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Abstract. Methods used to infer sea surface temperatures (SSTs) from satellite
have traditionally been based on regression-tuned split-window ®xed-coe�cient
algorithms. These can give inaccurate SST results when local atmospheric condi-
tions are signi®cantly di�erent from those encapsulated by the regression aver-
aging. The new generation of SST algorithms attempts to correct for atmospheric
variability. These approaches include the R5 4 transmittance-ratio methods of
other workers, and the dynamic water vapour (DWV) correction method of the
authors. The relative performances of the various methods are compared by
applying each to an ocean and satellite dataset obtained o� the west coast of
Tasmania, Australia in 1987. We also investigate the performance of the NESDIS
operational multi-channel, cross-product, and nonlinear formulas for NOAA-9,
-11, -12, and -14 when applied to the same dataset. We ®nd the DWV method
gives SST retrievals which have signi®cantly smaller bias errors than those
returned by the three transmittance-ratio methods. The best overall performance
was returned by the NESDIS multichannel (MCSST) formula for NOAA-9,
indicating that in low water vapour loading situations, the standard regression-
based algorithms work well.

1. Introduction

The infrared channels of the AVHRR (advanced very high resolution radiometer)
carried by the NOAA (National Oceanic and Atmospheric Administration) series of
satellites have been used to infer sea surface temperatures (SSTs) on a global basis
for well over two decades. More recently, the same technology has been utilized in
the acquisition of land surface temperatures (LSTs).

In general, algorithms involve linear combinations of satellite brightness temper-
atures observed in channels 4 and 5 (centred near 11 and 12mm respectively), and
follow the so-called split-window (McMillin 1975) form:

Ts = T4+A(T4 Õ T5 )+B (1)

where T4 and T5 are the satellite brightness temperatures of channels 4 and 5. The
constants A and B are most commonly found by regressing in-situ surface data with
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M. L . Steyn-Ross et al.3516

coincident satellite data; or by using synthetic data for surface temperature and
AVHRR signal, manufactured by ingesting atmospheric pro®les into a radiative
transfer model. We use the phrase `®xed-coe�cient split-window’ to classify this type
of algorithm which implicitly assumes that it is possible to use the same regression
constants over a wide temporal and spatial extent.

Many di�erent variations of the split-window form have been applied to the
retrieval of land and sea surface temperatures (LSTs and SSTs) from satellites. For
reviews of current LST methods see Prata (1993), and for SST methods see Barton
(1995). For SST retrievals, the assumption of ®xed-coe�cients (and constant atmo-
sphere) in the split-window formalism is the main source of error because of local
atmospheric ¯uctuations. To overcome this, it is standard practice to periodically
update the coe�cients using ocean buoys to provide surface truth. As an alternative
to this in situ tuning approach, a new generation of atmospherically correcting
algorithms has been developed: the transmission ratio methods of Harris and Mason
(1992) and Sobrino et al. (1993, 1994); and the dynamic water vapour (DWV)
correction method of Steyn-Ross et al. (1993, 1997). The transmission ratio methods
are all based on the notion that the atmospheric pro®le is constant over an area
where the surface temperature may change. These methods implement a split-window
algorithm in which A is modi®ed by the inclusion of a transmittance ratio,

R5 4 =
t5

t4

(2)

where 4 and 5 refer to the corresponding AVHRR infrared channels; t is the
atmospheric transmittance for a given channel. The e�ect of including R5 4 in the
A-coe�cient of (1) is to increase the magnitude of the atmospheric correction as the
atmosphere becomes optically thicker. (Details of these methods and their rationale
are given in §2.)

In contrast, the DWV method does not assume the atmosphere is constant over
a given spatial extent. Rather, it allows for local atmospheric ¯uctuations (notably
in the water content) and corrects for these by dynamically tuning the atmospheric
pro®le. The method employs a full radiative transfer approach. A local radiosonde
is required to provide a ®rst-guess atmospheric pro®le. The water vapour content is
then tuned until the pair of SST estimates retrieved from channels 4 and 5 are equal.

The DWV approach to the problem of SST determination from satellite radiance
is conceptually equivalent to that used to retrieve atmospheric pro®les of temperature
and molecular composition: given a set of observed satellite radiances, what is the
optimal atmospheric pro®le which minimizes the di�erences between the predicted
radiances (as found by ingesting the pro®le into a suitable atmospheric model) and
the actual radiances?

This problem has been tackled by many workers. The physical methods of
Chahine (1970) and Smith (1970) apply the equation of radiative transfer to retrieve
atmospheric temperatures located at the peaks of weighting functions, iterating from
a ®rst-guess pro®le until convergence is detected.

The inverse-matrix methods (Rodgers 1976; Eyre 1987, 1989) linearize the equa-
tions of transfer about a ®rst-guess atmospheric pro®le and cast them into matrix
form. If the transmission is assumed to be independent of temperature, then the
matrix equation is linear in temperature deviation about the ®rst-guess values. The
temperature pro®le can then be retrieved by inverting the matrix equation using a
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Atmospheric correction algorithms for SST 3517

minimum variance technique. However, when the interaction and inter-dependence
of atmospheric components need to be considered, the inverse problem becomes
nonlinear, and, as described by Rodgers (1976), becomes one of estimation: what
are the appropriate criteria which determine the optimum solution for a given set
of observations?

