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Abstract. Satellite-borne synthetic aperture radar (SAR) data are widely used for detection of hydrocarbon resources,
pollution, and oil spills. These applications require recognition of particular spatial patterns in SAR data. We developed a
texture-classifying neural network algorithm (TCNNA), which processes SAR data from a wide selection of beam modes, to
extract these patterns from SAR imagery in a semisupervised procedure. Our approach uses a combination of edge-detection
filters, descriptors of texture, collection information (e.g., beam mode), and environmental data, which are processed with a
neural network. Examples of pattern extraction for detecting natural oil seeps in the Gulf of Mexico are provided. The
TCNNA was successful at extracting targets and rapidly interpreting images collected under a wide range of environmental
conditions. The results allowed us to evaluate the effects of different environmental conditions on the expressions of oil
slicks detected by the SAR data. By processing hundreds of SAR images, we have also found that the optimum wind speed
range to study surfactant films is from 3.5 to 7.0 m·s–1, and the best incidence angle range for surfactant detection in C-band
is from 22° to 40°. Minor postprocessing supervision is required to check TCNNA output. Interpreted images produce
binary arrays with imbedded georeference data that are easily stored and manipulated in geographic information system
(GIS) data layers.

421Résumé. Les données satellite radar à synthèse d’ouverture (RSO) sont utilisées couramment pour la détection des
ressources en hydrocarbures, de la pollution et des déversements d’hydrocarbures. Ces applications sont basées sur la
reconnaissance de patrons spatiaux particuliers dans les données RSO. On a développé un algorithme de classification
de texture basé sur les réseaux de neurones, l’algorithme TCNNA, qui permet de traiter les données RSO à partir d’un
grand nombre de modes faisceau pour extraire ces patrons des images RSO en s’appuyant sur une procédure semi-
dirigée. Notre approche utilise une combinaison de filtres de détection de contours, de descripteurs de texture,
d’information sur l ‘acquisition (p. ex. mode du faisceau) et de données environnementales, le tout traité dans le
contexte d’un réseau de neurones. On présente des exemples d’extraction de patrons pour détecter des suintements
naturels de pétrole dans le golfe du Mexique. L’algorithme TCNNA a permis d’extraire des cibles et d’interpréter
rapidement des images acquises dans une grande variété de conditions environnementales. Les résultats ont permis
d’évaluer les effets des différentes conditions environnementales sur les expressions des nappes d’hydrocarbures
détectées avec les données RSO. En traitant des centaines d’images RSO, on a trouvé également que l’intervalle de
vent optimal pour étudier les films de surfactants se situe entre 3,5 et 7,0 m·s–1 et que le meilleur intervalle d’angle
d’incidence dans la bande C pour la détection des surfactants est de 22° à 40°. Une procédure dirigée minimale est
nécessaire durant le post-traitement pour valider les extrants de TCNNA. Les images interprétées produisent des
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configurations binaires avec des données géoréférencées intégrées qui peuvent être facilement stockées et manipulées
dans les couches d’un système d’information géographique (SIG).
[Traduit par la Rédaction]

Garcia-Pineda et alIntroduction
The ability of synthetic aperture radar (SAR) to detect

features of the ocean’s surface depends on the interactions
between the SAR pulse of microwave energy and the sea
surface. The radar return from varying roughness of the surface
capillary and short gravity waves produces unique patterns in
the radar imagery (Holt and Hilland, 2000). SAR is therefore
useful for detecting surfactant layers produced by floating oil.
Ocean slicks are a subset of ocean features detected in SAR
data. They are areas of distinctly contrasting brightness against
the radar backscatter produced by wind-generated ripples.
Slicks are contiguous areas in which Bragg scattering at a
wavelength scale of �0.01–0.10 m is suppressed by layers of oil
(Alpers and Espedal, 2004; Hu et al., 2008), biological
surfactants, or floating vegetation (Huehnerfuss et al., 1983).
The application of Bragg scattering theory for ocean imaging
has been reviewed (Holt, 2004; Thompson, 2004). As shown in
Figure 1, the SAR return from the ocean surface depends on the
wavelength of small surface waves (0.7–10.0 cm), the radar
electromagnetic wavelength (λr), and the incidence angle (θ) of
the radar energy. When sea surface capillary waves are damped by
viscoelastic properties of a thin layer of hydrocarbons (�0.1 µm), a
larger proportion of radar energy is reflected away from the
satellite’s detector. Hydrocarbons on the sea surface then can be
interpreted as radar-dark regions in SAR images. The persistence
of surfactant layers is affected by processes like evaporation,
wind, surface currents, photolysis, spreading, flocculation, and
dissolution (Figure 1).

