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We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient
based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables
validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncer-
tainty budget is comprised of a number of components, arising from uncorrelated (e.g. noise), locally systematic
(e.g. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of
distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the
method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the re-
sults for two different SST retrieval algorithms, both at a per pixel level and for gridded data.We find good agree-
ment between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST
retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Sea surface temperature
Uncertainty budget
Remote sensing
Climate change initiative
1. Introduction

Uncertainty is inherent in all geophysical measurements andmust be
appropriately characterized for their scientific application. Data providers
have a responsibility to communicate the levels of uncertainties associat-
ed with their products and inform data users of the correct methodology
for using uncertainty information provided. Within the Sea Surface Tem-
perature Climate Change Initiative (SSTCCI) project (Hollman et al., 2013;
Merchant et al., 2014) we aim to provide an uncertainty budget for every
SST value provided in products (skin temperature, SST at 0.2mdepth and
spatially averaged SST).We aim to derive uncertainty estimates indepen-
dently of SST validation datasets, allowing validation of both the SST
values and their associated uncertainty.

The terms ‘error’ and ‘uncertainty’ are sometimes used interchange-
ably, but have distinct standard definitions that will be adhered to
throughout this paper. Error is the difference between a measured
value and the true value of the measurand (JCGM, 2008; Kennedy,
2014). In practice we know neither the true value nor therefore the
error for a particular measurement. However the distribution of the er-
rors can often be estimated and this distribution characterizes the uncer-
tainty in the measured value. Formally, uncertainty is a parameter
characterizing the dispersion of values that could reasonably be
.

attributed to the measured value (JCGM, 2008). To quantify uncertainty
in this paper we quote one standard deviation of the error distribution.

It is common to provide generic uncertainty estimates for remotely
sensed SST derived via comparisonwith in-situ datasets during validation
activities. The standards of the Group for High Resolution Sea Surface
Temperature (GHRSST) specify the provision in all datasets of single sen-
sor error statistics (SSES). For pragmatic reasons, SSES are defined to com-
prise themean difference and standard deviation of remotely sensed SST
matched to a ‘reference’ dataset (GHRSST Science Team, 2010). Drifting
buoy SSTs are often used as the ‘reference’. Mean and standard deviation
validation statistics are oftenprovided as globally invariant dataset specif-
ic values (Casey & Cornillon, 1998; May, Parmeter, Olszewski, &
McKenzie, 1997; Reynolds, Rayner, Smith, Stokes, &Wang, 2002). An ad-
ditional field indicating the retrieval quality level can be specified at pixel
resolution providing information on the likelihood of cloud contamina-
tion, noise amplification at extreme satellite zenith angles or input data
quality (Donlon et al., 2007; Kilpatrick, Podestá, & Evans, 2001). An exten-
sion of this approach is the MODerate Resolution Infrared Spectrometer
(MODIS) algorithm, which provides validation-based uncertainty infor-
mation stratified by season, latitude, surface temperature, satellite zenith
angle, a selected brightness temperature difference, SST quality level and
day/night (Castro et al., 2010).

Sources of uncertainty in remotely sensed SST are intrinsic to the re-
trieval process and the data utilized. Uncertainties vary from pixel to
pixel due to local changes in instrument noise, satellite viewing geometry
and atmospheric conditions.We present here amethod of estimating SST
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retrieval uncertainty that accounts for these factors at the pixel level.
There are a number of sources of uncertainty in SST measurement and
the need to differentiate the effects of random, and systematic errors
has been previously noted (Casey & Cornillon, 1998; Kennedy, 2014;
Merchant et al., 2012; Reynolds et al., 2002). Gridding of products intro-
duces sampling uncertainties and a number of studies have considered
these when constructing global or regional SST datasets from in-situ ob-
servations (Brohan, Kennedy, Harris, Tett, & Jones, 2006; Folland et al.,
2001; Jones, Osborn, & Briffa, 1997; Morrissey & Greene, 2009; Rayner
et al., 2006; She, Hoyer, & Larsen, 2007).

In this paper,we consider uncorrelated and locally systematic effects
contributing to SST uncertainty. The random or uncorrelated effects
arise from noise in the satellite brightness temperature, which propa-
gates into the retrieved SST. Locally systematic effects cause errors
that are correlated on synoptic scales of atmospheric variability and
are related to the retrieval method itself interacting with changes in at-
mospheric properties (Barton, 1998; Embury & Merchant, 2012; Le
Borgne, Roquet, & Merchant, 2011; Merchant et al., 2012; Minnett,
1986; Minnett & Corlett, 2012). We also discuss uncertainties from
large scale systematic effects (spatially coherent on larger scales than
synoptic features). In a companion paper (Bulgin et al., 2016-in this
issue) we derive a method for calculating sampling uncertainty in
gridded products due to incomplete sampling of observations in each
grid cell, primarily as a result of cloud cover. In this paper, we use results
from Bulgin et al. (2016-in this issue), and, for completeness, show how
sampling uncertainty combines with other components of uncertainty
in gridded products.