The DWV approach attempts to solve the nonlinear estimation problem using
a physical approach similar to that of Chahine (1970) and Smith (1970). At each
iteration, DWV adjusts the atmospheric pro®les by a set amount, then recalculates
the transmissivities for each channel. The algorithm is presented in detail in §3, with
the relevant equations given in the appendix.

Central to the estimation problem is the choice of `forward’ model: given the
atmospheric pro®les, how does one compute the at-satellite radiances? For our work,
we ran the LOWTRAN-7 (Kneizys et al. 1988) atmospheric model. A referee has
reminded us of the shortcomings in the LOWTRAN-7 treatment of the water vapour
continuum; however, because we used LOWTRAN-7 in our original DWV investi-
gations (Steyn-Ross et al. 1993), as did Sobrino et al. (1993, 1994) in theirs, we chose
to retain LOWTRAN-7 for the present study, thus ensuring consistency in the
comparisons. For future studies we intend running more up-to-date models which
include a more accurate treatment of molecular absorption (e.g. CKD2.2, Han
et al. 1997).

The authors applied the DWV method over sea (Steyn-Ross et al. 1993) using
data obtained o� the west coast of Tasmania; and over land (Steyn-Ross et al. 1997)
utilizing FIFE-89 data from an intensive Kansas grasslands ®eld experiment (Strebel
et al. 1992, 1994). When compared with a standard ®xed coe�cient split-window
algorithm, the method was found to give a signi®cant improvement in retrieval
accuracy.

In the present paper we compare the relative performance of the DWV method
with that of the transmission ratio algorithms due to Harris and Mason (1992) and
Sobrino et al. (1993, 1994). Also compared are a selection of eight NESDIS opera-
tional SST algorithms. We use the same Tasmanian data set as used in our 1993
study. In our earlier work, we found that DWV sometimes failed to produce a
reasonable surface temperature. Subsequent sensitivity studies showed that the
method was prone to error if the ®rst-guess atmospheric temperature pro®le was
signi®cantly higher than the actual temperature pro®le. To overcome this limitation,
we have revised the DWV algorithm to tune the atmospheric temperature pro®le in
those cases for which water vapour tuning does not produce convergence. We refer
to the tuning of atmospheric temperature as DAT (dynamic atmospheric temper-
ature); the umbrella term DWVT (dynamic water vapour and atmospheric temper-
ature) is used to indicate that either the water vapour or the temperature pro®le
may be tuned.

2. Variable-coe�cient split-window algorithms

The three methods described below attempt to compensate for atmospheric
variability by replacing the ®xed A-coe�cient of the traditional split-window form
(1) with a variable coe�cient which incorporates the R5 4 transmittance ratio (2).

2.1. H&M: Harris and Mason (1992)
Harris and Mason applied the Zavody (Rutherford Appleton Laboratory, UK)

radiative transfer model to a suite of 56 ocean radiosonde pro®les to compute the
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M. L . Steyn-Ross et al.3518

at-satellite AVHRR brightness temperatures in channels 4 and 5 for nadir viewing.
(Harris and Mason did not identify which AVHRR ®lter functions were used; from
the date of their work it seems likely they used NOAA-11.) By regressing (TsÕ T4 )
against (T4 Õ T5 ), Harris and Mason derived a conventional SST algorithm of
the form given in (1) with coe�cients A= 2.681, B = Õ 0.15. They then observed
that the rms residual error could be signi®cantly improved by arranging that the
A-coe�cient, which scales the (T4 Õ T5 ) correction, be increased as the atmosphere
becomes optically thicker. They found that the ratio of transmittances in channels 5
and 4, R5 4 = t5 /t4 , provided a suitable weighting factor, resulting in a new
transmittance-ratio split-window algorithm

Ts = T4+
1.755

R5 4

(T4 Õ T5 )+0.38 (3)

whose rms residual for the simulation set was 0.12K. (Harris and Mason also
developed a 4-coe�cient regression ®t, but we judged the 0.01K improvement in
rms residual not to be signi®cant, so chose not to implement it for these tests.)

2.2. Sob93: Sobrino et al. (1993)
Sobrino et al. (1993) continued the Harris and Mason philosophy of including

explicitly, via the R5 4 transmittance ratio, the e�ect of variable optical depth on the
split-window coe�cients. Using a set of 60 radiosoundings which cover the worldwide
variability of SST (250±315K) and atmospheric moisture (0.2±6.7gcmÕ 2 ), they
considered three observation angles (0ß, 23ß, 46ß ) and three surface temperatures for
a total of 540 simulated geophysical situations. The resulting (T4 , T5 ) NOAA-11
AVHRR brightness temperature pairs were computed with LOWTRAN-7 (Kneizys
et al. 1988). Their simulation study produced the following 4-coe�cient split-window
SST algorithm:

Ts = T4 + (2.301/R5 4 Õ 0.16)(T4 Õ T5 )Õ 4.20/R5 4 +4.61 (4)

giving a standard error of 0.27K for the 540 simulation points.

