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[1] Criteria are proposed for evaluating sea surface
temperature (SST) retrieved from satellite infra-red
imagery: bias should be small on regional scales;
sensitivity to atmospheric humidity should be small; and
sensitivity of retrieved SST to surface temperature should be
close to 1 K K�1. Their application is illustrated for non-
linear sea surface temperature (NLSST) estimates. 233929
observations from the Advanced Very High Resolution
Radiometer (AVHRR) on Metop-A are matched with in situ
data and numerical weather prediction (NWP) fields. NLSST
coefficients derived from these matches have regional biases
from �0.5 to +0.3 K. Using radiative transfer modelling we
find that a 10% increase in humidity alone can change the
retrieved NLSST by between �0.5 K and +0.1 K. A 1 K
increase in SST changes NLSST by <0.5 K in extreme cases.
The validity of estimates of sensitivity by radiative transfer
modelling is confirmed empirically.Citation: Merchant, C. J.,

A. R. Harris, H. Roquet, and P. Le Borgne (2009), Retrieval

characteristics of non-linear sea surface temperature from the

Advanced Very High Resolution Radiometer, Geophys. Res. Lett.,

36, L17604, doi:10.1029/2009GL039843.

1. Purpose: Understanding Infra-red SST
Retrievals

[2] Anding and Kauth [1970] proposed that sea surface
temperature (SST) could be determined from radiometric
temperatures observed at two wavelengths within the
‘‘window’’ between 10 and 13 mm. Differential transmission
allows the effect of the atmosphere to be (approximately)
eliminated by linear combination of brightness temperatures
(BTs), such that the SST can be estimated.
[3] Anding and Kauth’s estimate of the likely accuracy of

this ‘‘split-window’’ approach was 0.15 K. This was opti-
mistic, given the radiometric noise and calibration of sensors
flown, the variability of water vapour and aerosols in the
atmosphere, and the difficulty of effective cloud screening.
Nonetheless, split window algorithms have underpinned
routine estimation of global SSTs with accuracy �0.5 K. A
widely utilized time-series comes from the Pathfinder project
for SST from the Advanced Very High Resolution Radiom-
eter (AVHRR) series [Kilpatrick et al., 2001].
[4] As users become more demanding, exploring the

limitations of SST retrieval techniques is increasingly neces-
sary. This paper contributes some new approaches to this,

highlighting characteristics of SSTs not thoroughly discussed
in existing literature. We illustrate these using SSTs obtained
with the Pathfinder methodology to make the results widely
pertinent, but the approach is valid for all SSTs based on
coefficients. These characteristics are regional bias, sensitiv-
ity to water vapour and imperfect sensitivity to SST. Such
features are important for applications of SSTs in numerical
weather prediction (NWP), operational oceanography and
climate.

2. Criteria for Retrieved SST

[5] SSTs from satellites are usually validated against in
situ observations, usually drifting buoys [e.g., Brisson et al.,
2002]. A typical approach is to find the global mean and
standard deviation of satellite-drifter differences. If the re-
trieval estimates the temperature of the ocean’s skin layer
[Saunders, 1967], which is usually cooler than the water
below, assessment of ‘‘bias’’ relative to drifters should
account for this [Merchant and Le Borgne, 2004]. Standard
deviation is preferred to be as small as possible. The error in
quality-controlled drifters when representing spatial scales
corresponding to satellite observations is �0.2 K [O’Carroll
et al., 2008].
[6] We propose three further desirable characteristics for

SST retrievals: 1. On scales >1000 km (‘‘regional scales’’)
bias should be small (say, <0.1 K). 2. Sensitivity to atmo-
spheric water vapour should be negligible (close to zero).
3. Sensitivity to true changes in skin SSTshould be close to 1.
[7] Below, we present an obvious method of assessing the

inherent bias on regional scales, and a means of assessing
sensitivity based on radiative transfer modelling.