The remainder of the paper is structured as follows. Section 2 de-
scribes the theory behind the calculation of uncertainties, their propaga-
tion andhow this is applied to different levels of SST data (orbit data and
griddedproducts). Section 3 describes howan initial uncertainty budget
is constructed from errors originating from random, locally correlated
and sampling effects. In Section 4 we present a validation of our uncer-
tainty budget and in Section 5 provide a discussion of the results. We
conclude the paper in Section 6.

2. Uncertainty calculation and propagation

We construct an uncertainty budget for SST measurements in CCI
products comprised of uncertainty components arising from random,
locally systematic, large-scale systematic and sampling effects. The full
equation for the propagation of uncertainty in a variable y, (u(y)),
given that y is related to input quantities xi via y= f(x1,… ,… ,xn), is de-
fined as Eq. (1) in the Guide to the Expression of Uncertainty in Mea-
surement (GUM) (JCGM, 2008).
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Uncertainty is expressed with respect to (y) in the GUM, and we re-
produce this notation throughout the paper. However, in Earth Obser-
vation, we conventionally relate a retrieval estimate x to observations
y i.e. x ¼ f ðyÞ which is the reverse convention. The first term in Eq. (1)
describes the propagation of uncertainties from uncorrelated errors.
These can be added in quadraturewith the differential term (∂f/∂xi) de-
fining the sensitivity of the total uncertainty to each uncertainty compo-
nent. The second term describes the propagation of uncertainty terms
arising from correlated errors. This term sums the uncertainty compo-
nents from correlated errors for each pair of input variables (xi and xj)
found as the product of the sensitivity for both xi and xj and the covari-
ance between them, u(xi,xj). The factor of ‘2’ is included, as for each pair,
each is equally correlated with the other.

Eq. (1) can also be written in the form of Eq. (2) where the uncer-
tainty is expressed as the sum over all pairs of input variables and the
covariance term is expressed as the product of the standard uncertainty
in xi, written ui, in xj, written uj, and of the correlation of errors in xi and
xj, written rij.
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Eq. (2) applies fairly generically to any transformation y= f(xi,… ,xn)
for which the sensitivity parameters (∂ f/∂xi) are adequately constant
over the range xi−ui to xj+uj; it is a first order approximation. Because
we will use the results later, we illustrate the use of Eq. (2) for cal-
culating the uncertainty in themean SST from a number of observations.
If f ¼ ∑n

i¼1xi=n, where each xi is a contributing SST value, then the sen-
sitivity parameter is ∂f/∂xi=1/n giving:

u2 ¼ 1
n2
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We can consider three limiting cases. First assume errors are uncor-
related between pixels. We can then put rij=δij, where δij=1 for i= j,
and δij=0 for i≠ j. In this case, the uncertainty in the mean is scaled by
the familiar ‘ 1ffiffi

n
p ’ reduction in uncertainty, because
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Second, consider the case rij=1, which means errors fully correlate
between contributing SSTs. Eq. (3) becomes
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implying u ¼ 1
n∑

n
i¼1ui i.e. the uncertainty is the average uncertainty of

the contributing SSTs.
Third, consider the case rij=δij+(1−δij)r - all SSTs have the same

error correlation with other SSTs. Substituting into Eq. (3) gives
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This formyields the previous results as special cases (r=0and r=1).
Constant rij for i≠ j is in practice unlikely to be exact for a real situation,
but may be a useful approximation in some cases, avoiding the need to
estimate rij for every contributing pair.

3. Uncertainty budget components

3.1. Uncorrelated effects

Randomerrors in SST estimation fromsatellite data arise fromnoise in
the satellite observations. The signal recorded by a typical radiometer is a



215C.E. Bulgin et al. / Remote Sensing of Environment 178 (2016) 213–222
voltage measured across a detector, digitized and recorded as counts. In
the operational calibration, a linear radiance is calculated in the form ra-
diance=gain×counts+offset where the gain and count parameters are
calculated during instrument calibration (Smith, Mutlow, Delderfield,
Watkins, & Mason, 2012). A non-linearity adjustment is then applied to
the longwave channels (Smith et al., 2012) for which the associated un-
certainty has not been calculated. In this analysis we simply take the de-
tector noise in the measured counts and propagate this into our
geophysical retrieval. In a coefficient based retrieval, SST is calculated
from a pre-defined linear or nearly linear combination of the observed
brightness temperatures (Anding and Kauth (1970); Deschamps and
Phulpin (1980); Kilpatrick et al. (2001); May et al. (1997); McMillan
and Crosby (1984), and further references within Merchant (2013)).
Brightness temperature uncertainty is characterized using channel-
specific noise equivalent differential temperature (NEdT). This uncertain-
ty is then propagated into the SST retrieval uncertainty.