Oil slicks can emanate from accidental, transient releases of
oil from ships or platforms. Under these circumstances, the

feature of SAR data will reflect the presence of the source and
(or) dispersion history following the release event. In contrast,
oil slicks from natural seeps are perennial features, usually
relatively small in volume, that are confined to discrete
geographic areas (MacDonald et al., 2002). Natural seeps are
abundant in the Gulf of Mexico and in other coastal margins
worldwide (Kvenvolden et al., 1992). The locations of many
active seeps have been verified by submersible sampling
(MacDonald et al., 1996) or inferred from geophysical data
(Roberts, 2006). Natural seeps therefore produce repeated
effects across a wide area of the Gulf of Mexico and provide an
excellent source of ocean slicks in multiple SAR images.
Because sensor parameters and environmental conditions vary
among SAR images, algorithm results can be tested over a
range of possible slicks.

Expressions of the thinnest oil slicks can range in width from
60 m to several hundred metres and are typically several
thousand metres in length. The ability of SAR to image natural
oil slicks is also strongly influenced by environmental
conditions, particularly wind speed and sea state. As described
in several studies (De Beukelaer et al., 2003; Espedal and Wahl,
1999; Fortuny-Guasch, 2003; Miranda et al., 2004), biogenic
surfactants, pollution, and oil slicks from natural hydrocarbon
seepage are detectable in a wind speed range of from 2 to
10 m·s–1 and in an angle of incidence range from 20° to 45°.
Ocean SAR image interpretation becomes more problematic
when ancillary meteorological and oceanographic data are
unavailable. Detection of slicks is challenged when wind
speeds are too high for surfactant layers to form. Another
challenge is false targets that occur when low-wind conditions
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Figure 1. Illustration of the Bragg scattering in the ocean is shown on the left. The radar
electromagnetic wavelength is 5.6 cm. The effects of a floating oil (surfactant) layer on radar
backscatter are shown on the right, along with oceanographic and atmospheric processes that
break down the layer over time.



produce extensive dark areas (low-wind features). In addition,
the time required to manually delineate and quantify features of
interest constrains the number of images that can be studied,
and standard image processing techniques do not fully solve
this problem. Brightness thresholding captures numerous false
targets; also, standard methods of edge detection do not
perform well where intense noise or SAR processing artifacts
are present. Automated routines for semisupervised pattern
recognition and image segmentation have the potential to
improve analysis of the SAR archive for basin-wide and long
time-series investigations.

In this paper we therefore describe a texture-classifying
neural network algorithm (TCNNA), which analyzes the
textural content of SAR data in the context of sensor parameters
and environmental variables. The algorithm was developed
using verified features (ocean slicks) produced by natural oil
seeps in the Gulf of Mexico. However, the general approach
may be applicable to other classes of ocean features.

Datasets
Our materials includes SAR images and environmental data.

This section is a description of the datasets and preparatory
steps towards the image processing.

SAR image achieve

Through data-sharing agreements with the National
Aeronautical and Space Administration (NASA) and support
from the Alaska Satellite Facility (ASF), a collection of almost
700 RADARSAT-1 images covering the Gulf of Mexico was
acquired. This collection comprised a variety of SAR products
that differ in resolution, incidence angle, and length of revisit
time. Natural oil slicks were visible in many of these images.
This collection made it possible to compare oil slicks imaged
with different sensor parameters and under different
environmental conditions.

A single radar image is usually displayed as an 8-bit (gray-
scale) image. Brightness variation and dark features are present,
depending on the geophysical effect of surfactants (Espedal and
Wahl, 1999). The intensity of each pixel represents the
proportion of microwaves backscattered from that area of sea
surface. Calm sea surfaces appear dark in SAR images.
However, rough sea surfaces may appear bright, especially
when the incidence angle is small (Fortuny-Guasch, 2003).
Also, in ScanSAR mode, changes in backscatter from one side
of an image to the other are a factor of microwave return due to
incidence angle.