2.3. Sob94: Sobrino et al. (1994)
Sobrino et al. (1994) investigated the generalization of the transmittance-ratio

split-window technique to the more di�cult problem of LST determination. Using
NOAA-11 ®lter functions, the same representative set of 60 radiosondes (described
above for Sob93), three observation angles, 49 surface emissivity combinations
(e4 , e5 ranging from 0.9 to 1.0, with De ranging from Õ 0.02 to 0.02), and ®ve surface
temperatures, a total of 44100(T4 , T5 ) situations were simulated. Their resulting LST
algorithm was presented as a radiance formulation:

B4 (Ts )= Aa1 +
a2

R5 4
BB4 (T4 )+Aa3 +

a4

R5 4
BB4 (T5 )+ Aa5 +

a6

R5 4
B (5)

where B4 (T ) is the channel-4 blackbody radiance at temperature T , and the ai

(i=1 ... 6) are functions of surface emissivities e4 and e5 . Since for the present SST
tests we can set e4 = e5 = 1, the emissivity dependence inherent in the ai coe�cients
of (9) disappears, so that (9) becomes equivalent to an SST algorithm stated in
radiance space. For this idealized case, the a coe�cients simplify to the emissivity-
independent constants listed in column 1 of their Table V: a1 = Õ 0.4048, a2 = 3.3074,
a3 = 1.4928, a4 = Õ 3.3771, a5 = 0.1416Ö10Õ 6 , a6 = Õ 0.2264Ö10Õ 6 .
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Atmospheric correction algorithms for SST 3519

Although not stated in their paper, it is clear that while a1 through a4 are
dimensionless, coe�cients a5 and a6 must carry units of radiance. Sobrino et al. used
LOWTRAN-7 for their radiative transfer calculations, so we presume that (5) is
written for the default LOWTRAN blackbody radiance unit of W/(cm2 srcmÕ 1 ).
Since we choose to work in the standard NOAA/NESDIS radiance units of
mW/(m2 srcmÕ 1 ), we scaled the listed values for a5 and a6 by a multiplicative factor
of 107 .

3. DWVT: Dynamic Water Vapour and Temperature algorithm

The original DWV method (Steyn-Ross et al., 1993) was found to have shortcom-
ings and has now been superseded by DWVT. In this section we brie¯y describe
DWV, then give details of the new DWVT algorithm. The equations and rationale
for dynamic tuning of the atmospheric temperature and water vapour pro®les are
presented in the appendix.

DWV uses the equation of radiative transfer for channels 4 and 5 of the AVHRR
in the mean-value approximation (appendix equation A1). Given observed satellite
radiances and an initial guess for the atmospheric pro®le, the relative humidity is
shifted by a constant fraction at each level until the same SST is predicted by the
equation of transfer for both channels. Central to the original DWV philososphy is
the assumption that atmospheric uncertainties are due to water vapour ¯uctuations
only; thus during the water vapour adjustment, the atmospheric temperature at each
level is left unchanged from the ®rst-guess values.

However, our 1993 analysis revealed that, for some of the satellite passes, DWV
produced SST estimates which were much too low. From sensitivity tests, we deduced
that these failures could be attributed to the ®rst-guess temperature pro®le (from
non-local radiosonde) being too warm. The at-satellite signal is the sum of the surface
radiance (attenuated by the intervening atmosphere) plus that arising from the
atmosphere itself. If the assumed atmosphere is warmer than actual, the at-satellite
contribution from the atmosphere will be arti®cially raised, so that the surface
contribution must be reduced. DWV responds by increasing the water vapour
amount (to reduce the transmission of the surface signal) thereby depressing the
apparent surface temperature.

It was to handle this too-warm atmosphere case that DWVT was developed.
DWVT allows tuning either of the water vapour pro®le or of the atmospheric
temperature pro®le. DWVT proceeds as follows:

1. Establish atmospheric pro®le. If this is the ®rst iteration, take the pro®le
obtained from a nearby radiosonde as the ®rst-guess atmosphere. Otherwise
use the adjusted atmosphere produced by the tuning in step 5 (or 6) below.

2. Compute atmospheric variables. Initialize the LOWTRAN-7 transmittance
code with this atmosphere, and hence compute t4 , t5 , and T

±
a .

3. Solve for SST4 , SST5 . Using the known at-satellite radiances I4 and I 5 , and
the computed atmospheric variables, apply equation (A3) (in appendix) to
calculate two independent estimates for the surface temperature, SST4 and
SST5 .

4. Test for convergence. If SST4 = SST5 , we have retrieved the surface temper-
ature Ts= SST4 = SST5 . If SST4 Þ SST5 , then the assumed atmospheric state
is in error, and should be tuned, either in water vapour (step 5), or, if
necessary, in temperature pro®le (step 6).
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5. DWV: Tune RH pro®le
5a. Adjust RHi. Adjust (increase or decrease) the relative humidity at each level

i by a fractional amount DRH :

RH¾i = (1+DRH )´RHi (6)

(Adjusted relative humidity is never allowed to exceed the saturation ®gure
of 100%.)