We illustrate the propagation of errors from random effects using
data from the polar orbiting Advanced Along Track Scanning Radiome-
ter (AATSR) aboard the Envisat satellite. Envisat was in a sun synchro-
nous orbit with an equator overpass time of 10.00 am. AATSR made
observations in seven spectral bands covering the visible and infrared
spectrum at two viewing geometries: nadir (0–22°) and forward
(52–55°). SST can be derived using the nadir infrared channels only,
or using both the nadir and forward views. We consider here the prop-
agation of uncertainties through two different retrievals: ‘N2’ using the
11 and 12 μm channels in the nadir view only and ‘D2’ using the 11 and
12 μm channels in both views. The formula used here for estimating co-
efficient based SSTs from satellite data is:

x ̂SST ¼ a0 þ
X
k

akyk ð11Þ

where yk refers to each channel used in the retrieval, a0 is an offset and
ak are channel specific coefficients. Note that herex ¼ f ðyÞ, in contrast to
usage in Section 2 (as previously noted). These coefficients vary with
the context in which the observation is made, according to the viewing
geometry and total column water vapor (TCWV), but are predefined.
The error (difference between the measured value and true value) for
a given SST can be defined as:

eSST ¼
X
k

akeyk : ð12Þ

This is a linear combination of the errors in the brightness tempera-
tures in each channel (denoted by ‘k’) multiplied by the coefficient used
in the retrieval. In practice, we do not know the true SST value nor there-
fore the error on each individual measurement, but we can simulate a
‘typical’ error field from our knowledge of the NEdT in each channel.
We illustrate this in panels a and b of Fig. 1 which show simulated error
fields for the nadir view of the 11 and 12 μm channel at pixel resolution
(1 km at nadir for AATSR). These are constructed using a Gaussian ran-
dom number generator selecting values from a distribution with 0.0 °C
mean and 0.05 °C standard deviation representing NEdT estimates for
the two channels (Embury & Merchant, 2012). Errors vary in magnitude
from pixel to pixel and can be either positive or negative in sign.

Panels c and d of Fig. 1 show the propagation of these simulated
error fields in a N2 and D2 retrieval. For the purpose of this illustration
we assume a fixed view angle and TCWV (23 kg m−2) across the
image giving coefficients (ak) dependent only on channel, as shown in
Table 1. Under normal retrieval conditions these would vary slightly
on a per-pixel basis. The coefficients are specified to five decimal places
(Merchant & LeBorgne, 2004). Further discussion of error inherent in
the retrieval process is provided in Section 3.2. As indicated in Eq. (12)
the uncorrelated errors in a given retrieval are the sum of the errors in
each channel, and therefore the total errors are smaller in the N2
retrieval than the D2 retrieval (which uses four channels with generally
heavier weights).

Many users require gridded Level 3 products generated from full res-
olution data.When generating gridded products, the average SST can be
calculated using the arithmetic mean:

x ̂Gridded SST ¼ 1
n

Xn
i¼1

x ̂SST ið Þ ð13Þ

where n is the number of observations (i) in the grid cell. The alternative
would be to calculate a weighted mean based on the per-pixel uncer-
tainties, but we choose the arithmetic mean as it gives equal weight to
all measurements across the grid cell and therefore represents a mean
across the geophysical variability within the grid cell. Panels e and f
show the arithmetic mean of the errors over a 5 × 5 pixel grid cell, ap-
proximately representing the creation of 0.05° Level 3 products. The
range in the mean error is naturally smaller in the gridded product,
but remains larger for the D2 retrieval than the N2 retrieval.

In practice, when retrieving SST from satellite observations we don't
explicitly know the error in either the brightness temperatures or SST.
We need, however, to estimate the uncertainty in the SST retrieval.
Given estimates of NEdT, this is an example of standard uncertainty
propagation. ‘Standard uncertainty’ is the standard deviation of errors
in each channel brightness temperature, estimated to be of the order
of 0.05 K for both the 11 and 12 μm channels of AATSR (Embury &
Merchant, 2012). The propagation of uncorrelated uncertainty compo-
nents is shown in Eq. (5) where uncertainties are added in quadrature.
Applying this to Eq. (11), in thefirst instance to give the per pixel uncer-
tainty, and differentiating with respect to each channel (yk) used in the
retrieval gives:

ui ¼
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2
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s
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For a gridded product using the arithmetic mean, the uncertainty in
the mean of the contributing pixels is

uGridded SST ¼ 1ffiffiffi
n

p
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For fixed coefficients and a constant error in the brightness temper-
atures (0.05 K) as in Fig. 1, there is an invariant uncertainty value for
each retrieval algorithm (N2 and D2) at the pixel level. When creating
a real SST product, NEdT varies as a function of both channel and bright-
ness temperature. For N2 retrievals in the example provided, this invari-
ant uncertainty value is 0.11 K and for D2 retrievals 0.25 K. Uncertainties
in gridded averages reduce by 1ffiffi

n
p giving uncertainty estimates of 0.02 K

and 0.05 K for N2 and D2 retrievals over fully observed grid cells. In
practice, many grid cells in Level 3 products are not fully observed due
to cloud cover. This reduces the number (n) of observations available
and increases the uncertainties from random effects. This is illustrated
in panels g and h of Fig. 1 for N2 and D2 retrievals. A cloud mask has
been superimposed on the simulated data at the per-pixel level and un-
certainties propagated into the 5 × 5 pixel product. Observing only part
of a given grid cell additionally introduces sampling uncertainty,
discussed briefly in Section 3.4 and more fully in the companion paper
(Bulgin et al., 2016-in this issue).