Quality control of the data required a series of steps. After
converting analog SAR signals from RADARSAT-1 to binary
SAR data, the ASF Data Center provided the SAR data in
Committee on Earth Observation Satellites (CEOS) level one
SKY telemetry format (Gens and Logan, 2003). Converter tool
software provided by ASF was then used to construct GeoTIFF
images from the raw binary SAR data. However, a set of fixed
oil platforms was used to verify and fix the georectification.

Offsets in the georectification were found from within a single
pixel up to 733 pixels.

Environmental data

In our initial evaluation (Garcia-Pineda et al., 2008), we
examined a variety of environmental factors to determine how
they influenced performance of the TCNNA for detecting oil
slicks. These variables included sea surface temperature (SST),
sea surface height (SSH), ocean currents, wind conditions at the
moment of the SAR snapshot, and wind history up to 9 h before
each SAR frame. The data sources included the following:
(i) National Oceanic and Atmospheric Administration (NOAA)
Data Buoy Center (NDBC); (ii) Near Real-Time Altimeter Project
by Colorado Center for Astrodynamics Research; (iii) NOAA
CoastWatch; and (iv) Wind Port Model, provided by Texas A&M
University (http://seawater.tamu.edu/tglo/rxindex.html).

All of the aforementioned variables potentially affect
development of surfactant layers over natural seeps; however,
careful review showed that prevailing wind conditions during
SAR data collection was the most significant variable, i.e.,
inclusion of other variables resulted in no or minimal
improvement in algorithm performance (Garcia-Pineda et al.,
2008). SAR measures backscattering energy, normalized radar
cross section (NRCS) from the ocean surface (Valenzuela,
1978). Various geophysical model functions (GMFs) have been
developed to derive ocean surface wind speed and direction
from the backscatter signal. For C-band radar, i.e.,
RADARSAT SAR or Environmental Satellite Advanced
Synthetic Aperture Radar (ENVISAT ASAR), at moderate
incidence angles (20°–45°), some of the most widely used
GMFs for converting backscatter signal to ocean surface wind
are CMOD4 (Stoffelen and Anderson, 1997), CMOD5
(Hersbach, 2005), and CMOD_IFR2 (Quilfen et al., 1998). To
minimize speckle noise, the NRCSs are averaged over a few
neighboring pixels. The final wind product usually has a lower
resolution than that of SAR, but it still provides higher spatial
resolution for sub-kilometre wind measurements than any other
spaceborne sensor can achieve.

Since SAR has only one viewing angle at a location or pixel,
wind speed and direction cannot simultaneously be derived
using the CMOD models. Therefore, to derive sea surface wind
speed, we must find wind direction first. The wind direction is
obtained from the US Navy Operational Global Atmospheric
Prediction System (NOGAPS) model. The NOGAPS wind
direction output was selected for the closest match to SAR
image acquisition time. The NOGAPS output for each grid
point (defined as 1° latitude by 1° longitude) is interpolated to
estimate wind directions over the SAR image. We then apply
CMOD5 GMFs to derive wind speeds used for further oil spill
analysis. The CMOD5-derived wind products are very well
validated, with a standard deviation of about 2 m·s–1, when
compared with buoy and QuikSCAT data (Monaldo et al.,
2001; 2004)
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Analyses
The goal of the TCNNA is to segment an original SAR scene

into a binary image so that each pixel is classified as feature or
nonfeature. To achieve this, we constructed an input layer
vector (ILV) of conditions for each pixel. The ILV contains data
and conditions ordered as follows: (i) radar backscatter
detected by satellite, represented by the eight-bit pixel value;
(ii) radar incidence angle; (iii) wind speed and direction;
(iv) pixel neighborhood descriptors; and (v) convolution of a
series of texton filters (described in the next section) over a
regular neighborhood centered on the pixel (Figure 2).
Available wind model resolution is different from that of SAR
images. To match data spatially, input values for wind were
computed based on linear interpolation from pixel locations
and model outputs.