5b. Iterate DWV. Repeat steps 1 to 5a, ensuring that the (SST4 Õ SST5 ) di�erence
steadily diminishes with each iteration.

5c. Test for DWV failure. If the sequence of di�erences stops converging (i.e.
starts to increase, or shows a constant di�erence), then DWV is about to
fail, so halt water vapour adjustment, and switch to atmospheric temperature
adjustment (step 6).

6. DAT: Tune Ta tm pro®le
6a. Adjust Ta, i . Restore the water vapour pro®le to its ®rst-guess values. Replace

step 5a with the corresponding temperature pro®le shift for each level i :

T ¾a, i = (1+DT )´Ta, i (7)

where DT is a constant fraction (of the absolute temperature).
6b. Iterate Ta, i adjustments. Repeat steps 1±4, 6a until SST4 = SST5 .
6c. Test for convergence failure. If no convergence is detected, settle on that

pro®le adjustment which minimizes the (SST4 Õ SST5 ) di�erence, taking the
average as the retrieved surface temperature, Ts = (SST4 +SST5 )/2.

Figure 1 shows a sample DWV run for a particular AVHRR observation
(30 July 1987) over the buoy pixel. The SST4 /SST5 estimates converged after the
atmospheric water vapour (relative humidity) at each sonde level had been
increased by Ö1.6.

For the case illustrated in ®gure 2, DWV failed to converge, so DAT was invoked,
producing convergence when the atmospheric temperature (in Kelvin) at each sonde
level had been reduced by 3.5% from the ®rst-guess sonde values.

4. Operational ®xed-coe�cient split-window algorithms

To round out the method comparisons, we used our NOAA-9 and buoy dataset
to compare the relative performance of eight operational SST retrieval formulas
which have been developed by NESDIS for NOAA-9, -11, -12, and -14. We ask the
question: how large are the retrieval errors when NOAA-9 brightness temperatures
from our 1987 Tasmanian dataset are applied to the various operational algorithms
developed for the later NOAA satellites?

Ideally the AVHRR instruments carried on di�erent NOAA satellites would be
identical so that an SST algorithm developed for say, NOAA-9, might be expected
to work equally well on a later satellite. However, there are subtle instrument-to-
instrument di�erences in the channel-4 and -5 bandpass characteristics (and therefore
in the published central wavenumber values). In addition, SST algorithm coe�cients
depend on the average atmospheric state which prevailed during the time of the
buoy-vs-satellite temperature regressions. For these two reasons, the operational
split-window algorithms vary both with satellite and with time. Nevertheless, it is of
interest to know just how consistent the various operational algorithms are.

The methods we selected for testing are drawn from Appendix E of the NOAA
Polar Orbiter Data User’s Guide, published on the World Wide Web at:
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Atmospheric correction algorithms for SST 3521

Figure 1. DWV method: SST retrieval via water vapour tuning. (a) The pair of SST predic-
tions from AVHRR channels 4 and 5 match when the radiosonde-derived relative
humidity at each level has been increased by a factor of 1.6, giving a DWV prediction
of 11.9ßC(the buoy readingwas 11.8ßC). (b) First-guess and tuned atmospheric pro®les.
The upper solid curve (circles) shows variation of atmospheric temperature (upper
axis) with altitude. Dashed curve (squares) shows initial water vapour pro®le (lower
axis), while middle solid curve (diamonds) shows ®nal tuned water vapour pro®le
obtained after relative humidity at each level has been increased by factor 1.6. These
curves apply to satellite pass mafw (30 July 1987).

http://perigee.ncdc.noaa.gov/docs/podug/html/e/app-e.htm. For each satellite we
selected representative algorithms (multichannel, cross-product, nonlinear) which
were both operational and closest in time to our 1987 dataset. By `operational’, we
mean that the equation was either used operationally by NESDIS to derive SST
values, or was a close relative which formed part of the bundle of equations published
by NESDIS at that time. (Our investigation is restricted to split-window equations
which utilize brightness temperatures for channels 4 and 5 only, and not channel 3.)

Listed below are the tested algorithms, together with the date when each became
operational. The nonlinear SST equations need a ®rst guess of the sea surface
temperature, Tg u e ss . The NOAA recommendation is to use the 100-km analysed ®eld
temperature from the previous day. Since we could not provide this information, we
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followed the NOAA alternative suggestion of generating the ®rst guess by using the
multichannel SST equations introduced at the same time as the nonlinear SST
equations. T4 and T5 are the brightness temperatures (in K) for AVHRR channels 4
and 5; SST is the resulting temperature estimate in ßC. The angle h is the satellite
zenith angle.