3.2. Locally systematic effects

Uncertainties from locally systematic effects arise from ambiguities
in or limitations of the SST retrieval algorithm. Coefficient based re-
trievals for the ATSR instruments in Phase 2 of the SST CCI will use coef-
ficients from theATSR Reprocessing for Climate (ARC) project. These are
calculated based on radiative transfer simulations which cover a



Fig. 1.Uncorrelated randomerrors anduncertainties in brightness temperature observations and SST retrieval. Panels a) and b) show simulated errors in the 11 and 12 μmchannels. Panels
c) and d) show these errors propagated into SST retrievals for N2 andD2 retrievals. Panels e) and f) show themean error at a 5× 5 pixel resolutionwith a cloudmask superimposed on the
data. Panels g) and h) show the associated uncertainty fields at a 5 × 5 pixel resolution.
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comprehensive range of surface and atmospheric conditions (Embury
& Merchant, 2012; , Embury, Merchant, & Fillipiak, 2012). Locally sys-
tematic effects therefore vary on synoptic scales consistent with chang-
es in atmospheric conditions.
Table 1
Coefficients for each channel used to calculate SST in the ‘N2’ and ‘D2’ retrievals in Fig. 1.

Retrieval Channel Sec(sat zenith angle) a1 coefficient

N2 11 μm 1.0 2.04314
N2 12 μm 1.0 −1.02542
D2 11 μm 1.0 4.65371
D2 11 μm 1.76 −1.65009
D2 12 μm 1.0 −3.27043
D2 12 μm 1.76 1.27186
Wecan characterize the uncertainties arising from locally systematic
effects in the retrieval scheme using simulation studies. To do this, we
take a ‘true’ SST field from Numerical Weather Prediction (NWP) data
and simulate the associated brightness temperatures globally as
would be observed by the AATSR instrument using the RTTOV radiative
transfer model. We can then use these simulated brightness tempera-
tures as input into our retrieval scheme, comparing our retrieved SST
with the ‘true’ SST e.g. (Merchant, Harris, Roquet, & Le Borgne, 2009).
For any given scene,we can plot the retrieval error field using thismeth-
odology as shown in Fig. 2. The contour lines in the top top panels show
atmospheric pressure in hPa and the bottom two panels total column
water vapour (TCWV) in kg m−2, with the spatial distribution of the
error field consistent with synoptic scales of variability. However, fea-
tures in the SST error field are not simply linked to TCWV distributions,



Fig. 2. AATSR retrieval errors for two different days from simulation studies (left and right). Plots show the difference between the ‘true’ and retrieved SST field. Plots in the upper panels
show pressure contours (hPa), and plots in the lower panels TCWV contours (kg m−2).
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since we see that a single contour line can run through regions of both
positive and negative errors. The ARC retrieval coefficients are banded
by TCWV and the observed errors are not simply a bias that can be re-
moved from the retrieval. Uncertainty arising from these error effects
is characterized in the retrieval as a function of TCWV consistent with
the coefficient banding. Panels in the left and right in Fig. 2 show the
SST retrieval error fields for different days, which vary in time as well
as space on synoptic scales.

Within the retrieval scheme, uncertainties are calculated as the stan-
dard deviation of the error distributions from the simulated data, taking
the differences between the ‘true’ and retrieved SSTs. This is the fitting
error of the regression when the coefficients are applied to the simulat-
ed data used to generate the coefficients. Fig. 3 shows the uncertainties
as a function of TCWV for retrievals using different channel combina-
tions at different viewing geometries. For the N2 retrieval using two
channels (11 and 12 μm) the uncertainties increase as a function of
TCWV, flattening at higher TCWV's above 45 kg m−2. With the addition
of information frommultiple viewing angles (0–22° and 52–55°) locally
systematic uncertainties are significantly reduced to ~0.1 K or lower.
Fig. 3 also shows the uncertainty from uncorrelated effects as a func-
tion of TCWV for different channel combinations. Comparing single-
view retrieval uncertainties with dual-view uncertainties, the dual-
view capability reduces the systematic uncertainty at the expense of
the increased retrieval noise. Uncertainties from uncorrelated effects
are dependent on both the NEdT for a given channel combination and
the coefficients. For the N2 and D2 retrievals large weights are assigned
to the 11 and 12 μm channels which magnifies the uncorrelated uncer-
tainty. ARC coefficients are tuned to assume NEdTs of 0.01 K (smaller
than actual values) as they are designed to produce SST products at
0.1° resolution. This has the effect of reducing locally systematic uncer-
tainties at the cost of increased uncorrelated uncertainties as these de-
crease as a function of 1=

ffiffiffi
n

p
when calculating the gridded product.

