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In a 1988 study, a generalized non-linear SST algorithmwas derived from the radiative transfer equation. An em-
pirical approximation to this algorithm provided the simplified NLSST algorithm for computing sea surface tem-
peratures with satellite radiometer data. It has remained a favorite of the remote sensing community for the past
25 years. However, a 1998 study demonstrated that the functional form of the generalized non-linear algorithm,
which is here designated the GNLSST, is very much data dependent. In this paper we explore the various func-
tional forms that theGNLSSTmay take. Rather than using actual satellite data, wemodel the effects of atmospher-
ic absorption by water vapor, under saturation conditions, on the satellite split-window temperature difference,
ΔT, in the 11–13 μm infra-red spectral region. The parameters used in the GNLSST algorithmare adjusted to dem-
onstrate the various forms that theGNLSST can take. One key finding is that the familiar algorithms used formea-
suring SST, such as the MCSST, the NLSST and the QSST are all special solutions to the more general GNLSST
algorithm. Additionally, the GNLSST may take other forms, which are described graphically.
The simplifying assumptions which yield the NLSST solution represent an approximation to reality when work-
ingwith actual satellite data. It is demonstrated thatminormodifications to the regression procedures, which are
used to derive the NLSST with satellite split-window data, may reduce the temperature errors resulting from
these approximations. Alternative forms of the GNLSST algorithmmay be useful for users of regional split-win-
dow satellite data.
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1. Introduction

Anding andKauth (1970) and Prabhakara et al. (1974)were perhaps
the first to suggest the use of multi-spectral data from a radiometer in
earth orbit to obtain accurate sea surface temperature measurements
(SST) without the need for temperature and humidity profiles of the at-
mosphere. The idea is that measurements in two or more infra-red
spectral regions (window channels) with differing but small amounts
of atmospheric absorption yield a brightness temperature difference,
Ti − Tj, that is highly correlated to the total temperature deficit in one
channel, TS − Ti:

TS−Ti≅Γ � Ti−Tj
� � ð1Þ

Theparameter, TS, is the sea surface temperature. It wasdemonstrat-
ed that under certain conditions or approximations, which are
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described in the next section, the gamma parameter, Γ, should be a con-
stant. This approximation has been designated as themulti-channel sea
surface temperature algorithm (MCSST).

With the launch of the TIROS (Television Infra-Red Observation Sat-
ellite) N series of environmental satellites by NOAA/NESDIS (National
Oceanic and Atmospheric Administration)/(National Environmental
Satellite Data and Information Service) in 1978, it became possible to
test the accuracy of Eq. 1 on a global basis. The AVHRR/2 (Advanced
Very High Resolution Radiometer) instrument on the subsequent
NOAA 7 satellite provided two channels in the 11–13 μmwindow spec-
tral region, which enabled the application of the differential absorption
technique. Before NOAA-7, attempts were made to correct for the tem-
perature deficit in a single AVHRRwindow channel measurement using
coincident lower resolution TOVS (TIROS Operational Vertical Sounder)
atmospheric sounder data, obtained from the same satellite (Cracknell,
1997). These data were applied in a multiple linear regression correc-
tion algorithm. These attempts had only limited success, resulting in
seasonally dependent biases (Walton, 1982). The differential absorption
algorithm (Eq. 1) reduced the errors associated with the previous algo-
rithms by 30% or more! This multiple channel algorithm (MCSST) was
applied throughout the 1980s to provide moderately accurate global
maps of SST (McClain et al., 1985). Global Comparisons with drifting
buoy temperature measurements provide estimates of satellite RMS
(root mean squared) temperature errors between 0.6 and 0.7 °C
(Strong and McClain, 1984).

Based on the success of the AVHRR instrument, additional instru-
ments have been developed and placed on various international polar
orbiting satellite platforms for measuring SST. These include the ATSR
(Along Track Scanning Radiometer), MODIS (Moderate resolution Im-
aging Spectroradiometer), andmore recently VIIRS (Visible Infrared Im-
aging Radiometer Suite), the NOAA replacement for the AVHRR. Each of
these instruments has at least two thermal IR (Infra-Red)window chan-
nels and one or more mid IR window channels for measuring SST. This
paper is concerned with algorithms using only the thermal IR window
channels, the so called split-window channels, although the differential
absorption algorithms can be applied with a combination of one or
more mid IR window channels and a thermal IR window channel.