4.1. MCSST : multichannel SST

E NOAA-9 MCSST (16 July 1987)

MCSST9 , n ig h t = 3.6037T4 Õ 2.6316T5 Õ 0.27(T4 Õ T5 )(sechÕ 1 ) (8)

MCSST9 , d a y = 3.4317T4 Õ 2.5062T5 Õ 251.2163 (9)

E NOAA-11 MCSST (17 November 1988)

MCSST1 1 , n i gh t = 0.9843T4+2.0942(T4 Õ T5 )+2.0994(T4 Õ T5 )(sechÕ 1)

Õ 1.1838(sechÕ 1)Õ 268.74 (10)

MCSST1 1 , d a y = 0.9712T4+2.0663(T4 Õ T5 )+1.8983(T4 Õ T5 )(sechÕ 1)

Õ 1.9790(sechÕ 1)Õ 264.79 (11)

E NOAA-12 MCSST (15 September 1994)

MCSST1 2 , n i gh t = 0.967077T4+2.384376(T4 Õ T5 )

+0.480788(T4 Õ T5 )(sechÕ 1)Õ 263.94 (12)

MCSST1 2 , d a y = 0.963563T4+2.579211(T4 Õ T5 )

+0.242598(T4 Õ T5 )(sechÕ 1)Õ 263.006 (13)

E NOAA-14 MCSST (20 March 1995)

MCSST1 4 , n i gh t = 2.275385(T4 Õ T5 )+1.029088T4

+0.752567(T4 Õ T5 )(sechÕ 1)Õ 282.24 (14)

MCSST1 4 , d a y = 2.139588(T4 Õ T5 )+1.017342T4

+0.779706(T4 Õ T5 )(sechÕ 1)Õ 278.43 (15)

Figure 2. DAT method: SST retrieval via atmospheric temperature tuning. (a) DWV failure.
Tuning of the water vapour pro®le has failed to produce an SST4 /SST5 intersection,
indicating that the ®rst-guess atmospheric temperature pro®le is in error. (b) DAT
convergence. Water vapour pro®le is returned to ®rst-guess values, and the atmospheric
temperature is tuned. SST4 /SST5 curves intersect when atmospheric temperature (in
Kelvin) at each level has been scaled by multiplicative factor 0.965 (i.e. reduced by
3.5%), giving a DAT prediction of 13.1ßC (the buoy reading was 13.8ßC). (c) Initial
and ®nal atmospheric pro®les. The reduction in atmospheric temperature has forced
a lowering in water vapour amount at altitudes below 1.5km and above 7km. (At
each level, relative humidity is not permitted to exceed 100%.) These curves apply to
satellite pass m9n9 (18 May 1987).
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4.2. CPSST : cross-product SST

E NOAA-11 CPSST (2 March 1990)

CPSST1 1 , n i gh t =
0.19817T5 Õ 49.15

0.20524T5 Õ 0.17334T4 Õ 6.10
(T4 Õ T5 +1.47)

+0.96554T5 +0.96(T4 Õ T5 )(sechÕ 1)+267.13 (16)

CPSST1 1 , d a y =
0.19410T5 Õ 48.15

0.20524T5 Õ 0.17334T4 Õ 6.25
(T4 Õ T5+1.32)

+0.94575T5 +0.60(T4 Õ T5 )(sechÕ 1)+260.99 (17)

4.3. NL SST : nonlinear SST

E NOAA-11 NLSST (10 April 1991)

NLSST1 1 , n i gh t = 0.96042T4 +0.087516Tg u e ss (T4 Õ T5 )

+0.852(T4 Õ T5 )(sechÕ 1)Õ 261.46 (18)

NLSST1 1 , d a y = 0.94649T4 +0.08412Tg u e ss (T4 Õ T5 )

+0.751(T4 Õ T5 )(sechÕ 1)Õ 257.20 (19)

where

Tg u e ss = 1.02455T4 +2.45(T4 Õ T5 )

+0.64(T4 Õ T5 )(sechÕ 1)Õ 280.67 (20)

E NOAA-12 NLSST (15 September 1994)

NLSST1 2 , n i gh t = 0.888706T4+0.081646Tg u e ss (T4 Õ T5 )

+0.576136(T4 Õ T5 )(sechÕ 1)Õ 240.229 (21)

NLSST1 2 , d a y = 0.876992T4+0.083132Tg u e ss (T4 Õ T5 )

+0.349877(T4 Õ T5 ) (sechÕ 1)Õ 236.667 (22)

where NOAA-12 MCSST equations (12) and (13) provided respective night
and day values for Tg u e ss .

E NOAA-14 NLSST (20 March 1995)

NLSST1 4 , n i gh t = 0.078095Tg u e ss (T4 Õ T5 )+0.933109T4

+0.738128(T4 Õ T5 )(sechÕ 1)Õ 253.428 (23)

NLSST1 4 , d a y = 0.076066Tg u e ss (T4 Õ T5 )+0.939813T4

+0.801458(T4 Õ T5 )(sechÕ 1)Õ 255.165 (24)

where NOAA-14 MCSST equations (14) and (15) provided respective night
and day values for Tg u e ss .

5. Test data set

Near-surface temperature data were obtained from a Datawell Waverider buoy
moored o� the west coast of Tasmania (145ß 9.4¾ E, 42ß 8.7¾ S) near the entrance to
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Macquarie Harbour, 5km from Cape Sorell, for the period 27 April to 21 December
1987. The calibration of the buoy was tested on two occasions which bracketed this
period, and its accuracy was found to be better than Ô 0.1K with no evidence of
any calibration drift (J. Reid 1992, personal communication). The e�ective depth of
the buoy’s temperature-sensing element was ~32cm.

