solution 126

ΔXn + 1 =
{

BKT
n

(
KnBKT

n + E
)−1

}

· [(Y m − Y (Xn )) + KnΔXn ] (3)

where ΔX is the increment of the state vector iteration n + 1, 127

and K is the matrix of Jacobian which contains the sensitivity 128

of the radiances to changes in X (parameters to retrieve). 129

The departure from measured radiances normalized by the 130

noise level and the specification of uncertainty in the forward 131

modeling make it possible to use the signal of a particular chan- 132

nel when the geophysical signature is stronger than the noise. 133

Conversely, at other times, it may be possible to deweight the 134

information from same channel when the signal in question is 135

within the noise level. The departure from the background scaled 136

by the uncertainty assigned to the background result in retrievals 137

closer to an a-priori background estimate if it is deemed accu- 138

rate. The MiRS currently uses a “dynamic background” as an 139

a-priori constraint, for temperature, water vapor, and skin tem- 140

perature, which varies with latitude, longitude, season, and time 141

of day. Empirical orthogonal functions are used as basis func- 142

tions to further reduce the degrees of freedom in the solution 143

and stabilize the retrieval. 144

The Community Radiative Transfer Model (CRTM) [13], 145

[14] produces radiances and the corresponding Jacobians un- 146

der clear, cloudy, and precipitating conditions. The model has 147

been validated against various satellite measurements [15], [16]. 148

MiRS uses CRTM as the forward operator to perform retrievals 149

under all these sky conditions. Given a set of radiances, an 150

a-priori (background) estimate of the geophysical mean and 151

its associated covariance matrix, and assuming the hypotheses 152

for its mathematical basis are satisfied, MiRS produces a set of 153

self-consistent parameters that are also consistent with the mea- 154

sured parameters. When processing satellite sensor data with 155

a full complement of temperature, water vapor, and surface- 156

sensitive channels, the official MiRS products generally include 157

temperature and water vapor vertical profiles, cloud and pre- 158

cipitation vertical profiles (nonprecipitating cloud amount, rain, 159

and graupel), skin temperature, and the surface emissivity spec- 160

trum. Postprocessing of elements within the retrieved state vec- 161

tor yield additional retrieval products, such as RR, TPW, sea ice 162

concentration and age, SWE, and grain size. In the case of TPW, 163

simple vertical integration of the retrieved water vapor profile 164

is done. For RR, offline relationships between surface RR and 165

total rain water, graupel water, and cloud liquid water path were 166

developed from mesoscale forecast model simulations. Finally, 167

for sea ice and snow water, external catalogs that relate the sur- 168

face emissivity spectrum to ice and snow amounts are used. In 169

the case of snow water, a single-layer physical snow model de- 170

veloped at NOAA is used to build the catalogs. An important 171

feature of MiRS is that, as currently configured, retrievals do 172

not require real-time ancillary data such as those coming from 173

numerical weather prediction model forecasts. MiRS products 174

based on various satellite/sensors have been examined, for ex- 175

ample, [17], [18]. In the case of GPM/GMI, with a reduced 176

channel set primarily designed to measure surface and precip- 177

itation phenomena, the official MiRS GPM products are RR, 178
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rain water path, graupel water path, cloud liquid water, TPW,179

and SWE.180

B. Datasets Description181

The GPM satellite, launched on February 27, 2014, is a joint182

effort of JAXA and the National Aeronautics and Space Ad-183

ministration. GPM has dual-frequency precipitation radar and184

GMI passive radiometer onboard. This study uses GMI ob-185

served microwave radiances as input to MiRS. GMI, across a186

swath of 885 km, is a passive sensor that uses 13 different fre-187

quency/polarization channels to observe energy from various188

types of precipitation through clouds for estimating everything189

from heavy to light rain and for detecting falling snow. Table I190

lists GMI channel information, including central frequency, po-191

larization, bandwidth, noise equivalent differential temperature192

(NEDT), beam width, and ground footprint size. Retrieved out-193

put products from MiRS analyzed in this study include the194

surface RR as well as rain water, graupel water, and nonprecipi-195

tating cloud water. This paper will evaluate RR, TPW, and SWE196

with different independent data sources.197

RR retrievals are evaluated by Stage IV [19], [20] which is a198

4-km gridded precipitation analysis over the conterminous U.S.199

(CONUS) produced by National Centers for Environmental Pre-200

diction. The data are based on the multisensor precipitation es-201

timator analyses known as Stage III which use multisensor data202

(WSR-88D radar and gauges) and are specified on 4-km polar-203

stereographic grids produced by the 12 River Forecast Centers.204

In this paper, we used the hourly products that are collocated205

with GPM/GMI measurements for validation. The ECMWF206

(http://www.ecmwf.int/) data which are used to evaluate MiRS207

performance have 91 vertical levels between the surface and208

0.01 hPa. The horizontal resolution is approximately 125 km209

(spectral truncation T159) and the temporal resolution is 3 h.210

The ECMWF gridded data were matched to sensor granules for211

direct comparison. MiRS retrieved SWE was compared with212

the Level-3 SWE dataset based on observations of AMSR2 [21]213

onboard JAXA Global Change Observation Mission 1st-Water214

(GCOM-W) June 2015 and were mapped to 25-km grids in near215

real-time mode (available at https://lance.nsstc.nasa.gov/amsr2-216

science/data/level3/daysnow/).217

C. Evaluation Methods218

Performance of the retrieval system was evaluated both ob-219

jectively by statistical and categorical scores and subjectively220

by viewing geographical distribution. Statistical evaluation in-221

cludes correlation coefficients, biases, standard deviations, and222

root–mean-square errors. In this study, we use three categorical223

scores [22] to evaluate RR retrieval. Probability of detection224

(POD), sometimes called hit rate, represents the ratio of to-225

tal rain retrievals greater than a threshold divided by total rain226

observations in Stage IV greater than the same threshold and de-227

fined by: POD = (number of rain events correctly retrieved by228

MiRS)/(total number of Stage-IV observed rain events). False229

alarm ratio (FAR), the fraction of the all observed no rain events230

(as defined by a threshold) in which there was a retrieval of rain231

greater than the same threshold, and is calculated by: FAR =232

Fig. 1. Global RR distribution intercomparision between (a) MiRS GPM/GMI
and (b) SNPP/ATMS for July 13, 2015.