Pixel neighborhood texture descriptors

The first step toward feature segmentation in SAR imagery is
to evaluate the size of features under analysis and SAR spatial
resolution. In Figure 3, ScanSAR narrow beam mode
(collected on 21 July 1998), ScanSAR wide beam mode
(collected on 9 June 1999), and standard beam mode 1
(collected on 20 May 2006) from RADARSAT-1 are shown,
covering different extents in the Gulf of Mexico where oil
slicks from natural hydrocarbon seepage occur. Previous work
has shown that natural oil slicks in the Gulf of Mexico range in
width from a few tens of metres to as much as 500 m. Because
the pixel sizes for different SAR modes (using data with
resampled spatial resolution) range from 6.25 m to 50 m, the
TCNNA must be scaled to recognize slicks over a range of
sizes, irrespective of sensor resolution. In this case, oil slick
signatures vary in width, and different SAR beam modes have
greater or lesser spatial resolution. To ensure detection of
narrow slicks, we adjusted the neighborhood size according to
the spatial resolution of SAR data. A 25 × 25 pixel
neighborhood was used for 12.5 m resolution, a 13 × 13 pixel
neighborhood for 25 m resolution, and a 7 × 7 pixel
neighborhood for 50 m resolution. With this approach, the
input SAR images to the TCNNA can range from standard fine
beam mode to wide beam mode.

To standardize comparison between a pixel and its
neighborhood, we analyzed the statistical properties of the
neighborhood of each pixel using texture descriptors (Gonzalez
et al., 2004), i.e., mean, standard deviation, smoothness, third
moment, uniformity, and entropy. These values are included
with the ILV, and its kernel size is adapted depending on SAR
resolution. This analysis was important because the texture of
SAR images varies within different regions of an image
depending on radar incidence angle and local sea state. The
next level of analysis detected features using texture filters,
namely the Leung–Malik filter bank (LMFB) (Leung and
Malik, 2001). For oil slick detection, only edge and bar
detectors were used (the first 36 filters of the 48 element LMFB
filter set). For image segmentation, representation of textures

using filter responses is extremely versatile. The filters are
rescaled to the same dimensions as those of the texture
neighborhood. Each pixel and its texture neighborhood are then
convolved with each of the 36 LMFB filters as outlined below.

For each pixel of the image matrix, each of the filter matrices
is matched to the appropriate neighborhood of surrounding
pixels. Convolution multiplies all matching filter and image
pixels and sums the results. The process is repeated for each of
the 36 LMFB filters. Each image consists of a matrix of pixels,
and Z(i, j) denotes the measurement at the (i, j) pixel. The
LMFB is used for convolution with the image matrix and then
detects if the image contains an edge or a bar associated with a
slick. The mirror image of each LMFB matrix is laid over a
region of the large image matrix, and matching terms are
multiplied together and then all added up. Let A denote an
m × m matrix, and then the value C(i, j) of the convolution of
the filter matrix A with the image matrix Z is defined pixel by
pixel as
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The results of the 36 convolutions with the LMFB become part
of the ILV for each pixel.

Input layer vector

As a result of the processing steps described above, each
pixel has an associated ILV that contains a set of values. These
values are the following: pixel value, incidence angle, wind
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Figure 2. Components of the input layer vector (ILV) include satellite
sensor variables (e.g., incidence angle), 8-bit pixel value, texture
characteristics of the pixel neighborhood, and environmental data.



model output, and neighborhood texture (descriptors and filter
convolutions), which are assimilated in a 46-dimensional ILV
(Figure 4). The goal of the TCNNA is to reproduce, pixel by
pixel, classifications a human analyst would make, deciding if a
given group of pixels belongs to a feature. In this case, the
features are oil-covered water versus clean sea. The TCNNA is
trained by applying the ILV to images that were previously
classified by human analysts.

Training set

From the image collection archive, a set of 14 images was
initially selected for building a training set. The selection was
determined considering conditions under which oil slicks from
natural hydrocarbon seepage are normally observed in SAR
images over the Gulf of Mexico. Human classification of
images in the training set proceeded by systematically