Coincident AVHRR images were inspected for this period and 34 cloud-free
passes over the buoy region were selected. Channel-4 and -5 transmittances were
computed using LOWTRAN-7 initialized with temporally proximate radiosonde
pro®les launched from Hobart, ~200km southeast of the buoy. (Further details of
the buoy and radiosonde data, and of the calibration and processing of the AVHRR
data are given in Steyn-Ross et al. 1993.) To implement the H&M, Sob93 and Sob94
algorithms, the transmission ratio R5 4 was calculated from the LOWTRAN-
computed transmittance values for the satellite-to-buoy slant path for each of the
34 satellite images.

6. Results

The comparative performance of the various algorithms was assessed in terms of
bias, rms, and Q. The bias is the average value for the (TA lgÕ Tb u o y ) di�erence,

bias=
1

N
�
N

i= 1

(TA lg , iÕ Tb u o y , i) N = 34 (25)

and the rms is the standard deviation of these di�erences,

rms= S 1

NÕ 1
�
N

i= 1

(TA lg , iÕ Tb u o y , i)
2 (26)

where TA lg is the surface temperature retrieved by the given algorithm. We de®ne Q

as an overall quality factor which combines the bias and rms error contributions in
quadrature:

Q= Óbias2 +rms2 (27)

The results for DWVT and the three variable-coe�cient methods (H&M, Sob93,
Sob94) are illustrated in ®gure 3 and listed in tables 1±4. In table 5 we list the results
for the NESDIS ®xed-coe�cient formulas.

For the DWVT, H&M, Sob93, and Sob94 methods, we tested for sensitivity to
temporal mismatch between the the time of satellite overpass and the time of sonde
ascent. Sondes were launched from Hobart at 12-hourly intervals giving two atmo-
spheric pro®les per 24-hour period. We selected four sets of 34 candidate sondes to
match up with the 34 AVHRR overpasses. The ®rst sonde set was composed of those
whose launch time most closely matched the satellite overpass time; the second set,
labelled `10 before’, were those sondes which were released 10 sonde-intervals earlier
than the corresponding sondes in the `closest’ set; the third set (`10 after’) were those
sondes released 10 sonde-intervals later than the closest set. Because we felt that
there might be an important di�erence between the daytime and night-time temper-
ature pro®les, we selected a fourth set of sondes which matched up night-time
AVHRR passes with closest night-time sonde launch, and daytime AVHRR passes
with closest daytime sonde launch (this set was labelled `night/day’). The `closest’
and `night/day’ sets are not independent: about half of the entries in `closest’ are the
same as those in `night/day’. (Note that this sonde-age sensitivity test could not be
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Figure 3. Comparison of algorithm performances for the Tasmanian dataset. Buoy temper-
ature is taken as surface truth; bias and rms statistics show how well each algorithm
recovers the buoy temperature. (a) DWVT accuracy is enhanced when the atmospheric
sounding is recent (`night/day’ and `closest’), and degraded slightly when the sounding
is stale (`10 before’ and `10 after’). Transmittance-ratio methods of (b) H&M, (c) Sob93,
and (d ) Sob94 are less sensitive to age of atmospheric sounding. Best bias and Q
statistics are returned by DWVT run with fresh soundings.

Table 1. DWVT statistics for 34 SST retrievals relative to buoy temperature. Data are in
Kelvin, and are plotted in ®gure 3(a). Column headings indicate choice of radiosonde
for ®rst-guess atmosphere (see text).

Statistic 10-before Night/day Closest 10-after

Bias Õ 0.36 Õ 0.32 Õ 0.34 Õ 0.36
rms 0.86 0.86 0.75 0.82
Q 0.93 0.93 0.82 0.89

Table 2. H&M statistics for 34 SST retrievals relative to buoy temperature. Data are plotted
in ®gure 3(b).

Statistic 10-before Night/day Closest 10-after

Bias Õ 0.97 Õ 0.98 Õ 0.98 Õ 0.96
rms 0.73 0.72 0.71 0.73
Q 1.21 1.22 1.21 1.21

applied to the NESDIS operational methods since these make no use of atmospheric
pro®le information.)

Examining table 1 we see that DWVT shows a small sensitivity to sonde age,
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Table 3. Sob93 statistics for 34 SST retrievals relative to buoy temperature. Data are plotted
in ®gure 3(c).

Statistic 10-before Night/day Closest 10-after

Bias Õ 0.96 Õ 0.93 Õ 0.93 Õ 0.97
rms 0.70 0.70 0.71 0.69
Q 1.19 1.17 1.18 1.19

Table 4. Sob94 statistics for 34 SST retrievals relative to buoy temperature. Data are plotted
in ®gure 3(d ).