3. Methods and Data

[8] We use AVHRR and NWP forecast data for the
Metop-A polar-orbiter, following Merchant et al. [2008].
Matches were extracted operationally by the Ocean and Sea
Ice Satellite Application Facility (OSI-SAF) of the European
Organisation for Exploitation of Meteorological Satellites.
The matches span April 2007 to March 2008, and comprise
night-time co-incidences in space of single AVHRR pixels
with drifter SSTs within 3 hours (mean absolute time differ-
ence is 1 h 20 min). Only matches with low Saharan Dust
Index (SDI < 0.2 [Merchant et al., 2006]) are used, to focus
on clean-atmosphere effects. There are 233929 matches,
well distributed geographically (Figure S1 of the auxiliary
material).4

[9] NWP forecast fields within 3 hours of each match are
obtained from Météo-France’s ARPEGE system, following

4Auxiliary materials are available in the HTML. doi:10.1029/
2009GL039843.
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Merchant et al. [2008] including adjustment of forecast
humidity. The NWP data comprise profiles of atmospheric
temperature and humidity, and surface temperature at latitude-
longitude resolution of 0.5�. The nearest profile is associated
with each match. Brightness temperatures (BTs) are calcu-
lated from each NWP profile using RTTOV8.7 [Saunders
et al., 2002]. We also find using RTTOV the partial deriva-
tive of the BT at each channel, l, with respect to surface

temperature (
@yl

.
@x

, where y indicates BT and x is surface

temperature) and with respect to total column water vapour

(
@yl

.
@w

, where w is total column water vapour, TCWV).

The
@yl

.
@w

estimate is formed by perturbing the water

vapour profile at all levels by a fixed proportion.
[10] The Pathfinder procedure for coefficient deriva-

tion is followed (http://www.rsmas.miami.edu/groups/rrsl/
pathfinder/Algorithm/algo_index.html), the only distinction
being the independent collection of matches, described
above. The Pathfinder procedure calculates coefficients for
a given month using a 5 month rolling window weighted
most heavily to the central month. Within the window,
observed BTs matched to drifting buoy observations are used
to define the SST retrieval relationship by weighted least
squares regression. An initial regression fit is used to identify
outliers which are down-weighted in the ultimate regression
that generates coefficients. The non-linear SST algorithm of
Walton et al. [1998] is applied separately on two ranges of
difference between 11 and 12 mm BTs, namely, greater and
less than 0.7 K. When used for retrieval, these two NLSST
equations are linearly interpolated between BT differences of
0.5 and 0.9 K. Since, in this study, the coefficients are applied

to the matches from which they are derived, the coefficients
are ‘ideal’ within the limits of the NLSST formalism and
derivation procedure.
[11] The Pathfinder NLSST equation is:

x̂ ¼ a0 þ a1y11 þ a2S þ a3xbð Þ y11 � y12ð Þ ð1Þ

where x̂ is the retrieved SST, a0 is an offset coefficient,
coefficients a1 to a3 weight the observed brightness tem-
peratures at 11 and 12 mm (respectively y11 and y12), S =
secant(q) � 1.0 where q is the satellite zenith angle, and xb
is prior SST, restricted to the range �2� to 28�C. The in situ
observations are used for xb.

4. Characteristics of Pathfinder NLSST

[12] The regression procedure to generate coefficients
in equation (1) implicitly involves retrieved SSTs whose
weighted mean square residual compared to drifters is
minimized by the regression. Geographical variations in the
bias intrinsic to the Pathfinder algorithm can be assessed by
mapping the cell-averaged difference of the retrieved and the
drifter SSTs – Figure 1a. These biases are ‘‘intrinsic’’ in that
they arise despite applying the NLSST algorithm with opti-
mum coefficients derived from thematches themselves. They
show that the true BT-SST relationships are not accurately
captured by the NLSST formalism. A coherent negative bias
of�0.2 to�0.4 K is present in the equatorial Atlantic Ocean.
There is a tendency to positive biases between +0.2 and
+0.4 K in the Southern Ocean, east Indian Ocean, and
Caribbean Seas. Other regions have biases within �0.2 to
+0.2 K. For analysis of SST, it is preferable to reduce biases
in the satellite SST product, rather than rely on bias correc-