exploring each image at high magnification. Several images
contained no visible oil slicks, others included many large and
distinct slicks, and others included a few and indistinct slicks.
A majority of the total area of each image was devoid of slicks.
The operator would select between 200 and 300 points,
distributed more or less evenly over the entire image. If slicks
were present, several points were selected within each slick,
and several nonslick points were selected adjacent to the slick.
Locations were saved in a database containing image name,
pixel coordinates, and classification as “slick” or “nonslick”
with corresponding values of 1 and 0. Consequently, an ILV
was constructed for each pixel in the training set, resulting in a
database of 3477 vectors with 46 inputs and one target
classification as a value of 1 or 0 (Figure 4). The neural net
algorithm was trained on this dataset, and several hundred
images were processed with the trained algorithm.
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Figure 3. The relationship between the size of the features (in this case oil slicks) and the
spatial resolution of the different beam modes is critical for defining the appropriate size of
pixel neighborhood to detect boundaries. The upper panel shows coverage comparison of three
SAR beam modes, and the lower panel shows different oil slicks imaged at the resulting three
levels of resolution and selection of corresponding pixel neighborhoods.



In addition to the first training set, a second training set was
constructed from 10 different images to test more challenging
decision conditions. The goal of this second effort was to
discriminate extensive dark areas generated by low-wind
features.  To  achieve  this  classification,  the  two  wind  input
values (from the Wind Port Model output interpolations) were
substituted into the ILV. The two new inputs consisted of
corresponding raw wind data from CMOD5 output and the
averaged wind neighborhood of 1000 m around the given pixel
from the same CMOD5 as shown in Figure 4, the third and
fourth inputs from the top. This training set consisted of 5556
pixels, of which 1811 represented oil slicks, 1225 represented
low-wind features, and 2520 represented clean sea. The low-
wind pixels and the clean-sea pixels were assigned a nonslick

value. Further development of the TCNNA and related routines
is intended to be an open-source process.3

Neural net algorithm

The algorithm designed consists of a pixel-by-pixel, feed-
forward neural network (FFNN) classification method. This
FFNN has 46 inputs and computes one value to identify each
pixel as slick or nonslick as shown in Figure 4. We used a two-
layer network. The logarithm-sigmoid transfer function was
picked because its output range (0–1) allows us to investigate
various thresholds to determine the best level of classification.
The hidden layer has five neurons. This number was chosen
after analyzing and balancing computation time versus
increased accuracy.
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Figure 4. Texture-classifying neural network algorithm (TCNNA). The input layer vector
(ILV) comprises 46 variables compiled for each pixel in the SAR image for the neural network
classification. For each pixel location in a SAR image, the ILV is made from pixel value, local
incidence angle, interpolation of closest wind measurements, six texture descriptors of the
neighbor (25 × 25 pixels), and filter reactions to convolutions with the LMFB. Variables were
resolved at a unit scale for pixel value and incidence angle, at a spatial scale of 1000 m for
environmental variables, and at the pixel neighborhood (kernel) sizes shown in Figure 2 for
texture filters 1–6 and LMFB. Texture variables were computed based on Gonzalez et al.
(2004).

3 To promote collaborative research, code and training sets are being made available at www.sarsea.org.



Using the training-set database, a training function that
updates weights and bias values according to Levenberg–
Marquardt optimization was chosen from the Matlab Neural
Network toolbox to update the FFNN. During each training
session, the learning process was stopped after approximately
45 epochs when it reached a performance goal of 0.01 mean
squared error (MSE).

Each image is an eight-bit file with �108 pixels. For ease in
processing, images were tiled in 10 × 10 blocks with a slight
overlap to obtain valid convolutions at the edges. The TCNNA
processes pixel by pixel in �106 pixel blocks, allocating in
memory only information used to process a given pixel and
generating the 46-dimensional ILV one pixel at a time.

In the final segmentation process, adaptative thresholding
was used depending on backscatter changes that result from
changing incidence angle. The threshold associated with each
pixel is given by a cosine function of the incidence angle for
each pixel.

Results
Validation

Two validation sets were constructed to assess the accuracy
of the TCNNA. For the first validation set, a database of 775
ILVs was generated from five different RADARSAT-1 images
containing 431 pixels of oil slicks and 344 pixels of clean sea.
For the second validation set, a database with 1915 pixels was
chosen from five different RADARSAT-1 images containing
low-wind features and oil slicks. This second validation set
used 552 pixels corresponding to oil slicks, 557 corresponding
to low-wind features, and 806 corresponding to clean sea. A
validation test was performed using the weights and biases
computed by the TCNNA. The overall accuracy classifying the
two validation test sets was 98.22% and 97.74% (Table 1).