Many SST retrievals also use information from the 3.7 μm channel
at night. The consequence of adding this third channel to the retrieval
(results not shown) reduces uncertainty from locally systematic effects
to ~0.1 K or lower, with larger uncertainties for drier atmospheres. As
TCWV increases, the 11 and 12 μm channels become less sensitive to
the surface whilst the 3.7 μm channel remains relatively transparent.



Fig. 3.Uncertainties from a) locally systematic and b) uncorrelated effects as a function of total columnwater vapor for different channel combinations. Black and red lines correspond to
nadir only and dual view retrievals respectively.
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SSTs in regions of high TCWV, close to the equator also show less vari-
ability which may improve the fit of the retrieval to the training data.
For the uncertainties due to uncorrelated effects, including the 3.7 μm
channel in the retrieval results in smaller weights for the 11 and
12 μm channels reducing the noise amplification.

3.3. Large scale systematic effects

Other effects can cause SST errors that are correlated on larger scales.
For brevity, the uncertainty associated with unknown errors correlated
on large scales is hereafter referred to as “systematic uncertainty”. (It is
taken for granted that any ‘known’ or ‘estimated’ systematic errors have
been addressed i.e., that any general bias has been quantified and
subtracted from data. The systematic uncertainty therefore quantifies
the degree of doubt in the measurements associated with what might
be termed ‘residual biases’.)

All satellite sensors are calibrated prior to launch to a pre-defined
standard. The required accuracy for SST measurements from space for
climate applications is 0.1 K (Ohring, Wielicki, Spencer, Emery, &
Datla, 2005). In some cases the SST algorithm itself is capable of
adjusting for some of the systematic errors in calibration, for example
an SST retrieval algorithm that fits regression coefficients to buoys di-
rectly will correct for some of the calibration biases as part of the fitting
process. This process will also introduce an additional source of uncer-
tainty from unknown errors in the buoy measurement. The buoy data
are point measurements at depth whereas the satellite observations
are areameasurements of skin temperature. If the sensor is poorly char-
acterized this additional uncertainty term can be smaller than the sys-
tematic calibration bias. Thermal channels on some sensors seem in
practice to have a BT calibration accuracy of 0.1 K, judging by the SST ac-
curacy achievable using radiative transfer-based coefficients.

The sensor having been calibrated to a certain level, there remain
smaller errors, within the specified calibration accuracy, that are un-
known. Thesemay vary systematically with scene temperature, general
instrument temperature, the thermal state of the on-board calibration
target, the temperature of the detectors, the illumination of the sensor
on the space-craft by the Sun., and potentially with many other factors.
Sometimes, these effects are sufficiently evident in flight that they can
be diagnosed and corrected for (Cao, Sullivan, Maturi, & Sapper, 2004;
Mittaz, Bali, & Harris, 2013; Mittaz & Harris, 2011; Wang & Cao, 2008;
Yu, Wu, Rama Varma Raja, Wang, & Goldberg, 2012). There may be a
gradual evolution of such systematic calibration effects over time, as
the sensor ages, and/or as the platform orbit drifts, changing the illumi-
nation and thermal cycling of the sensor.

Where satellite datasets are reprocessed, there may be some effort
to harmonize the BTs across different sensors. “To harmonize” here
means to reconcile the calibration of the observed BTs given the
known differences between the sensors; it does not mean that the BTs
would be the same for two sensors viewing the same scene; it does
mean that the differences would be traceable to known instrumental
differences, such as different spectral response functions. The adjust-
ments made to BTs in the light of harmonization have their own associ-
ated uncertainty, and this also is likely to be systematic as defined here.
Overall, harmonization is intended to reduce systematic effects, partic-
ularly relative errors between sensors.

It is possible in principle to estimate the systematic uncertainty asso-
ciatedwith calibration. There are two possible approaches. The first is to
exploit the pre-flight calibration information where an analysis of the
potential calibration errors has been made. Where such information is
available in sufficient detail in the public domain, it can form the basis
of an uncertainty budget. The second is to exploit near-coincident ob-
servations in space between different sensors. Having accounted for in-
strumental characteristics, differences in matched observations can be
used to adjust a less-well-calibrated sensor to a better-calibrated sensor.
These adjustments have a quantifiable statistical uncertainty, which
then provides an estimate of the magnitude of the post-correction sys-
tematic uncertainty e.g. Goldberg (2007).

In general, however, calibration uncertainty is not well quantified
and propagation of such information into the systematic uncertainty
in SST has not been undertaken, to our knowledge. Arguably, for SSTs
generated operationally for use in numerical weather prediction and
real-time oceanography, it has not been necessary. However, in the con-
text of developing reprocessed SST datasets for climate applications, it is
an area that needs to be developed. Climate data records require
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justified uncertainty estimates, particularly estimates of their multi-
decadal stability, which implies a detailed engagement with under-
standing and propagating uncertainty from systematic effects through-
out the record (Minnett & Corlett, 2012). A metrology (science of
measurement) of Earth Observation needs to be developed, to bring rel-
evant metrological principles for developing traceable chains of uncer-
tainty to bear in the context of historic satellite missions.