(number of retrieved false alarms)/(total number of Stage IV no 233

rain events). (Note that this is defined in [22] as the Probabil- 234

ity of false detection.) The Heidke skill score (HSS) measures 235

the fraction of correct rain retrieval after eliminating those re- 236

trievals which would be correct due purely to random chance. 237

Thus, HSS = (correct retrieval proportion−proportion correct 238

by chance)/(total number of observations−proportion correct 239

by chance), in which a perfect score = 1. 240

III. RESULTS 241

The global RR distribution retrieved by MiRS GPM/GMI for 242

July 13, 2015 is shown in Fig. 1(a). MiRS retrievals based on 243

the advanced technology microwave sounder (ATMS) onboard 244

the Suomi national polar-orbiting partnership (SNPP) are also 245

included for an intercomparison (see Fig. 1(b)). MiRS does not 246

retrieve RR over frozen surfaces; thus, the northern and south- 247

ern snow and sea ice covered areas are denoted as no reports for 248

SNPP/ATMS (see Fig. 1(b)). Despite the swath gaps, GPM/GMI 249

is consistent in distribution and intensity with SNPP/ATMS 250

globally. Active rain areas (red circle on the figures), such as ad- 251

jacent ocean of southern Mexico and Northern Japan, Philippine 252



IEE
E P

ro
of

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

TABLE I
GPM/GMI CHANNEL INFO

Chan. No. Central Freq. (GHz) (Polarization) Band Width (MHz) NEDTa (K) Beam Width (deg) FOVb size ASc × CSd (km)

1 10.65 (V) 100 0.96 1.75 19.4 × 32.2
2 10.65 (H) 100 0.96 1.75 19.4 × 32.2
3 18.7 (V) 200 0.84 1.00 11.2 × 18.3
4 18.7 (H) 200 0.84 1.00 11.2 × 18.3
5 23.8 (V) 400 1.05 0.90 9.2 × 15
6 36.5 (V) 1000 0.65 0.90 8.6 × 14.4
7 36.5 (H) 1000 0.65 0.90 8.6 × 14.4
8 89.0 (V) 6000 0.57 0.40 4.4 × 7.3
9 89.0 (H) 6000 0.57 0.40 4.4 × 7.3
10 166.0 (V) 3000 1.5 0.40 4.4 × 7.1
11 166.0 (H) 3000 1.5 0.40 4.4 × 7.1
12 183.31 ± 3 (V) 3500 1.5 0.40 4.4 × 7.2
13 183.31 ± 7(V) 4500 1.5 0.40 4.4 × 7.2

aNEDT: Noise equivalent differential temperature.
bFOV: Field-of-view.
cAS: Along-scan direction.
dCS: Cross-scan direction.

TABLE II
LAND RR STATISTICAL ANALYSES OVER CONUS

Month No. of Points (×103) Corr. Coef. Bias (mm/h) Std. Dev. (mm/h)

January 1390 0.60 −0.02 0.58
April 2567 0.55 0.03 0.86
July 2733 0.52 0.04 1.18
October 2662 0.58 0.01 0.70

Sea, the Southern Hemisphere ocean around −45° latitude, etc.,253

are consistent across the two satellite retrievals. There are some254

inconsistencies between the two due to different local passing255

time. The SNPP is in a geosynchronous polar orbit with a local256

equatorial passing time of 1:30 pm (ascending), while GPM or-257

bits between 65°N and 65°S, and does not have a fixed passing258

time, but one that repeats approximately every two weeks.259

RR retrieval performance at the hourly timescale has been260

quantified for four full months chosen to reflect the typical sea-261

sonal cycle over the Northern Hemisphere, which in this study262

were January, April, July, and October from 2015. Table II con-263

tains the statistics based on collocation over the CONUS with264

the hourly Stage IV analyses over land surfaces. Correlations265

between land retrievals and observations for January, April, July,266

and October are 0.60, 0.55, 0.52, and 0.58, biases are −0.02,267

0.03, 0.04, and 0.01 mm/h, and the standard deviations are 0.58,268

0.86, 1.18, and 0.70 mm/h, respectively.269

To characterize the distribution of RR, histograms based on270

over land rainfall are shown in Fig. 2, for each of the four271

months. Over land, MiRS typically underestimates relative to272

Stage IV the occurrence of light rain events below 2.0 mm/h for273

all four months (see Fig. 2(a)–(d)) with January and July show-274

ing the maximum and minimum underestimation, respectively.275

The seasonal transition months of April and October show sim-276

ilar behavior, lying in between the two extremes of January and277

July. Above approximately 2 up to 10 mm/h, agreement be-278

tween MiRS and Stage IV occurrence is quite good in all four279

months. The underestimation of light rain occurrence over land280

is characteristic of microwave retrieval algorithms generally, as 281

the emission signal of the rainfall is low relative to the high and 282

variable surface emission background. 283

We further calculated categorical scores of POD, FAR, and 284

HSS as a function of rain/no rain threshold at 0.5-mm/h inter- 285

vals. The results are shown in Fig. 3. POD and HSS for the four 286

months are generally higher than 0.3. In July, both POD and 287

HSS are highest at the lowest RR threshold (0.5 mm/h). This is 288

likely due to the climatological presence of low-level stratiform 289

rain in fall, winter, and spring, which can be contrasted with July 290

in which light rainfall may have origins with deeper convective 291

systems having a stronger scattering signal in microwave mea- 292

surements. Comparing with summer (July) which shows almost 293

linear deceasing scores from light to heavy rain, winter (Jan- 294

uary) POD, and HSS peaked at 2 mm/h. During spring (April) 295

and fall (October), both PODs have the highest value at 2 mm/h, 296

HSS in April is decreasing with increasing RR while in October 297

is stable between 0.35 and 0.40. 298

RR retrieval at the regional and monthly scale is illustrated 299

over the CONUS (seeFig. 4) for land surfaces for the same four 300

months in 2015. RR retrievals from GPM were collocated with 301

Stage IV hourly estimates for each day of the month to produce a 302

monthly accumulated rainfall on the Stage IV 4-km grid. (Note 303

that this is not the true monthly accumulation since any location 304

would be sampled at most twice daily by GPM, and because 305

the Stage IV analyses are not reliable for many locations in 306

the mountainous western U.S. due to orographic artifacts in the 307

required radar data [23].) Monthly accumulated rain retrieval 308

along GPM swaths (see Fig. 4(a)–(d)) for January, April, July, 309

and October 2015 is compared with collocated Stage-IV grids 310

(see Fig. 4(e)–(h)). In each map, the areas masked in white over 311

the western U.S. are locations where the Stage IV processing 312

does not estimate rainfall due to radar beam blockage effects. 313

The comparison statistics for the over land estimates are also 314

shown for each month. Generally, the MiRS rainfall retrievals 315

capture major characteristics of the monthly precipitation geo- 316

graphic distribution seen in Stage IV. In January, for example, 317

MiRS GPM and Stage-IV agree very well over the southern 318
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Fig. 2. RR histograms as a function of rain/no rain threshold validated against
Stage IV over land for the months of (a) January 2015, (b) April 2015, (c) July
2015, and (d) October 2015.