The term ‘error’ is applied frequently in this text. When applied
to individual channel temperature measurements, it primarily refers
to instrumental noise, calibration problems and residual cloud
contamination. Some of these errors are correlated between coincident
channel measurements and some are not. When the term is applied to
split-window SST algorithms, it refers to the ability of the algorithm to
correct for atmospheric absorption in the individual channel measure-
ments and provide an accurate estimate of SST. All split-window algo-
rithms tend to magnify the individual measurement errors, some
more than others. A useful SST algorithmmust provide an accurate cor-
rection for the atmospheric absorption while minimizing the effect of
the individual channel measurement errors. Validation of SST algo-
rithms involves comparisons with in-situ SST measurements such as
provided by drifting buoys in the open oceans. Here, ‘error’ refers to
the bias and scatter of SST algorithm temperature measurements com-
pared to multiple coincident drifting buoy measurements. Validation is
not addressed in this study since new satellite data is not analyzed, but
it is discussed in many of the references provided in this Introduction.

In the late 1980s, an alternative form of the differential absorption
algorithmwas developed which is based on less stringent assumptions
than theMCSST algorithm (Walton, 1988). This algorithm is of the same
formas Eq. 1 butwith the gammaparameter having a specific two chan-
nel temperature dependence. With simulation and measured tempera-
ture data, this new algorithm, designated as the cross product sea
surface temperature (CPSST), provided up to a 30% reduction of the er-
rors associated with the MCSST. It replaced the MCSST for operational
processing at NOAA in March 1990. It was subsequently empirically
found that, with open ocean satellite data, the CPSST gamma parameter
could be approximated to be a linear function of the sea surface
temperature. This lead to a simplification of the CPSST, designated as
the nonlinear sea surface temperature algorithm (NLSST), (Walton et
al., 1990). Because the NLSST algorithms further reduced the tempera-
ture errors associated with global data sets of satellite measurements
compared to the CPSST and MCSST, it was made operational in April
1991. It has remained a favorite of the international SST remote sensing
community for the past 25 years and is currently being used with the
VIIRS instrument.

Over the years, there have been many developments in the applica-
tion of the NLSST including how the coefficients, such as shownwith Eq.
19, are derived. In the original formulation it is assumed one set of coef-
ficients applies globally (Walton et al., 1998). Modifications of the
NLSST approach include:

(1) stratifying coefficients as a function of Ti − Tj (Kilpatrick et al.,
2001; Minnett et al., 2004), (2) stratifying coefficients by zonal bands
and by month (Minnett, 1990; Minnett and Evans, 2009), (3) including
a satellite zenith angle dependence for most coefficients (Le Borgne et
al., 2013), (4) adding an offset to the initial estimate of sea surface tem-
perature, SST0, used to define theNLSST gammaparameter (Hosoda and
Qin, 2011, and Cayula et al., 2013).

A further discussion of thesemodifications is given in Petrenko et al.
(2014). The benefits of adding an offset to the initial SST estimate is
discussed in Section 6. The first three modifications are intended to re-
duce regional biases associated with the NLSST, which are present to
some degree in any global split-window algorithm as is explained in
Merchant et al. (2008). Another technique for reducing regional biases
is the application of Optimal Estimation. This procedure can be consid-
ered to dynamically derive regression coefficients based on prior knowl-
edge of the atmosphere such as provided by numerical weather
prediction fields (Merchant et al., 2008). These refinements are beyond
the scope of this paper. To the extent that the NLSST and the GNLSST al-
gorithms reduce regional biases compared to the MCSST, the weight
that must be assigned to the a priori data to eliminate these biases is
also reduced.

The success of the NLSST algorithm is definitely data dependent. A
1998 study used two data sets. One consists of a 115 simulated split-
window channel measurements, computed at nadir, derived from
radiosonde atmospheric temperature and moisture profiles which are
applied in a Radiative Transfer Model (Weinreb and Hill, 1980). With
this data set, the NLSST provides no improvement over the MCSST
while the CPSST algorithm provides a 30% improvement in the estima-
tion of SST when compared to the other algorithms. Most surprisingly,
the temperature dependence of the CPSST gamma parameter varied
greatly, depending on which data set is used to develop the CPSST algo-
rithm. A second data set consists of actual open ocean satellite data, in-
cluding some 4000 match-ups with drifting buoy measurements made
at various zenith angles up to 530. With the open ocean data, the
gamma parameter may be approximated as a linear function of the sur-
face temperaturewhilewith the simulation data it is best approximated
as a linear function of the window channel temperature difference
(Walton et al., 1998). This latter solution is referred to as the quadratic
sea surface temperature algorithm (QSST) since the temperature cor-
rection is a quadratic function of the measured temperature difference.
This form of solution has been suggested previously (McMillin, 1975).