3.4. Sampling uncertainties

Many users of SST data require gridded products with SST specified
as a mean value across the space and time represented by the grid cell.
Often grid cells are not fully observed, typically in infrared measure-
ments due to cloud cover, but also in the case of corrupted data or prob-
lems with the retrieval process. Data may also be removed from the
subsample by conservative cloud detection schemes which can mask
clear-sky pixels. The mean SST across the observed pixels may differ
from themean SST across all pixels in the grid cell introducing sampling
uncertainty.

We cannot explicitly calculate the difference between the SST across
the full grid cell and the SST in the available subsample within the re-
trieval aswe donot know the SST of the unsampled pixels.We can how-
ever model the sampling uncertainty associated with this process using
fully clear-sky data extracts, andwe do this as a function of the percent-
age of the total number of pixels available in the subsample and the
standard deviation of the SST in the available pixels.

The full details of the derivation of the sampling uncertainty model
are provided in the companion paper (Bulgin et al., 2016-in this
issue). Here we provide only a brief overview, for completeness of the
discussions in this paper. In Bulgin et al. (2016-in this issue) we param-
eterize sampling uncertainty using a cubic function in the form
(ap3+bp2+cp+d) where a, b, c and d are coefficients dependent on
the SST standard deviation in the subsample, and p is the percentage
of clear-sky pixels within a given grid cell. This model is therefore appli-
cable to any retrieval schemewith data at the same spatial scale provid-
ed that the noise contribution to the SST standard deviation has been
subtracted.

3.5. Other effects contributing to uncertainty

The propagation of the effects of radiometric noise and the analysis
of locally systematic uncertainty discussed has assumed the context of
normal clear-sky conditions for each SST retrieval. This neglects the frac-
tion of retrievals thatwill in practice bemade under unusual conditions.
These are principally retrievals made for pixels whose classification as
clear-sky-over-seawater is doubtful, butwhich have nonetheless passed
the cloud screening process. At present, we have nomethod for estimat-
ing this in the uncertainty budget.

The first case to consider is ‘residual’ unscreened cloud contamina-
tion. Clouds escape detection if they are sufficiently small and low
(warm) or sufficiently optically thin (e.g., some cirrus). In these cases
they can nonetheless affect BTs at the level of several tenths of kelvin.
The corresponding impact on SST depends on how different the cloud
impacts on BTs are from the impact of increased water vapor in the at-
mosphere (which the retrieval algorithms are adapted to deal with).
The probability of such cases is considered to be greater around the
edges of areas correctly identified as cloudy. Note that both the distribu-
tion of BT modification by cloud-contamination in pixels falsely consid-
ered to be clear sky, as well as the frequency of failure to detect are
dependent on the cloud screening system. One could envisage that sim-
ulation of a representative range of cloudy situations be carried out to
generate such information, but to our knowledge, this has not been
done. Given these pieces of information, assessment of the contribution
to SST uncertainty could be undertaken by error propagation methods
similar to those described earlier. At present, however, the contribution
of this effect to SST uncertainty is not estimated.
The second case to consider is atmospheric aerosol of a form and op-
tical depth outside the range of circumstances for which the retrieval
coefficients are designed. Again, to the degree that the aerosol affects
the BTs differently to water vapor [e.g., Merchant, Embury, Le Borgne,
and Bellec (2006)], SST errors may be induced of unknown size. While
aerosol events trigger cloud detection if the optical depths are suffi-
ciently great, there is a regime where SST retrievals can be affected,
the effect in most cases being to make the retrieved SST too cold.
Again, the contribution of this effect to SST uncertainty is not estimated.

The third case relates to sea ice being present within the pixel for
which SST is retrieved. If the ice is not too cold and is relatively dark (cir-
cumstances that often go together in the formation of new ice), the ice
may not be detected. Similar considerations apply as to missed residual
cloud or aerosol, and this contribution to uncertainty again is not pres-
ently estimated.

There are a number of further effects contributing to SST uncertainty
that are neglected in the SST CCI uncertainty model. These include dif-
ferences in the instantaneous field of view for channels of different
wavelength, and local to regional variations in trace gas concentrations.
4. Validation of the uncertainty budget

Having constructed an initial uncertainty budget for remotely
sensed SSTs independently of in-situ data, we can now use these in-
situ data to validate our uncertainties (as well as the retrieved SST). In
Section 3, we characterized two quantifiable components of uncertainty
relating to SSTs calculated from satellite data at a pixel level (a random
component due to noise in the data and a locally systematic component
arising fromuncertainties varying on a synoptic scalewithin the retriev-
al) fromwhich we construct our initial uncertainty budget. We validate
this budget using data from the AATSR instrument spanning four years
(2006–2009 inclusive) considering both the N2 and D2 retrievals. The
data used in the validation are taken from the SST CCI multi-sensor
match-up system (MMS) (Corlett, Atkinson et al., 2014) where drifting
buoy and satellite observations are matched globally under clear-sky
conditions (Corlett, Atkinson et al., 2014).