Figure 1. (a) Annual mean NLSST-drifter difference on cells of 10� latitude and 15� longitude, for cells where the standard
error of the estimated mean is <0.2 K. The mean across cells is�0.02 K (non-zero because of sampling effects). (b) Change in
retrieved NLSST for a 10% increase in atmospheric total column water vapour (TCWV), all other factors held constant.
(c) Change in retrieved NLSST for a 1 K increase in surface temperature, all other factors held constant. (d) Change in
retrieved NLSST for a 1 K increase in the guess SST, all other factors held constant.
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tion in the analysis system, because any mismatch of scales
between the bias correction scheme and the bias pattern may
lead to elements of the original bias persisting in the analysis
(R. Reynolds, personal communication, 2009).
[13] To assess the sensitivity of the NLSST to atmospheric

water vapour, we estimate the partial derivative of the NLSST
with respect to TCWV:

@x̂

@w
¼ a1 þ a2S þ a3xbð Þ @y11

@w
þ �a2S � a3xbð Þ @y12

@w
ð2Þ

We would ideally like this sensitivity to be zero, but the
coefficients have not been selected for this. In general,
equation (2) does not evaluate to zero, in agreement with
empirical observations [e.g., Kumar et al., 2003]. We esti-
mate the partial derivatives from BTchanges caused by a 5%
negative perturbation of the absolute humidity at all levels in
the atmosphere, with SST held constant. Figure 1b shows the
TCWV sensitivity expressed as the change in NLSST for a
+10% change in absolute humidity. Synoptic scale fluctua-
tions �10% of TCWV are plausible throughout the marine
atmosphere. In this data set, the average variability of TCWV
is 30%, with variability being 10% to 15% in the tropics.
[14] Thus, overall drying or moistening of the atmospheric

column can cause spurious fluctuations in retrieved NLSST
wherever significant sensitivity exists. In validation, these
fluctuations contribute apparent ‘‘noise’’ in the SST retrieval,
increasing the standard deviation between satellite and drifter
SSTs. This ‘‘noise’’ has the auto-correlation structure of the
water vapour field. Mostly the sensitivity of the NLSST to
w is modest. In some regions, positive sensitivity >0.1 K for a
10% increase in w is found. Negative sensitivity is more
usual, with a value around�0.5 K for a 10% increase in w in
some tropical regions. The highest sensitivities tend to be
where water vapour loading is greatest, but sensitivity is not
simply proportional to TCWV.
[15] The third desirable characteristic proposed is that the

sensitivity of the NLSST with respect to true SST changes,
i.e.,:

@x̂

@x
¼ a1 þ a2S þ a3xbð Þ @y11

@x
þ �a2S � a3xbð Þ @y12

@x
ð3Þ

be very close to 1.0. The mapped estimate for the NLSST is
shown as Figure 1c. The sensitivity is mostly less than 1.0,
the average of the cells being 0.93. Minimum sensitivity
occurs in the areas of high TCWV in the equatorial Atlantic
and Pacific Oceans, especially the Tropical Warm Pool,
where sensitivity dips below 0.5.
[16] Where sensitivity to SST is <1.0, SST frontal gra-

dients and diurnal fluctuations will be under-estimated by the
NLSST. Users of NLSST interested in quantifying these
phenomena should take this into account.
[17] Sensitivity with respect to true SST being not 1.0 has

an implication for the use of NLSSTs as a climate record:
it indicates that prior information is embedded within the

retrieved SST [Rodgers, 2000]. 1 � @x̂�
@x of the information

determining the SST is prior information – i.e., is not
contributed by the observed BTs. This prior information
partly arises from the ‘‘guess SST’’, xb. Figure 1d shows
the map of mean @x̂=@xb , showing to what degree the explicit

prior is influential. Generally, 1 � @x̂=@x is about twice
@x̂=@xb ,

so a comparable component of the prior information in the
retrieval is not explicit. In the tropical regions where the
atmosphere is least transmitting, BTs are least responsive to
changes in SST and are strongly determined by the temper-
ature of lower tropospheric water vapour; the NLSST re-
trieval then relies heavily on co-variability of atmospheric
and surface temperature. Real variations in SST that are not
associated with the climatological correlation between SST
and lower tropospheric temperature are, in this situation, not
fully reflected in NLSST.
[18] These results suggest that NLSSTs do not closely

meet the three criteria for SST retrieval proposed in section 2.
In the final section of this paper, we discuss the implications
of this further. Before that, we briefly digress to establish,
as far as possible, that the temperature sensitivity estimates
we have formed are credible.