TCNNA versus small incidence angles

The TCNNA worked effectively in RADARSAT-1 images
containing oil slicks in low and high incidence angles
(Figure 5). The fuzzy boundaries produced by low and high
incidence angles make discrimination difficult for the human
eye. The challenge of discriminating oil pixels in SAR images
with high and low incidence angles is shown in Figure 5. The
TCNNA distinguishes the slick from the nonslick areas of the
entire image despite a low contrast difference between target
and background and a wide range of image brightness.
Figures 5B, 5D, and 5F and Figures 5C, 5E, and 5G show the

projection from raw image to binary output for slicks in high
contrast and low contrast, respectively.

TCNNA versus human classification

Comparison of classifications by a human analyst
(Figures 6A, 6B) with TCNNA classifications (Figures 6C,
6D) shows important differences. First, the TCNNA output
required much less time to obtain than the manual classification
(65 min versus 7.5 h). Second, the human analyst tended to
overselect pixels as slick when the boundaries between slick
and nonslick were fuzzy. Conversely, the human analyst
underselected darker pixels as slicks compared to the
performance of the TCNNA (Figure 6E). Overall, in the entire
image, the human analyst selected slicks equaling 75% of the
TCNNA classifications.

Discussion
Neural network algorithms have been developed by other

investigators for SAR image analysis to detect floating
hydrocarbons (Ramalho and Medeiros, 2007; Topouzelis et al.,
2008). Ramalho and Medeiros (2007) developed feature-
recognition routines for detecting oil spills. Topouzelis et al.
(2008) have used pixel-by-pixel routines to delineate areas of
oil-covered water within selected subsets of SAR images. In
both cases, the operators strongly suspected the presence of
floating oil within the image areas that they analyzed. The
TCNNA routines described in this paper used a pixel-by-pixel
approach applied to entire SAR images collected in the Gulf of
Mexico offshore.

Development of the TCNNA was facilitated by focusing on
floating oil released by natural seeps. Because natural seeps are
common in the Gulf of Mexico, it was possible to acquire
repeat observations of floating oil that occurred under a range
of environmental conditions. Synoptic data were available from
meteorological buoys, satellite observations, and wind models.
Additional data on wind were also extracted from the SAR
images using CMOD5 routines (Hersbach, 2005).

As has been noted by several studies, wind has a strong effect
on the ability of SAR to detect floating oil (Espedal and Wahl,
1999; MacDonald et al., 2002; Miranda et al., 2004). In earlier
work, we found that environmental variables including sea
surface height and sea surface temperature contributed little to
the performance of the TCNNA (Garcia-Pineda et al., 2008).
Consistent with the previous work of other authors, we
confirmed the influence of wind on SAR detection of floating
oil. However, because we had multiple images over areas
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Oil-slick pixels Clean-sea pixels Low-wind pixels Overall
accuracy (%)Validation set Total Accuracy (%) Total Accuracy (%) Total Accuracy (%)

1 431 97.02 344 98.25 98.22
2 552 96.55 806 98.07 557 98.60 97.74

Note: Validation set 1 includes Wind Port Model inputs, and validation set 2 includes low-wind features and CMOD5 wind inputs.

Table 1. Validation test results.



known to contain natural seeps that extend over many years of
observation and we had synoptic environmental data for the
collection times, the development of the TCNNA could be used
to better constrain the effect of wind on the ability of SAR to
detect floating oil. Using ground-truth data from NDBC buoys
and from onboard meteorological measurements during cruise
expeditions, we observed that in the wind speed range of 3–
7 m·s–1, RADARSAT SAR images in the standard and
ScanSAR beam modes consistently showed floating oil. Within
this range, having wind data, whether from in situ measurement
or CMOD5 processing, contributed relatively little to the
performance of the TCNNA. This means that the TCNNA can
potentially be used for images where no environmental data are

available and (or) CMOD5 processing is not possible. Running
the TCNNA without wind data greatly streamlines the image-
analysis process.