Matches are filtered to include only the closest in-situmatch in time
to the satellite observation and to check the quality of the in-situ data.
Matches can have amaximumtime difference of 4 h andmaximumspa-
tial separation of 10 km. Bad quality in-situ data are removed based on
the following criteria 1) absolute difference between NWP and in-situ
SST greater than 10 K, 2) standard deviation of the in-situ SST history
greater than 5 K and 3) standard deviation of the in-situ latitude history
greater than 10°. Validation of satellite data using in-situ data necessi-
tates a comparison between a pointmeasurement and the satellite foot-
print. There are uncertainties in this process arising from comparing
two different types of observation and geolocation errors in both the
satellite and in-situ data. Thefiltering is therefore necessary tominimize
both spatial and temporal separation of the satellite and in-situ observa-
tions (Corlett et al., 2006; Donlon et al., 2002; Minnett, 1991).

For each match up, the uncertainties in the retrieved SST are calcu-
lated as follows. The noise in a given observation is a function of both
the channels and associated brightness temperature, and is calculated
by monitoring in-orbit blackbody temperature signals (Smith et al.,
2012). For AATSR, the NEdT is fairly consistent throughout the lifetime
of the mission. These NEdT values are used to calculate the uncertainty
due to uncorrelated effects at L2 using the methodology presented in
Section 3. The uncertainty from locally systematic effects is quantified
as a function of the TCWV consistent with the banding of the retrieval
coefficients. In both cases the uncertainties are then propagated into
the gridded product for validation of data in L3 format. For the gridded
products, a sampling uncertainty is also calculated due to the presence
of cloud preventing observation of all pixels within a given grid cell
(Bulgin et al., 2016-in this issue). This is an additional uncertainty due
to uncorrelated effects that is introduced in the gridding process. At
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both the per pixel and gridded scales the uncertainty components are
added in quadrature to give a total uncertainty.

The validation data for theN2 andD2 pixel level retrievals are shown
in the top twopanels of Fig. 4. Herewe plot the standard deviation of the
SST difference (retrieval minus drifting buoy) against the SST retrieval
uncertainty which we have calculated independently, represented by
the thin black lines in Fig. 4. The dashed lines indicate the uncertainty
model we would expect to see based on retrieved SST minus drifting
buoy differences. There is a lower limit on this model of +/−0.18 K
which represents the uncertainty in the drifting buoy measurements,
and geophysical uncertainties arising from skin to depth comparison
and colocation. We chose the time period of 2006–2009 inclusive for
our validation as the drifting buoy measurement uncertainty has been
stable at around 0.15 K over this period (Lean & Saunders, 2012). The
blue line on the plots indicate the median difference between the re-
trieved and in-situ SST across all match-ups in each uncertainty bin
(width: 0.02 K). The standard error in this value is represented by the
error bars. Red lines at the end of the black bars indicate the statistical
uncertainty in the calculated standard deviation and are visible primar-
ily for bins where the number of contributing cases is small.

For the N2 pixel level data we find that our uncertainty estimates
closelymatch the expected uncertaintymodel below a total uncertainty
of 0.25 K. Above this threshold, our estimated retrieval uncertainties are
too high: a better fit would be obtained if the bins shifted to lower
estimated uncertainty values. For the D2 retrieval, we see that our un-
certainties calculatedwithin the retrieval process show excellent agree-
ment with the expected uncertainty model. At a per-pixel level the
Fig. 4. SST uncertainty validation against drifting buoy in-situ data. Top panels show pixel leve
pixels approximately corresponding to a resolution of 0.05°) for N2 and D2 retrievals. Dashe
geophysical uncertainties arising from a skin to depth comparison and colocation. Solid black
lines the median satellite minus buoy SST difference. Error bars show the standard error in th
base and top of the solid black lines.
dominant terms in the uncertainty budget come from the uncorrelated
and locally systematic effects, assuming that a good cloud detection al-
gorithm is used. Therefore the validation indicates that our estimate of
these components is well constrained.

We also consider the validation of uncertainties for gridded N2 and
D2 retrievals across a 5 × 5 pixel domain approximately corresponding
to 0.05°. In this case we also include the sampling uncertainty compo-
nent in our initial uncertainty budget (Bulgin et al., 2016-in this
issue). The results for this validation are shown in the bottom two
panels of Fig. 4. When considering gridded data we find a larger range
of estimated uncertainty than for the per pixel data. This is because
SST varies across the gridded domain, and for cells that are not well
sampled, the uncertainty on themean SST increases. For the N2 gridded
data we see a similar pattern to the N2 per pixel data with uncertainties
being slightly overestimated. For the D2 gridded retrieval the overall
uncertainties are smaller, but we underestimate the total uncertainty,
above a total uncertainty of 0.2 K..