Gulf Coast states from Texas eastward to the Florida panhandle.319

Further northward, there is a tendency of the MiRS rainfall to320

underestimate the totals seen in Stage IV, which is consistent321

with known difficulties of satellite algorithms to detect and esti-322

mate lighter stratiform rainfall common in the cold season (see323

also Fig. 2(e)–(h)). In the warmer seasons, particularly April and324

July, the MiRS and Stage IV totals are in fairly good agreement,325

with some indication that the MiRS amounts at the higher end 326

of the distribution (>100 mm) are more prevalent than those in 327

the Stage IV. The other noticeable feature is the presence during 328

some months of spurious high rainfall amounts at major coast- 329

lines and also along some lakeshores such as the Great Lakes. 330

This is due to the presence of mixed surface types within the 331

GMI microwave footprints which are difficult to characterize. 332

Due to the inherently larger size of the measurement footprint 333

relative to infrared observations, microwave rainfall retrieval 334

algorithms often have difficulty with coastlines and many algo- 335

rithms do not produce estimates if a coastline is detected. The 336

range of comparison statistics over the four months for correla- 337

tion, bias (mm), and standard deviation (mm) are [0.45, 0.58], 338

[−1.73, 4.25], and [17.6, 28.6], respectively. Total collocation 339

points ranged from 310 289 in January to 404 523 in October. 340

Finally, it is important to note that the Stage IV data are known 341

to have limitations since radar to RR relationships themselves 342

contains uncertainties and the algorithms used at River Forecast 343

Centers have certain biases. For example, uncertainties increase 344

in the case of light rain detection during winter season generally, 345

and over the Western U.S. as a result of fewer radar locations 346

and mountain beam blockage [24]. This could have the effect of 347

spuriously elevating false alarms and lowering other skill scores 348

when the satellite estimate has correctly identified precipitation. 349

TPW retrieved from MiRS GPM/GMI was evaluated by com- 350

paring with collocated ECMWF analyses. Bias maps from one 351

day in each season, i.e., 9 January, 1 April, 13 July, and 1 Oc- 352

tober 2015 were shown to illustrate the spatial dependence of 353

retrieval performance (see Fig. 5). In comparison with ECMWF, 354

MiRS generally depicts the geographical distribution of TPW 355

well with larger biases over land than over ocean, snow, and 356

ice for all four days due, in part, to larger uncertainties in 357

land surface emissivity. Thermally cold surfaces have smaller 358

and positive biases than warm surfaces, e.g., the northern hemi- 359

sphere land compared to the southern hemisphere in January. 360

Northern South America show dry biases all four days, as well 361

as Australia in January and April. For 13 July, TPW over the 362

northern hemisphere land has noticeably large negative biases. 363

Statistical analyses for land, ocean, snow, and ice surface 364

types were performed separately (see Table III). Among all 365

the surface types, ocean has the highest correlation coeffi- 366

cients of 0.99 regardless of day. Consistent with Fig. 5, land 367

retrievals typically have negative (dry) biases, while other sur- 368

faces are smaller and positive. Land and ocean retrievals gener- 369

ally have the highest correlation coefficients, while snow and ice 370

generally show lower correlations. The highly variable nature 371

of cryospheric surface emissivities in space and time, gener- 372

ally contribute to increased uncertainty in retrievals over these 373

surfaces. 374

Since the MiRS algorithm is run without the use of ancil- 375

lary data (e.g., NWP-based analyses or forecasts), and since 376

GPM/GMI does not have the full set of temperature sound- 377

ing channels, it is expected that the water vapor retrievals 378

will have larger uncertainties when compared with measure- 379

ments from, for example, SNPP/ATMS. Further work on tuning 380

and optimizing some of the constraints in the retrieval sys- 381

tem (e.g., atmospheric and surface covariances, radiometric bias 382
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Fig. 3. RR categorical scores as a function of rain/no rain threshold validated against Stage IV over land for the months of (a) January 2015, (b) April 2015,
(c) July 2015, and (d) October 2015.

corrections, empirical orthogonal function basis functions) may383

mitigate some of the biases and uncertainties seen in the re-384

trieved TPW, particularly over land.385

Performance of SWE over the northern hemisphere retrievals386

is shown in Fig. 6. Fig. 6(a) illustrates the northern hemisphere387

spatial distribution of the MiRS GPM SWE for January 5,388

2015, while Fig. 6(b) contains the corresponding map from389

the independent reference dataset of GCOM-W/AMSR2 SWE,390

based on the JAXA algorithm. Fig. 6(c) is the density scat-391

ter plot of MiRS GPM retrievals and the AMSR2 SWE for392

one week period of January 4–10, 2015. The two daily maps393

indicate that in areas with very high SWE, for example, east-394

ern Russia and Siberia, the MiRS GPM estimates tend to be395

larger than the JAXA AMSR2 estimates, while in areas with396

lower SWE amounts (<10 cm), for example, Southern Canada397

and Europe, the MiRS estimates tend to be lower than JAXA398

AMSR2. Since both products are based on remotely sensed399

data, it is difficult to state with confidence which estimates400

may be more accurate. Factors such as snow grain size, for-401

est cover (which tends to mask the underlying snow signal),402

and local time of observation (which can affect local tem-403

perature, and, hence, snow wetness) are all sources of uncer-404

tainty in microwave SWE estimates. The scatter plot for the405

seven-day period shows a distribution of points close to the 1:1406

line with a correlation coefficient value of 0.77. Overall, MiRS407

retrievals are systematically higher than the JAXA AMSR2 es- 408

timates (with the regional exception noted above over Asia for 409

the single day). The bias and standard deviation are 1.7 and 410

3.6 cm, respectively. Comparison statistics for each individual 411

day (not shown) indicate that the results are quite stable and quite 412

close to the aggregate statistics from the one week of processed 413

data. The correlation coefficient ranged from 0.76 to 0.79, bias 414

ranged from 1.5 to 2.2 cm, and standard deviation from 3.6 to 415

3.7 cm. 416

IV. DISCUSSION AND SUMMARY 417

MiRS is a robust flexible satellite retrieval system designed 418

for rapid physically-based atmospheric and surface property re- 419

trievals from passive microwave measurements. The MiRS algo- 420

rithm has been running operationally at NOAA since 2007 and 421

routinely distributing satellite derived products through NOAA 422

Office of Satellite and Product Operations. The system is now 423

processing multiple satellites/sensors, i.e., AMSUA and MHS 424

onboard NOAA-18, NOAA-19, MetopA, and MetopB which are 425

polar-orbiting operational environmental satellites; ATMS on- 426

board SNPP satellite; special sensor microwave imager/sounder 427

onboard defense meteorological satellite program satellites F-17 428

and F-18; and sounder for probing vertical profiles of humidity 429

onboard Megha-Tropiques. 430
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Fig. 4. Accumulated rain (mm) from MiRS GPM/GMI (left panels) and observations from collocated Stage IV (right panels) for the months of (a) and
(e) January, (b) and (f) April, (c) and (g) July, and (d) and (h) October 2015. Areas in western U.S. are missing since no Stage IV estimates were produced over
these regions. Areas over Rocky Mountains and northern U.S. in January are missing due to frequent snow cover during which MiRS does not produce a rain
retrieval.
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Fig. 5. Geographical distribution of total precipitable water (TPW) biases uses ECMWF as reference for (a) January 9, 2015, (b) April 1, 2015, (c) July 13,
2015, and (d) October 1, 2015.