Statistic 10-before Night/day Closest 10-after

Bias Õ 1.16 Õ 1.12 Õ 1.12 Õ 1.16
rms 0.73 0.73 0.75 0.72
Q 1.37 1.34 1.35 1.37

Table 5. SST error statistics for the selected test set of NESDIS operational algorithms. SST
retrieval was performed by applying the 34 (T4 , T5 ) pairs of 1987 NOAA-9 brightness
temperatures to eachof the ®xed-coe�cient equations listed in§4. The method acronym
and subscript identi®es the equations used, thus MCSST9 indicates multichannel SST
using NOAA-9 equations (8) (night passes) and (9) (day passes). The NLSST equations
were tested twice: once using the Tg u e ss equations listed in §4 (e.g. NLSST1 1 ), then a
second time using NOAA-9 MCSST to provide the ®rst guess (e.g. NLSST1 1 , 9 ). Rank
identi®es the three best results as measured by the Q-statistic.

Method Bias rms Q Rank

MCSST9 Õ 0.01 0.64 0.64 1
MCSST1 1 Õ 1.07 0.62 1.23
MCSST1 2 Õ 0.89 0.65 1.10
MCSST1 4 Õ 1.27 0.68 1.44

CPSST1 1 Õ 1.25 0.70 1.43

NLSST1 1 Õ 1.02 0.72 1.25
NLSST1 1 , 9 Õ 0.94 0.71 1.17
NLSST1 2 Õ 0.26 0.70 0.75 3
NLSST1 2 , 9 Õ 0.21 0.70 0.73 2
NLSST1 4 Õ 0.93 0.71 1.17
NLSST1 4 , 9 Õ 0.85 0.70 1.10

with rms error worsening by ~0.1K when the method was run with atmospheric
pro®les derived from sondes launched ®ve days early (i.e. 10 sonde-intervals before)
or ®ve days late (10 sonde-intervals after). This age sensitivity also shows up as a
slight concavity in the bias, rms, and Q error bars of ®gure 3(a). Both Sob93 and
Sob94 exhibit slight age sensitivity in their respective bias results (®gure 3(c), 3(d )),
while H&M retrievals seem to be independent of sonde age.

Comparing the relative performances of the four tuned-atmosphere algorithms
(tables 1±4), all methods returned a negative bias (i.e. retrieved temperature under-
estimated buoy temperature). This is consistent with the skin sea temperature being
cooler than the bulk sea temperature sensed by the buoy thermistor at depth 32cm.
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All four methods had similar rms statistics, though the more `complex’ algorithms
tend to show larger rms error (~0.71K for H&M and Sob93; ~0.75K for Sob94
and DWVT). Because the bias error for DWVT was much smaller than for the
others, the summary Q-statistic reported DWVT as the best performer among the
tuned-atmosphere algorithms.

Turning now to the NESDIS operational results, table 5 shows that MCSST for
NOAA-9 gives excellent retrievals with a near-zero bias and an rms error of 0.64K.
With one exception (NLSST for NOAA-12), we ®nd that applying the NOAA-9
brightness temperature data to the SST equations for the later satellites produces
notably degraded bias values. This degradation is not unexpected, since the regression
equations encapsulate the average atmospheric state prevailing at the time of the
regression experiments, and this average atmospheric state changes with time. Also,
the channel-4 and -5 ®lter functions for the NOAA satellites are similar, but not
identical; however, the ®lter function e�ect on algorithm accuracy is probably minor.
We note that all three NLSST statistics are improved when MCSST9 values are used
for the ®rst guess; this is not surprising since it is simply underscoring the importance
of an accurate ®rst guess seed for the nonlinear method.

It is interesting to observe that the rms statistics for the NESDIS formulas
con®rm the trend observed in the tuned-atmosphere methods: rms error increases
with algorithm complexity.

7. Discussion and conclusions

The use of the R5 4 transmittance ratio requires knowledge of the atmospheric
state. It is often the case that local radiosondes are not available. Kleespies and
McMillin (1990), and Jedlovec (1990) introduced the concept of using ratios of the
spatial variance of the brightness temperatures to determine atmospheric and surface
parameters. This idea was expanded by Harris and Mason (1992) for SSTs and by
Sobrino et al. (1994) for LSTs. Barton (1995) investigated these variance methods
and found that while they work on simulated satellite data, they are quite unstable
when applied to real satellite data. In addition, because our surface data were
provided by a buoy which was moored only a fewkm from the Tasmanian coast, it
is not feasible to compute a spatial variance measure for the region centred on the
buoy which is guaranteed to be uncontaminated by nearby land pixels. For these
reasons we elected not to use the variance method to estimate R5 4 , since it is likely
that the performance of the R5 4 -based algorithms would have been compromised.

When a split-window SST algorithm is developed, the aim is to produce a single-
line equation whose accuracy is independent of atmospheric state. (As pointed out
by a reviewer, there is no reason why one could not develop a suite of such single-
line equations for di�erent atmospheric states which, for example, might depend on
latitude or viewing angle. However, this is not current practice.) Any single-line
algorithm will work best when the prevailing atmospheric conditions are similar to
some average atmospheric state de®ned by the suite of sondes/buoys/satellite data
used to craft the algorithm. The resulting regression coe�cients represent the best-
®t curve which maps at-satellite brightness temperature to surface temperature
through this notional average atmosphere. However, when the prevailing atmo-
spheric conditions are signi®cantly di�erent, the performance of regression-based
algorithm would be expected to su�er. H&M, Sob93, Sob94, and the NESDIS suite
are all regression-based methods.