5. Discussion

Overall, we see that our independent uncertainty estimates show
good agreement with validation data using in-situ drifting buoy mea-
surements. The best agreement is for the D2 retrieval at a per-pixel
level. For the N2 retrievals we see a similar over-estimation of uncer-
tainties above 0.2–0.25 K in both the pixel level and gridded products.
The uncertainty budget constructed is based on the errors that we cur-
rently have the capability to estimate and propagate through the
l uncertainties for N2 and D2 retrievals. Bottom panels show grid cell uncertainties (5 × 5
d lines show ideal uncertainty model accounting for uncertainties in the buoy data and
lines show one standard deviation of the retrieved minus buoy SST differences, and blue
ese differences. Uncertainties in the retrieval uncertainty are indicated by red bars at the



Fig. 5. Annual means in SST retrieval uncertainties calculated from AATSR L3C data in 2010. Mean uncertainties are derived by adding all uncertainty observations in a given cell in
quadrature, dividing by the number of observations and taking the square root. a) Shows uncertainty due to uncorrelated effects (noise and sampling uncertainty), b) shows noise due
to locally systematic effects and c) total uncertainty. d) Shows the ratio of the SST standard deviation over 2010 to the total uncertainty.
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retrieval. Some of the sources of error discussed in the earlier sections
such as residual unscreened cloud contamination, failure to detect
clear-sky pixels and aerosol are not yet included. These may be larger
across a gridded domain if they affect multiple pixels.

In this validation, the estimation of large scale systematic uncer-
tainties has also been excluded, but in the SST CCI Version 1 products
this is set to an invariant value of 0.1 K per pixel as a best estimate of
the magnitude of this component, and then added in quadrature to
the uncertainty budget (Merchant et al., 2014).

Although at present the uncertainty budget cannot be fully
constrained due to the limitations described in the Section 3, we are
able to characterizewell the components resulting from random, locally
systematic and sampling effects across a range of retrievals for the ATSR
instruments as evidenced by the good validation statistics. On the rela-
tively short spatial and temporal scales (pixel to gridded averages at 0.1°
and instantaneous measurements) the uncertainties from uncorrelated
and locally systematic effects are the dominant terms in the uncertainty
budget. The contributions from the ‘missing’ components are therefore
relatively small under these SST retrieval conditions. Empirical system-
atic effects (biases) arewithin the estimated uncertainties and these un-
certainties can successfully distinguish more and less certain SSTs. The
approach outlined in this paper has a wider application to coefficient
based SST retrievals using other algorithms and data from other instru-
ments. If the data provider or user knows the NEdT distribution for each
channel used in the retrieval they can propagate this through the algo-
rithm to obtain the uncertainty due to uncorrelated effects in the re-
trieved SST. Data providers can use simulation studies to characterize
the locally systematic uncertainty in their retrieval scheme, and the
sampling model is applicable to any SST retrieval on the same spatial
scales as discussed in this paper provided that the uncertainty due to
noise is removed first. Provision of uncertainty information as part of
the retrieval process then enables validation of these uncertainty esti-
mates, as well as the SST, using in-situ data.

Fig. 5 maps mean uncertainty estimates for 2010. The uncertainty
maps show the square root of the mean of the error variance across all
days with observations. Where more than one observation is available
for a given day, the smallest error variance has been used. The uncer-
tainty fromuncorrelated effects (a) contains the noise and sampling un-
certainty components andwhen added to the uncertainty due to locally
systematic effects (b) in quadrature, produces the total uncertaintymap
(c). Total uncertainties typically range between 0.1–0.25 K globally,
with the highest values predominantly in equatorial regions and some
northern hemisphere high latitudes. The uncertainty due to uncorrelat-
ed effects is the larger contributor to this signal, and in these regions
scattered or patchy cloud cover increases sampling uncertainties.
Fig. 5(d) also shows the ratio of the retrieved SST variability to the un-
certainty, calculated by dividing the standard deviation of the SST in
an given location over the whole of 2010 by the total uncertainty. The
highest ratios are seen inmid-latitude regionswhere SSTs show greater
seasonal variation.

6. Conclusions

In this paperwe present a framework for the provision of uncertain-
ty estimates in coefficient based SST retrieval from satellite data, based
on propagation of noise, simulation of noise-free retrieval errors, and
empirical characterization of sampling effects. The uncertainty esti-
mates can be validated in their own right, in addition to validating the
retrieved SST. We provide a detailed discussion of different sources of
uncertainty in the SST retrieval and how to propagate these through
the retrieval process. We derive three uncertainty components here
and in the companion paper; uncertainties due to uncorrelated, locally
systematic and sampling effects. We apply our derivation to AATSR
data within the context of the SST CCI project and find that our uncer-
tainties validate well against in-situ data for both per pixel and gridded
products, and for two different retrieval algorithms.
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