TABLE III
CLEAR SKY TPW STATISTICAL ANALYSES

Surface Date No. of Points Corr. Bias Std. Dev.
Surface Date (×103) Coef. (mm) (mm)

Land 2015-01-09 604 0.92 −2.53 6.89
2015-04-01 542 0.91 −1.76 5.99
2015-07-13 830 0.83 −1.60 7.04
2015-10-01 784 0.90 −1.16 6.27

Ocean 2015-01-09 1557 0.99 1.17 2.21
2015-04-01 1559 0.99 1.17 2.31
2015-07-13 1534 0.99 1.11 2.38
2015-10-01 1502 0.99 1.24 2.17

Snow 2015-01-09 458 0.86 0.36 1.44
2015-04-01 348 0.82 0.72 1.62
2015-07-13 26 0.82 0.89 3.05
2015-10-01 57 0.66 1.23 2.53

Ice 2015-01-09 138 0.74 0.29 2.46
2015-04-01 114 0.72 0.13 2.59
2015-07-13 234 0.91 0.11 1.97
2015-10-01 277 0.85 0.84 1.55

The most recent version (v11.2) has been extended to431

GPM/GMI. This study is intended as an introductory quanti-432

tative assessment of the MiRS GPM retrieval products of RR,433

TPW, and SWE using independent datasets. Global and regional 434

CONUS geographical distribution of surface precipitation is in 435

good qualitative agreement with SNPP/ATMS retrievals and 436

with the operational Stage-IV analyses. Quantitative evaluation 437

based on four months (one full month in each season) showed 438

that MiRS GPM RR performance is consistent with that seen 439

for MiRS RR from other operational satellites. TPW distribu- 440

tion is consistent with ECMWF globally with higher biases 441

over land than over ocean based on the four days (one day in 442

each season) of evaluation. As expected, among the four surface 443

types, ocean TPW has the best performance. This is consistent 444

with TPW performance seen from MiRS for other sensors and 445

from other microwave algorithms. SWE over northern hemi- 446

sphere was compared with the corresponding product based on 447

AMSR2. Point to point comparison indicates good agreement 448

between the two. 449

Further investigations are underway including 1) evaluating 450

the impact of assumed radiometric uncertainty in each channel, 451

2) influence of each assumed a-priori hydrometeor background 452

constraints, 3) possible implementation of an a-priori temper- 453

ature and water vapor error covariance matrix specific to rainy 454

conditions, 4) exploring methods to distinguish convective and 455

stratiform (or mixed) precipitation types using, when available, 456
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Fig. 6. SWE distribution over the northern hemisphere retrieved from
(a) MiRS GPM, (b) AMSR2 retrieval from JAXA algorithm for January 5,
2015, and (c) density scatter plot for one week of January 4–10, 2015.

signal differences between measurements in vertical and hori-457

zontal polarization, and 5) use of an air mass-dependent set of458

radiometric bias corrections instead of the current static cor-459

rections. One of the important features of MiRS is that when460

run in operations, it does not use any ancillary data. External461

data for the surface (especially emissivity) from climatology462

or for the atmosphere (water vapor, temperature) from numer-463

ical weather prediction systems is anticipated to be beneficial464

to the retrieval products, but needs to be quantified. Another465

improvement path in MiRS is that particle size assumptions 466

in CRTM may not be optimal for all precipitation types (e.g., 467

seasonal, regional, stratiform versus convective). Finally, the 468

impact of updated scattering tables (to be available in upcoming 469

versions of CRTM) that account for the effects of nonspherical 470

particles will need to be evaluated. 471
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GPM Products From the Microwave-Integrated
Retrieval System

1

2

Shuyan Liu, Christopher Grassotti, Junye Chen, and Quanhua Liu3

Abstract—An updated version of the microwave-integrated re-4
trieval system (MiRS) V11.2 was recently released. In addition5
to the previous capability to process multiple satellites/sensors, the6
new version has been extended to process global precipitation mea-7
surement (GPM) microwave imager (GMI) measurements. The8
main purpose of this study is to introduce MiRS GPM products9
and to evaluate rain rate, total precipitable water (TPW), and10
snow water equivalent (SWE) using various independent datasets.11
Rain rate evaluations were performed for January, April, July,12
and October 2015 which represents one full month in each sea-13
son. TPW was evaluated on four days: 9 January, 1 April, 1314
July, and 1 October, which represents one full day in each sea-15
son. SWE was evaluated for a week in January 2015. Results show16
that MiRS performance is generally satisfactory in regards to both17
global/regional geographical distribution and quantified statisti-18
cal/categorical scores. Histograms show that MiRS GPM rain rate19
estimates have the capability to reproduce moderate to heavy rain20
frequency distribution over land, and light rain distribution over21
ocean when compared with a ground-based reference. Evaluations22
of TPW show the best performance over ocean with the correla-23
tion coefficient, bias, and standard deviation of 0.99, <1.25 mm,24
and <2.4 mm, respectively. Robust statistical results were also ob-25
tained for SWE, with a correlation coefficient, bias, and standard26
deviation of 0.77, 1.72 cm, and 3.61 cm, respectively. The examples27
shown demonstrate that MiRS, now extended to GPM/GMI, is ca-28
pable of producing realistic retrieval products that can be used in29
broad applications including extreme weather events monitoring,30
depiction of global rainfall distribution, and water vapor patterns,31
as well as snow cover monitoring.32

Index Terms—Global precipitation measurement (GPM),33
microwave-integrated retrieval system (MiRS), rain rate (RR),34
satellite.35
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I. INTRODUCTION 36

SATELLITE-BASED observations have provided expanded 37

opportunities for rainfall and hydrometeor monitoring by 38

providing global-scale brightness temperature measurements 39

over land and ocean. Accurate rain rate retrieval around the 40

globe is crucial for applications, such as extreme weather event 41

detection, flood, and drought monitoring. Retrieval techniques 42

based on space-based measurements began in 1970s when mete- 43

orological satellites became operational in greater number and 44

began transmitting radiance data back to the Earth [1]. Due 45

to the advantages of high spatial and temporal coverage rel- 46

ative to ground-based measurements, such as radar and rain 47

gauge, many algorithms have been developed to convert satel- 48

lite measured radiances into geophysical parameters, including 49

precipitation. 50

By estimating the direct interaction of the radiation with liq- 51

uid and frozen water in the atmospheric column, data from 52

microwave radiometers, thus, can be used to provide physi- 53

cally reasonable retrievals of precipitation rate. Wilheit et al. 54

[2] comprehensively examined 16 rainfall intensity retrieval al- 55

gorithms including algorithms that use high-frequency scatter- 56

ing measurements, low-frequency emission measurements, and 57

combinations based on the special sensor mircrowave imager 58

radiances. Weng et al. [3] and Ferraro et al. [4] described the 59

microwave surface and precipitation product system which re- 60

trieves total precipitable water (TPW), cloud liquid water, and 61

ice water path using a physical approach, and evaluated the 62

product based on multiple sensors. The advantages of statis- 63

tical regression-based algorithms are 1) they do not require 64

knowledge of the physical relationship between rain rate and 65

satellite brightness temperature, and 2) assuming there exists a 66

linear relationship between brightness temperatures and rainfall, 67

they always minimize the least squares retrieval error. However, 68

the relationship between rain rate and microwave radiances is 69

known to be highly nonlinear, as well as exhibit seasonal and re- 70

gional dependence. Thus, a physical-based retrieval algorithm 71

was introduced by Petty [5] aimed at inverting multichannel 72

microwave radiances to determine physical information on hy- 73

drometeors. In addition to rain, Surussavadee and Staelin [6] 74

extended the retrievals to snowfall rate and to snow and ice 75

surfaces. The Goddard Profiling Algorithm is a noteworthy sys- 76

tem which uses a Bayesian inversion for all surface types. The 77

method was first developed to retrieve precipitation from the 78

tropical rainfall measuring mission microwave imager [7], and 79

then evolved to a fully parametric approach used operationally 80

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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on global precipitation measurement (GPM) microwave imager81