5. Verifying Sensitivity

[19] It is not possible directly to verify @x̂=@x against the
drifter data available, since over the time and space scales of
change in drifter SST the atmospheric state cannot be taken as
constant, as necessary to evaluate this partial derivative.
However, independently of the drifter observations, we can
verify the existence of differential sensitivity to SST between
different types of retrieval, and show that they are consistent
with simulation-based estimates. Some matches are obtained
in areas of significant variability in SST. For an ideal SST
retrieval, the variability of the retrieved SST is equal to the
variability of the true SST over that area. However, if
the sensitivity to true SST variations differs from 1.0, the
apparent variability will be different in that same propor-
tion. A limitation is that where the true variability of SST is
small, radiometric noise will tend to dominate the apparent
variability.
[20] Here we use the BTs for the 21-by-21-pixel box

centred on the drifter location, an area over which column
atmospheric variability is small if skies are clear. Using this
box we can find directly from the data an estimate of the
relative sensitivity of two different SST retrieval algorithms.
The first is again Pathfinder-style NLSST. The second is a
‘‘triple’’ retrieval (SST3) used operationally at Météo-France
[OSI-SAF, 2009], with radiative-transfer-based coefficients
that are constant in time. SST3 exploits the 3.7 mm channel in
addition to the split window, and is applicable only for night-
time observations. Since SST3 weights most heavily the
3.7 mm channel, it gives a good contrast to NLSST.
[21] It is essential to minimize cloud contamination for this

purpose. We select cases with >80% of the box flagged to be
clear sky with the highest (‘‘excellent’’) level of confidence
[OSI-SAF, 2009]. Only ‘‘excellent’’ pixels that are adjacent
only to other ‘‘excellent’’ pixels are used. Atmospheric cor-
rection averaging [Harris and Saunders, 1996] over a 7 by
7 pixel moving window is applied to minimize radiometric
noise in the retrieved SST. For this, the 11 mm channel is used
as the reference for NLSSTand the 3.7 mmchannel is used for
SST3, ensuring near-independence in the radiometric error
for the two types of retrieval. Since there must be sufficient
true SST variability to give a signal, we use only boxes with
standard deviation in SST3 exceeding 0.25 K. True SST
variability will give highly correlated NLSST and SST3,
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whereas cloud or aerosol contamination will introduce dif-
ferent relationships, so only SST boxes with a correlation
coefficient between NLSST and SST3 > 0.97 are retained.
264 matches meeting these criteria are identified. The SST3
and NLSST estimates across the box for three examples are
shown in the auxiliary material (Figure S2): the differences in
the apparent contrast across frontal features are plain.
[22] For each case, we find the slope of the least squares fit

of SST3 versus NLSST across the SST box. This slope is an

empirical estimate of @x̂SST3
@x

@x̂NLSST
@x

� ��1
, the ratio of the sensi-

tivity for the two types of SST retrieval. We also calculate this
ratio from radiative transfer modelling using equation (3) for
the NLSST term, and the equivalent for SST3.
[23] The calculated and empirical sensitivity ratios are

compared in Figure 2. SST3 usually has a greater sensitivity
to true changes in SST than NLSST, and the ratios are greater
than 1. SST3 also tends to have lower regional biases and less
sensitivity to water vapour (Figure S3). Estimates of deriv-
atives and slopes tend to be noisy, and a ratio of such
quantities is noisier still. Nonetheless, the correlation coeffi-
cient between the calculated and empirical ratios is 0.61 and
is highly statistically significant (p < 0.001). The median
proportion of the calculated ratio to empirical ratio is 1.002:1.
This demonstrates that the relative sensitivity of different
types of retrieval can be usefully estimated by radiative
transfer modelling.