When wind speeds are below about 3 m·s–1, so-called low-
wind effects begin to degrade the ability to distinguish oil from
large dark areas that occur where the wind is insufficient to
generate backscatter. Under these conditions, adding wind data
to the ILV significantly improves the way TCNNA
discriminates between oil and false targets generated by low-
wind regions. The decision of whether or not to add wind to the
ILV can be made based on visual inspection of the image.
Decision-tree analysis indicates that inclusion of wind
variables is helpful. This provides a deterministic criterion for
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Figure 5. In scenarios where the oil slick classification would be
very difficult to perform manually, TCNNA efficiently identifies
boundaries between oil slicks and clean sea. (A) Georectified
eight-bit SAR image. Incidence angle increases from left to right.
(B–B′′) and (C–C′′) show the segmentation of the image from
TCNNA processing and output of a binary slick (in red) and
nonslick image (in white).

Figure 6. Comparison of a manually classified image subset
versus TCNNA segmentation (A and B) shows how manual
classification can misplace and overlook some boundaries of oil
slicks. (C) Manual classification bias depends on pixel values and
boundary types.



adding wind data to the ILV. Separate training sets are required
for running the TCNNA with or without wind data inputs.

Visual inspection of images can also determine when high-
wind conditions have degraded the oil-detection capability of
SAR. However, in our experience, this determination is less
conclusive than that for low-wind conditions. Seasonal
variability in average wind speed can be used to screen images;
SAR collections during winter months are less likely to support
oil detection because of the stronger seasonal winds. Further
research on the image characteristics associated with high-wind
conditions may produce methods for evaluating whether the
wind conditions in an arbitrary image are conducive to oil slick
detection. At present, if it is uncertain whether the absence of
oil results from lack of oil or unfavorable wind, then wind data
from buoys or CMOD5 processing are required.

Results of the TCNNA can provide precise estimates for the
total extent of floating oil. The pixel-by-pixel output generates
polygons that are much more detailed than could reasonably be
produced by a human operator (Figures 5 and 6). Other
automated routines applied to oil releases in the Gulf of Mexico
have also produced accurate segmentations of oil-covered
water (Miranda et al., 2004). Comparing the TCNNA output
with the results given by the semivariogram classifier described
in Pellon et al. (2004) illustrates the difference between the two
products (Figure 7). Both accurately show the extent of the oil
slick. However, one difference is that TCNNA estimates of the
total area covered by oil are significantly more conservative
than the semivariogram results, probably because of the pixel-
by-pixel processing of the TCNNA. This difference would be
important for estimating the total quantities of oil present or
variations in the flux from natural sources because the two
approaches would produce different estimates.

An advantage of this algorithm is that it can process either
the whole image or a region of interest for the user. The
threshold is automatically adjusted based on the incidence
angle. The output is a binary GeoTIFF image (about 1 Mb)
containing polygons representing oil slick areas and retaining
geospatial registration for easy handling and generation of
spatial statistics in mapping software. In addition, this
algorithm exports results in a standard geographic information
system (GIS) layer for maps (shape files) with polygons
containing attributes like sea surface area, SAR image
identification collection, and the date.

Conclusions
The reliability of the texture-classifying neural network

algorithm (TCNNA) was assessed after processing several
hundred images containing oil slicks under different scenarios,
including cases where the edges of slicks were indistinct and
difficult to classify visually. The TCNNA produces results that
match or exceed what can be done by human analyst and in a
fraction of the time needed for manual classification.

TCNNA results allow us to evaluate effects of different
environmental conditions on expressions of oil slicks detected
by synthetic aperture radar (SAR) satellites. In combination
with a large archive of SAR images over the Gulf of Mexico,
TCNNA also will allow characterization of a multiyear process
like flux variation of a natural hydrocarbon seepage source and
estimation of the entire Gulf of Mexico contribution of
hydrocarbon transfer from the ocean to the atmosphere. Other
processes may be detected with the TCNNA if suitable training
sets are obtained. Among other processes that can be analyzed
using TCNNA are oil spills, coastal upwelling, and patterns in
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Figure 7. (A) Subset of a RADARSAT-1 image acquired over Mexican oil production field Cantarell where natural
hydrocarbon seepage and pollution are detected by TCNNA. (B) Zoom in of the oil slick segmentation processed by
TCNNA. The same image has been processed by Pellon et al. (2004) as shown in (C). Both algorithms accurately
segmented the area covered by oil. TCNNA area segmentation (65.33 km2) is more conservative than USTC
segmentation (96.10 km2).



sargassum, like the magnitude and distribution of floating
sargassum (algal) mats.
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