(GMI) [8].82

The microwave-integrated retrieval system (MiRS, https://83

www.star.nesdis.noaa.gov/mirs/) is an inversion algorithm84

based on physical forward modeling and can invert observed85

multichannel radiances simultaneously to determine key com-86

ponents of the atmosphere and surface state, including rain87

parameters [9], [10]. The system has been operational since88

2007 at the National Oceanic and Atmospheric Administration89

(NOAA) and has routinely produced satellite retrieval prod-90

ucts from a growing list of microwave satellites/sensors. The91

most recent released version is V11.2 which extended MiRS92

capability to process GPM/GMI measurements. This study in-93

troduces and evaluates GPM/GMI retrieval products within the94

MiRS framework. Section II introduces 1) the MiRS algorithm,95

2) the GPM/GMI data used as input to the system, 3) other96

datasets that were used as references to estimate performance,97

and 4) the performance evaluation methods. Section III includes98

MiRS-retrieved products and evaluation results. Discussion and99

conclusion are in Section IV.100

II. ALGORITHM, DATA, AND EVALUATION METHOD101

The MiRS is an iterative physically-based one-dimensional102

variational (1-DVAR) retrieval algorithm [11], [12]. The prin-103

ciple is to minimize a two-term penalty function, which is104

composed of the departure of the simulated radiances from105

measurements and the departure of the retrieved parameters106

from their respective a-priori backgrounds. To evaluate MiRS-107

GPM/GMI products, we used various independent data for dif-108

ferent parameters, i.e., Stage-IV radar-gauge composites for rain109

rate (RR), European Centre for Medium-Range Weather Fore-110

casts (ECMWF) global analyses for TPW, and Japan Aerospace111

Exploration Agency (JAXA) advanced microwave scanning ra-112

diometer 2 (AMSR2) data for snow water equivalent (SWE).113

A. MiRS Algorithm114

The 1-DVAR algorithm used by MiRS is an iterative approach115

finding the optimal solution that fits the observed satellite ra-116

diance, subject to other constraints. The cost function to be117

minimized is118

J(X) =
[
1
2
(X − X0)

T × B−1 × (X − X0)
]

+

·
[
1
2
(Y m − Y (X))T × E−1 × (Y m − Y (X))

]

(1)

where X is the retrieved state vector. The first item on the119

right represents the penalty for departing from background X0120

weighted by the error covariance matrix B. The second term121

represents the penalty for the simulated radiances Y departing122

from the observed radiances Y m , weighted by instrument and123

modeling error E.124

Assuming local linearity125

y(x) = y (x0) + K [x − x0 ] . (2)

This leads to iterative solution 126

ΔXn + 1 =
{

BKT
n

(
KnBKT

n + E
)−1

}

· [(Y m − Y (Xn )) + KnΔXn ] (3)

where ΔX is the increment of the state vector iteration n + 1, 127

and K is the matrix of Jacobian which contains the sensitivity 128

of the radiances to changes in X (parameters to retrieve). 129

The departure from measured radiances normalized by the 130

noise level and the specification of uncertainty in the forward 131

modeling make it possible to use the signal of a particular chan- 132

nel when the geophysical signature is stronger than the noise. 133

Conversely, at other times, it may be possible to deweight the 134

information from same channel when the signal in question is 135

within the noise level. The departure from the background scaled 136

by the uncertainty assigned to the background result in retrievals 137

closer to an a-priori background estimate if it is deemed accu- 138

rate. The MiRS currently uses a “dynamic background” as an 139

a-priori constraint, for temperature, water vapor, and skin tem- 140

perature, which varies with latitude, longitude, season, and time 141

of day. Empirical orthogonal functions are used as basis func- 142

tions to further reduce the degrees of freedom in the solution 143

and stabilize the retrieval. 144

The Community Radiative Transfer Model (CRTM) [13], 145

[14] produces radiances and the corresponding Jacobians un- 146

der clear, cloudy, and precipitating conditions. The model has 147

been validated against various satellite measurements [15], [16]. 148

MiRS uses CRTM as the forward operator to perform retrievals 149

under all these sky conditions. Given a set of radiances, an 150

a-priori (background) estimate of the geophysical mean and 151

its associated covariance matrix, and assuming the hypotheses 152

for its mathematical basis are satisfied, MiRS produces a set of 153

self-consistent parameters that are also consistent with the mea- 154

sured parameters. When processing satellite sensor data with 155

a full complement of temperature, water vapor, and surface- 156

sensitive channels, the official MiRS products generally include 157

temperature and water vapor vertical profiles, cloud and pre- 158

cipitation vertical profiles (nonprecipitating cloud amount, rain, 159

and graupel), skin temperature, and the surface emissivity spec- 160

trum. Postprocessing of elements within the retrieved state vec- 161

tor yield additional retrieval products, such as RR, TPW, sea ice 162

concentration and age, SWE, and grain size. In the case of TPW, 163

simple vertical integration of the retrieved water vapor profile 164

is done. For RR, offline relationships between surface RR and 165

total rain water, graupel water, and cloud liquid water path were 166

developed from mesoscale forecast model simulations. Finally, 167

for sea ice and snow water, external catalogs that relate the sur- 168

face emissivity spectrum to ice and snow amounts are used. In 169

the case of snow water, a single-layer physical snow model de- 170

veloped at NOAA is used to build the catalogs. An important 171

feature of MiRS is that, as currently configured, retrievals do 172

not require real-time ancillary data such as those coming from 173

numerical weather prediction model forecasts. MiRS products 174

based on various satellite/sensors have been examined, for ex- 175

ample, [17], [18]. In the case of GPM/GMI, with a reduced 176

channel set primarily designed to measure surface and precip- 177

itation phenomena, the official MiRS GPM products are RR, 178
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rain water path, graupel water path, cloud liquid water, TPW,179