The underlying philosophy of DWVT is quite di�erent: DWVT does not use
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regression to relate brightness temperature to surface temperature, and is not con®ned
in its applicability to one particular region or average atmosphere. Instead, it starts
with a ®rst-guess atmosphere whose pro®le is then tuned iteratively, using the
equations of transfer, in a quest to ®nd a pair of consistent SST estimates. When
applied to the Tasmanian dataset, DWVT retrievals exhibited slightly greater noise
(rms error) but signi®cantly better accuracy (smaller bias) than the H&M, Sob93
and Sob94 family of R5 4 -based algorithms. When compared with the NESDIS
operational formulas, DWVT was outperformed by MCSST9 and NLSST1 2 . The
excellent results of MCSST9 indicate that the standard regression methods work
very well in situations of low water vapour loading; we have not been able to test
relative performances in tropical situations where the water vapour column could
be signi®cant, though we would expect a DWVT approach to work well.

We found that the DWVT method returned minimum bias and rms errors (i.e.
optimum performance) when the temporally closest sondes were used, and a slightly
degraded performance when positively or negatively aged sondes were selected,
indicating the importance of a reasonable ®rst guess for the atmospheric state.

We believe that DWVT has potential for improved accuracy. We are presently
researching techniques which would allow the pro®les for water vapour and atmo-
spheric temperature to be tuned simultaneously, rather than sequentially as at
present. Progress along these lines is reported in Jelenak et al. (1998).
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Appendix. Rationale for dynamic atmospheric tuning

For a clear-sky view of an ocean pixel of skin temperature Ts , the thermal signal
I arriving at the satellite radiometer is the sum of the surface-generated intensity,
attenuated by the intervening atmosphere, plus the upwelling intensity radiated by
the atmosphere itself. For radiometer channel k (k= 4, 5 for AVHRR), the radiance
will be

Ik = Bk(Ts)tk+Bk(T
±
a)(1Õ tk) (A1)

where Bk(Ts ) is the Planck function in channel k evaluated at the surface temperature;
Bk(T

±
a ) is the Planck function at average atmospheric temperature T

±
a ; tk is the total

atmospheric transmittance in channel k, and we have assumed the sea surface has
unit emissivity. T

±
a is an e�ective atmospheric temperature obtained by inverting the

summed transmittance-weighted atmospheric radiances at each level i :

Bk(T
±
a)=

P 1

tk

Bk(Ta) dt¾

P 1

tk

dt¾

#
SiBk(Ta, i)´(Dti)k

1Õ tk
(A2)

where Dti is the change in transmittance, relative to the top of the atmosphere,
across level i. Strictly, the two AVHRR thermal channels will have distinct average
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atmospheric temperatures, but in practice we ®nd that these two averages are closely
similar, typically di�ering by no more than 1K over the 6-month period of the
present study.

For the DWVT algorithm we invert equation (A1) to give a pair of surface
temperature estimates, one for each channel,

SSTk; Ts,k= BÕ 1
k CIkÕ Bk(T

±
a)(1Õ tk)

tk D (A3)

where the operator on the square brackets is the inverse Planck function. In constrast,
the split-window algorithms work directly with the at-satellite radiance Ik to give
apparent brightness temperatures Tk ,

Tk= BÕ 1
k [Ik] =

c2 nk

loge (1+c1 n3
k /Ik)

(A4)

where nk is the channel central wavenumber for channel k, and c1 and c2 are the ®rst
and second radiation constants. For radiance expressed in standard NOAA units
[mW/(m2 srcmÕ 1 )] , the ®rst and second radiation constants are respectively
c1 = 1.191Ö10Õ 5 cm3 mW/(m2 srcmÕ 1 ), and c2 = 1.439Ö102 cmK.

If the atmospheric state is known precisely, from, e.g. a coincident radiosounding,
then equation (A3) gives two independent retrievals for Ts , one for each channel. In
the more usual case, knowledge of the atmosphere is imperfect, being estimated from
a nearby sounding or froma climatology. Thus the two surface temperature estimates,
SST4 and SST5 , would not be expected to agree, either because of error in the
assumed water vapour pro®le, or in the assumed atmospheric temperature pro®le,
or in both. The obvious question is then: how should the ®rst-guess pro®le be
adjusted in order to give a good surface temperature retrieval? And second: is the
vertical structure of the pro®le important?

In the context of the mean-value approximation for T
±
a , the radiative transfer

equation depends only on the transmittance t = exp(Õ kU ) where k is the absorption
coe�cient, and U is the total water vapour amount. To the extent that T

±
a4 = T

±
a5 , the

unknowns in the equation of transfer are only U, T
±
a and Ts . The equation does not

depend on the ®ne structure of the atmosphere. Thus in principle, one need only
vary the total water vapour amount and/or the average atmospheric temperature to
solve for the surface temperature. This can be achieved by a simple shift of either
the water vapour pro®le (by a ®xed fraction at each level) or the atmospheric
temperature pro®le. This is the underlying philosophy of DWVT.
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