6. Discussion and Conclusions

[24] Linear regression ensures that regression-based SSTs
are zero-bias and minimum variance for the domain spanned
by the training data. This doesn’t imply zero-bias and
minimum variance regionally [e.g., Minnett, 1990]. Here,
we present a global assessment of annual-mean regional bias
relative to drifting buoys for Pathfinder-style NLSSTs. In-
trinsic biases at scales of >1000 km are identified.
[25] In addition to regional bias, we identify two further

characteristics of any SST retrieval system that are useful to

evaluate: sensitivity to water vapour and sensitivity to true
SST. These are more difficult to assess, since they depend on
radiative transfer modelling of the response of the retrieval
algorithm to changes in water column and surface tempera-
ture. However, such analysis will be valuable to some SST
users, since there are significant deviations from the ideals
of negligible sensitivity to w and unit sensitivity to x. One
example could be study of air-sea interaction across fronts
associated with the western boundary current of the north
Atlantic along the coast of Florida. Figure 1c implies that the
magnitude of SST change across such fronts is underesti-
mated by >25% in a typical NLSST image for the region. This
could affect the interpretation of air-sea coupling. A second
example might be assessing diurnal variability. Infra-red SST
retrievals in the tropical Atlantic, for example, under-estimate
diurnal changes by more than a third, according to Figure 1c.
A third example is that TCWV sensitivity may lead to
exaggerated synoptic-scale variability in NLSST in humid
regions. Further study is needed to assess these implications
in detail.
[26] Variability in atmosphere humidity can occur in

modes more complex than the general moistening or drying
analyzed here. For example, drying of particular layers in the
atmosphere is also able to induce errors in retrieved SST [e.g.,
Minnett, 1986]. By adapting the approach taken here, the
sensitivity of retrieval to different local modes of variability
could be assessed.
[27] Much SST variability occurs over time-scales com-

parable to or longer than the five month rolling window used
to derive Pathfinder-style retrieval coefficients. There may
also be an atmospheric change correlated to large SST
anomalies. The degree to which NLSSTcoefficients success-
fully adjust to such cases is not captured by the results
presented here. In future work, our approach will be adapted
to explore such questions.
[28] SST is deemed an essential climate variable [Global

Climate Observing System, 2003], of which Pathfinder offers
a long and consistently derived record. Our analysis has
identified an implicit dependence on prior information in
NLSST, in addition to the explicit dependence on the guess
SST. Particularly in tropical regions, NLSST is significantly
dependent (up to �20% of information) on the climatology
implicit in the set of matches from which the coefficients are
derived. There has been a radical evolution of drifting-buoy
coverage from the 1980s to the present day, and this implicit
climatologymay not have been consistent through the period.
This is relevant to use of Pathfinder SSTs for evaluating
climatic trends and variability.
[29] We have shown that it is useful to augment the

traditional database of matched in situ and satellite observa-
tions with matched radiative transfer simulations of BTs and
of their partial derivatives with respect to SST and atmo-
spheric state. This enables new characteristics of SST retriev-
als to be assessed and refined. Forward simulations of BTs
and their derivatives are also crucial to optimal estimation of
SST [Merchant et al., 2008] andmay be used for probabilistic
cloud detection [Merchant et al., 2005]. While there is a
significant effort involved to maintain an operational capac-
ity for forward simulation in real time, there are also clear
benefits, as illustrated here for NLSST, to understanding the
error properties of the retrieved sea surface temperatures.

Figure 2. Calculated versus empirical ratios of retrieval
sensitivities for triple (SST3) and Pathfinder-style NLSST
algorithms. The calculated ratio along the vertical axis is
based on radiative transfer simulation of partial derivatives
propagated through the retrieval process. The empirical ratio
on the horizontal axis is found as the slope of the local best-fit
linear relationship between the SST3 and NLSST within
rigorously cloud-screened areas.
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