and SWE.180

B. Datasets Description181

The GPM satellite, launched on February 27, 2014, is a joint182

effort of JAXA and the National Aeronautics and Space Ad-183

ministration. GPM has dual-frequency precipitation radar and184

GMI passive radiometer onboard. This study uses GMI ob-185

served microwave radiances as input to MiRS. GMI, across a186

swath of 885 km, is a passive sensor that uses 13 different fre-187

quency/polarization channels to observe energy from various188

types of precipitation through clouds for estimating everything189

from heavy to light rain and for detecting falling snow. Table I190

lists GMI channel information, including central frequency, po-191

larization, bandwidth, noise equivalent differential temperature192

(NEDT), beam width, and ground footprint size. Retrieved out-193

put products from MiRS analyzed in this study include the194

surface RR as well as rain water, graupel water, and nonprecipi-195

tating cloud water. This paper will evaluate RR, TPW, and SWE196

with different independent data sources.197

RR retrievals are evaluated by Stage IV [19], [20] which is a198

4-km gridded precipitation analysis over the conterminous U.S.199

(CONUS) produced by National Centers for Environmental Pre-200

diction. The data are based on the multisensor precipitation es-201

timator analyses known as Stage III which use multisensor data202

(WSR-88D radar and gauges) and are specified on 4-km polar-203

stereographic grids produced by the 12 River Forecast Centers.204

In this paper, we used the hourly products that are collocated205

with GPM/GMI measurements for validation. The ECMWF206

(http://www.ecmwf.int/) data which are used to evaluate MiRS207

performance have 91 vertical levels between the surface and208

0.01 hPa. The horizontal resolution is approximately 125 km209

(spectral truncation T159) and the temporal resolution is 3 h.210

The ECMWF gridded data were matched to sensor granules for211

direct comparison. MiRS retrieved SWE was compared with212

the Level-3 SWE dataset based on observations of AMSR2 [21]213

onboard JAXA Global Change Observation Mission 1st-Water214

(GCOM-W) June 2015 and were mapped to 25-km grids in near215

real-time mode (available at https://lance.nsstc.nasa.gov/amsr2-216

science/data/level3/daysnow/).217

C. Evaluation Methods218

Performance of the retrieval system was evaluated both ob-219

jectively by statistical and categorical scores and subjectively220

by viewing geographical distribution. Statistical evaluation in-221

cludes correlation coefficients, biases, standard deviations, and222

root–mean-square errors. In this study, we use three categorical223

scores [22] to evaluate RR retrieval. Probability of detection224

(POD), sometimes called hit rate, represents the ratio of to-225

tal rain retrievals greater than a threshold divided by total rain226

observations in Stage IV greater than the same threshold and de-227

fined by: POD = (number of rain events correctly retrieved by228

MiRS)/(total number of Stage-IV observed rain events). False229

alarm ratio (FAR), the fraction of the all observed no rain events230

(as defined by a threshold) in which there was a retrieval of rain231

greater than the same threshold, and is calculated by: FAR =232

Fig. 1. Global RR distribution intercomparision between (a) MiRS GPM/GMI
and (b) SNPP/ATMS for July 13, 2015.

(number of retrieved false alarms)/(total number of Stage IV no 233

rain events). (Note that this is defined in [22] as the Probabil- 234

ity of false detection.) The Heidke skill score (HSS) measures 235

the fraction of correct rain retrieval after eliminating those re- 236

trievals which would be correct due purely to random chance. 237

Thus, HSS = (correct retrieval proportion−proportion correct 238

by chance)/(total number of observations−proportion correct 239

by chance), in which a perfect score = 1. 240

III. RESULTS 241

The global RR distribution retrieved by MiRS GPM/GMI for 242

July 13, 2015 is shown in Fig. 1(a). MiRS retrievals based on 243

the advanced technology microwave sounder (ATMS) onboard 244

the Suomi national polar-orbiting partnership (SNPP) are also 245

included for an intercomparison (see Fig. 1(b)). MiRS does not 246

retrieve RR over frozen surfaces; thus, the northern and south- 247

ern snow and sea ice covered areas are denoted as no reports for 248

SNPP/ATMS (see Fig. 1(b)). Despite the swath gaps, GPM/GMI 249

is consistent in distribution and intensity with SNPP/ATMS 250

globally. Active rain areas (red circle on the figures), such as ad- 251

jacent ocean of southern Mexico and Northern Japan, Philippine 252
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TABLE I
GPM/GMI CHANNEL INFO

Chan. No. Central Freq. (GHz) (Polarization) Band Width (MHz) NEDTa (K) Beam Width (deg) FOVb size ASc × CSd (km)

1 10.65 (V) 100 0.96 1.75 19.4 × 32.2
2 10.65 (H) 100 0.96 1.75 19.4 × 32.2
3 18.7 (V) 200 0.84 1.00 11.2 × 18.3
4 18.7 (H) 200 0.84 1.00 11.2 × 18.3
5 23.8 (V) 400 1.05 0.90 9.2 × 15
6 36.5 (V) 1000 0.65 0.90 8.6 × 14.4
7 36.5 (H) 1000 0.65 0.90 8.6 × 14.4
8 89.0 (V) 6000 0.57 0.40 4.4 × 7.3
9 89.0 (H) 6000 0.57 0.40 4.4 × 7.3
10 166.0 (V) 3000 1.5 0.40 4.4 × 7.1
11 166.0 (H) 3000 1.5 0.40 4.4 × 7.1
12 183.31 ± 3 (V) 3500 1.5 0.40 4.4 × 7.2
13 183.31 ± 7(V) 4500 1.5 0.40 4.4 × 7.2

aNEDT: Noise equivalent differential temperature.
bFOV: Field-of-view.
cAS: Along-scan direction.
dCS: Cross-scan direction.

TABLE II
LAND RR STATISTICAL ANALYSES OVER CONUS

Month No. of Points (×103) Corr. Coef. Bias (mm/h) Std. Dev. (mm/h)

January 1390 0.60 −0.02 0.58
April 2567 0.55 0.03 0.86
July 2733 0.52 0.04 1.18
October 2662 0.58 0.01 0.70

Sea, the Southern Hemisphere ocean around −45° latitude, etc.,253

are consistent across the two satellite retrievals. There are some254

inconsistencies between the two due to different local passing255

time. The SNPP is in a geosynchronous polar orbit with a local256

equatorial passing time of 1:30 pm (ascending), while GPM or-257

bits between 65°N and 65°S, and does not have a fixed passing258

time, but one that repeats approximately every two weeks.259

RR retrieval performance at the hourly timescale has been260

quantified for four full months chosen to reflect the typical sea-261

sonal cycle over the Northern Hemisphere, which in this study262

were January, April, July, and October from 2015. Table II con-263

tains the statistics based on collocation over the CONUS with264

the hourly Stage IV analyses over land surfaces. Correlations265

between land retrievals and observations for January, April, July,266

and October are 0.60, 0.55, 0.52, and 0.58, biases are −0.02,267

0.03, 0.04, and 0.01 mm/h, and the standard deviations are 0.58,268

0.86, 1.18, and 0.70 mm/h, respectively.269

To characterize the distribution of RR, histograms based on270

over land rainfall are shown in Fig. 2, for each of the four271

months. Over land, MiRS typically underestimates relative to272

Stage IV the occurrence of light rain events below 2.0 mm/h for273

all four months (see Fig. 2(a)–(d)) with January and July show-274

ing the maximum and minimum underestimation, respectively.275

The seasonal transition months of April and October show sim-276

ilar behavior, lying in between the two extremes of January and277

July. Above approximately 2 up to 10 mm/h, agreement be-278

tween MiRS and Stage IV occurrence is quite good in all four279

months. The underestimation of light rain occurrence over land280

is characteristic of microwave retrieval algorithms generally, as 281

the emission signal of the rainfall is low relative to the high and 282

variable surface emission background. 283

We further calculated categorical scores of POD, FAR, and 284

HSS as a function of rain/no rain threshold at 0.5-mm/h inter- 285

vals. The results are shown in Fig. 3. POD and HSS for the four 286

months are generally higher than 0.3. In July, both POD and 287

HSS are highest at the lowest RR threshold (0.5 mm/h). This is 288

likely due to the climatological presence of low-level stratiform 289

rain in fall, winter, and spring, which can be contrasted with July 290

in which light rainfall may have origins with deeper convective 291

systems having a stronger scattering signal in microwave mea- 292

surements. Comparing with summer (July) which shows almost 293

linear deceasing scores from light to heavy rain, winter (Jan- 294

uary) POD, and HSS peaked at 2 mm/h. During spring (April) 295

and fall (October), both PODs have the highest value at 2 mm/h, 296

HSS in April is decreasing with increasing RR while in October 297

is stable between 0.35 and 0.40. 298

RR retrieval at the regional and monthly scale is illustrated 299

over the CONUS (seeFig. 4) for land surfaces for the same four 300

months in 2015. RR retrievals from GPM were collocated with 301

Stage IV hourly estimates for each day of the month to produce a 302

monthly accumulated rainfall on the Stage IV 4-km grid. (Note 303

that this is not the true monthly accumulation since any location 304

would be sampled at most twice daily by GPM, and because 305

the Stage IV analyses are not reliable for many locations in 306

the mountainous western U.S. due to orographic artifacts in the 307

required radar data [23].) Monthly accumulated rain retrieval 308

along GPM swaths (see Fig. 4(a)–(d)) for January, April, July, 309

and October 2015 is compared with collocated Stage-IV grids 310

(see Fig. 4(e)–(h)). In each map, the areas masked in white over 311

the western U.S. are locations where the Stage IV processing 312

does not estimate rainfall due to radar beam blockage effects. 313

The comparison statistics for the over land estimates are also 314

shown for each month. Generally, the MiRS rainfall retrievals 315

capture major characteristics of the monthly precipitation geo- 316

graphic distribution seen in Stage IV. In January, for example, 317

MiRS GPM and Stage-IV agree very well over the southern 318
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Fig. 2. RR histograms as a function of rain/no rain threshold validated against
Stage IV over land for the months of (a) January 2015, (b) April 2015, (c) July
2015, and (d) October 2015.

Gulf Coast states from Texas eastward to the Florida panhandle.319

Further northward, there is a tendency of the MiRS rainfall to320

underestimate the totals seen in Stage IV, which is consistent321

with known difficulties of satellite algorithms to detect and esti-322

mate lighter stratiform rainfall common in the cold season (see323

also Fig. 2(e)–(h)). In the warmer seasons, particularly April and324

July, the MiRS and Stage IV totals are in fairly good agreement,325

with some indication that the MiRS amounts at the higher end 326

of the distribution (>100 mm) are more prevalent than those in 327

the Stage IV. The other noticeable feature is the presence during 328

some months of spurious high rainfall amounts at major coast- 329

lines and also along some lakeshores such as the Great Lakes. 330

This is due to the presence of mixed surface types within the 331

GMI microwave footprints which are difficult to characterize. 332

Due to the inherently larger size of the measurement footprint 333

relative to infrared observations, microwave rainfall retrieval 334

algorithms often have difficulty with coastlines and many algo- 335

rithms do not produce estimates if a coastline is detected. The 336

range of comparison statistics over the four months for correla- 337

tion, bias (mm), and standard deviation (mm) are [0.45, 0.58], 338

[−1.73, 4.25], and [17.6, 28.6], respectively. Total collocation 339

points ranged from 310 289 in January to 404 523 in October. 340

Finally, it is important to note that the Stage IV data are known 341

to have limitations since radar to RR relationships themselves 342

contains uncertainties and the algorithms used at River Forecast 343

Centers have certain biases. For example, uncertainties increase 344

in the case of light rain detection during winter season generally, 345

and over the Western U.S. as a result of fewer radar locations 346

and mountain beam blockage [24]. This could have the effect of 347

spuriously elevating false alarms and lowering other skill scores 348

when the satellite estimate has correctly identified precipitation. 349

TPW retrieved from MiRS GPM/GMI was evaluated by com- 350

paring with collocated ECMWF analyses. Bias maps from one 351

day in each season, i.e., 9 January, 1 April, 13 July, and 1 Oc- 352

tober 2015 were shown to illustrate the spatial dependence of 353

retrieval performance (see Fig. 5). In comparison with ECMWF, 354

MiRS generally depicts the geographical distribution of TPW 355

well with larger biases over land than over ocean, snow, and 356

ice for all four days due, in part, to larger uncertainties in 357

land surface emissivity. Thermally cold surfaces have smaller 358

and positive biases than warm surfaces, e.g., the northern hemi- 359

sphere land compared to the southern hemisphere in January. 360

Northern South America show dry biases all four days, as well 361

as Australia in January and April. For 13 July, TPW over the 362

northern hemisphere land has noticeably large negative biases. 363

Statistical analyses for land, ocean, snow, and ice surface 364

types were performed separately (see Table III). Among all 365

the surface types, ocean has the highest correlation coeffi- 366

cients of 0.99 regardless of day. Consistent with Fig. 5, land 367

retrievals typically have negative (dry) biases, while other sur- 368

faces are smaller and positive. Land and ocean retrievals gener- 369

ally have the highest correlation coefficients, while snow and ice 370

generally show lower correlations. The highly variable nature 371

of cryospheric surface emissivities in space and time, gener- 372

ally contribute to increased uncertainty in retrievals over these 373

surfaces. 374

Since the MiRS algorithm is run without the use of ancil- 375

lary data (e.g., NWP-based analyses or forecasts), and since 376

GPM/GMI does not have the full set of temperature sound- 377

ing channels, it is expected that the water vapor retrievals 378

will have larger uncertainties when compared with measure- 379

ments from, for example, SNPP/ATMS. Further work on tuning 380

and optimizing some of the constraints in the retrieval sys- 381

tem (e.g., atmospheric and surface covariances, radiometric bias 382
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Fig. 3. RR categorical scores as a function of rain/no rain threshold validated against Stage IV over land for the months of (a) January 2015, (b) April 2015,
(c) July 2015, and (d) October 2015.

corrections, empirical orthogonal function basis functions) may383

mitigate some of the biases and uncertainties seen in the re-384

trieved TPW, particularly over land.385

Performance of SWE over the northern hemisphere retrievals386

is shown in Fig. 6. Fig. 6(a) illustrates the northern hemisphere387

spatial distribution of the MiRS GPM SWE for January 5,388

2015, while Fig. 6(b) contains the corresponding map from389

the independent reference dataset of GCOM-W/AMSR2 SWE,390

based on the JAXA algorithm. Fig. 6(c) is the density scat-391

ter plot of MiRS GPM retrievals and the AMSR2 SWE for392

one week period of January 4–10, 2015. The two daily maps393

indicate that in areas with very high SWE, for example, east-394

ern Russia and Siberia, the MiRS GPM estimates tend to be395

larger than the JAXA AMSR2 estimates, while in areas with396

lower SWE amounts (<10 cm), for example, Southern Canada397

and Europe, the MiRS estimates tend to be lower than JAXA398

AMSR2. Since both products are based on remotely sensed399

data, it is difficult to state with confidence which estimates400

may be more accurate. Factors such as snow grain size, for-401

est cover (which tends to mask the underlying snow signal),402

and local time of observation (which can affect local tem-403

perature, and, hence, snow wetness) are all sources of uncer-404

tainty in microwave SWE estimates. The scatter plot for the405

seven-day period shows a distribution of points close to the 1:1406

line with a correlation coefficient value of 0.77. Overall, MiRS407

retrievals are systematically higher than the JAXA AMSR2 es- 408

timates (with the regional exception noted above over Asia for 409

the single day). The bias and standard deviation are 1.7 and 410

3.6 cm, respectively. Comparison statistics for each individual 411

day (not shown) indicate that the results are quite stable and quite 412

close to the aggregate statistics from the one week of processed 413

data. The correlation coefficient ranged from 0.76 to 0.79, bias 414

ranged from 1.5 to 2.2 cm, and standard deviation from 3.6 to 415

3.7 cm. 416

IV. DISCUSSION AND SUMMARY 417

MiRS is a robust flexible satellite retrieval system designed 418

for rapid physically-based atmospheric and surface property re- 419

trievals from passive microwave measurements. The MiRS algo- 420

rithm has been running operationally at NOAA since 2007 and 421

routinely distributing satellite derived products through NOAA 422

Office of Satellite and Product Operations. The system is now 423

processing multiple satellites/sensors, i.e., AMSUA and MHS 424

onboard NOAA-18, NOAA-19, MetopA, and MetopB which are 425

polar-orbiting operational environmental satellites; ATMS on- 426

board SNPP satellite; special sensor microwave imager/sounder 427

onboard defense meteorological satellite program satellites F-17 428

and F-18; and sounder for probing vertical profiles of humidity 429

onboard Megha-Tropiques. 430
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Fig. 4. Accumulated rain (mm) from MiRS GPM/GMI (left panels) and observations from collocated Stage IV (right panels) for the months of (a) and
(e) January, (b) and (f) April, (c) and (g) July, and (d) and (h) October 2015. Areas in western U.S. are missing since no Stage IV estimates were produced over
these regions. Areas over Rocky Mountains and northern U.S. in January are missing due to frequent snow cover during which MiRS does not produce a rain
retrieval.
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Fig. 5. Geographical distribution of total precipitable water (TPW) biases uses ECMWF as reference for (a) January 9, 2015, (b) April 1, 2015, (c) July 13,
2015, and (d) October 1, 2015.

TABLE III
CLEAR SKY TPW STATISTICAL ANALYSES

Surface Date No. of Points Corr. Bias Std. Dev.
Surface Date (×103) Coef. (mm) (mm)

Land 2015-01-09 604 0.92 −2.53 6.89
2015-04-01 542 0.91 −1.76 5.99
2015-07-13 830 0.83 −1.60 7.04
2015-10-01 784 0.90 −1.16 6.27

Ocean 2015-01-09 1557 0.99 1.17 2.21
2015-04-01 1559 0.99 1.17 2.31
2015-07-13 1534 0.99 1.11 2.38
2015-10-01 1502 0.99 1.24 2.17

Snow 2015-01-09 458 0.86 0.36 1.44
2015-04-01 348 0.82 0.72 1.62
2015-07-13 26 0.82 0.89 3.05
2015-10-01 57 0.66 1.23 2.53

Ice 2015-01-09 138 0.74 0.29 2.46
2015-04-01 114 0.72 0.13 2.59
2015-07-13 234 0.91 0.11 1.97
2015-10-01 277 0.85 0.84 1.55

The most recent version (v11.2) has been extended to431

GPM/GMI. This study is intended as an introductory quanti-432

tative assessment of the MiRS GPM retrieval products of RR,433

TPW, and SWE using independent datasets. Global and regional 434

CONUS geographical distribution of surface precipitation is in 435

good qualitative agreement with SNPP/ATMS retrievals and 436

with the operational Stage-IV analyses. Quantitative evaluation 437

based on four months (one full month in each season) showed 438

that MiRS GPM RR performance is consistent with that seen 439

for MiRS RR from other operational satellites. TPW distribu- 440

tion is consistent with ECMWF globally with higher biases 441

over land than over ocean based on the four days (one day in 442

each season) of evaluation. As expected, among the four surface 443

types, ocean TPW has the best performance. This is consistent 444

with TPW performance seen from MiRS for other sensors and 445

from other microwave algorithms. SWE over northern hemi- 446

sphere was compared with the corresponding product based on 447

AMSR2. Point to point comparison indicates good agreement 448

between the two. 449

Further investigations are underway including 1) evaluating 450

the impact of assumed radiometric uncertainty in each channel, 451

2) influence of each assumed a-priori hydrometeor background 452

constraints, 3) possible implementation of an a-priori temper- 453

ature and water vapor error covariance matrix specific to rainy 454

conditions, 4) exploring methods to distinguish convective and 455

stratiform (or mixed) precipitation types using, when available, 456
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Fig. 6. SWE distribution over the northern hemisphere retrieved from
(a) MiRS GPM, (b) AMSR2 retrieval from JAXA algorithm for January 5,
2015, and (c) density scatter plot for one week of January 4–10, 2015.

signal differences between measurements in vertical and hori-457

zontal polarization, and 5) use of an air mass-dependent set of458

radiometric bias corrections instead of the current static cor-459

rections. One of the important features of MiRS is that when460

run in operations, it does not use any ancillary data. External461

data for the surface (especially emissivity) from climatology462

or for the atmosphere (water vapor, temperature) from numer-463

ical weather prediction systems is anticipated to be beneficial464

to the retrieval products, but needs to be quantified. Another465

improvement path in MiRS is that particle size assumptions 466

in CRTM may not be optimal for all precipitation types (e.g., 467

seasonal, regional, stratiform versus convective). Finally, the 468

impact of updated scattering tables (to be available in upcoming 469

versions of CRTM) that account for the effects of nonspherical 470

particles will need to be evaluated. 471
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