These results beg the question of what other forms the CPSST al-
gorithm may take when developed with different data. The answer
to this question is the primary goal of this research. Rather than ap-
plying actual temperature data to describe the variation in atmo-
spheric absorption in the window channels, a mathematical model
is developed to describe the maximum and minimum absorption
likely to exist in actual data. In this study, it is demonstrated that
both the MCSST and the NLSST algorithms are special solutions of
the more general CPSST algorithm. The CPSST designation originated
from a geometric derivation provided in the 1988 study. Because
both the MCSST and the NLSST as well as the QSST are special solu-
tions of the more general algorithm, it is perhaps more appropriate
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to designate it as the Generalized Non Linear Sea Surface Tempera-
ture algorithm (GNLSST). This is done in the remainder of this text.
An explanation for the different results obtained with the open
ocean and simulation data is provided and possible improvements
to both the GNLSST and NLSST algorithms are suggested.

2. Derivation of differential absorption algorithms from radiative
transfer theory

The measured radiance at the top of the atmosphere at wave num-
ber ν, I (ν), is composed of an emitted surface term, which is partially
absorbed by the atmosphere, and an atmospheric term representing
the net emission minus absorption of each pressure layer of the atmo-
sphere:

I νð Þ ¼ B ν;TSð Þ � τþ
Z1

τ

B ν;TPð Þdτ ð2Þ

This simplified form of the radiation transfer equation is applica-
ble in the 11–13 μm spectral region because the sky and solar
reflected radiation is assumed to be negligible compared to the emit-
ted surface radiation and the ocean surface is very nearly a blackbody
(Smith et al., 1974). It should be noted that these assumptions are
not valid for measurements made at large satellite zenith angles
resulting in an over estimation of I(ν) with Eq. 2 (Dash and
Ignatov, 2008).

In this equation, B is the Planck radiance which is a function of
wave number and temperature and TS is the temperature of the
ocean surface. This equation states that the net radiation at wave
number ν, measured at the top of the atmosphere, consists of a sur-
face emitted Planck radiance, B(ν, TS), which is partially absorbed
by the atmosphere, plus a summation of the net emission minus ab-
sorption of radiance by each layer of the atmosphere. This summa-
tion is a function of the concentration of the atmospheric
constituents as well as the temperature at each pressure level in
the atmosphere, TP. With the mean value theorem of calculus, Eq. 2
can be simplified to the form:

I νð Þ ¼ B ν;TSð Þ � τþ B ν;Ta
� � � 1−τð Þ ð3Þ

In Eq. 3, TS is the surface temperature, τ is the transmittance from
the surface to the top of the atmosphere and Ta(ν) is the temperature
at some level of the atmosphere chosen so that the second terms of
Eqs. 2 and 3 are equal. A series of approximations are now performed
which is described by McMillin and Crosby (1984). First, because
water vapor absorption in the 11–13 μm spectral region occurs pri-
marily in the lowest layers of the atmosphere, one may perform a
Taylor series expansion of Eq. 3 about TS to convert from radiance
units to temperature units. (As is explained in Minnett, 1986,
neglecting the interaction between the IR radiation and water
vapor molecules higher in the atmosphere may be questionable be-
cause proportionally these interactions are more important to the
atmospheric effect.) Second, water vapor transmittance for a radi-
ometer window channel i, can be approximated with τi = 1 −
ki ∗ w where w is the water vapor concentration in a column of the
atmosphere and ki is the absorption coefficient of that channel.
These approximations yield the following equations for two chan-
nels in the 11–13 μm spectral region:

Ti ¼ TS−ki � bi
T j ¼ TS−kj � bj

ð4Þ

In this equation, Ti is the channel i measured temperature and
bi = w ∗ (TS − Tia). Eq. 4 applies to one satellite measurement
made in two window channels and the water vapor concentration,
w, will vary with each measurement. The MCSST solution is obtained
from this set of linear equations under the assumptions that ki and kj
are constants and the atmospheric temperatures, Tia and Tja, are equal,
yielding:

MCSST ¼ Ti þ Γ � Ti–Tj
� � ð5Þ

The parameter Γ= ki / (kj − ki). The viability of this last assump-
tion is a source of controversy and is discussed in McMillin and
Crosby, 1984.

In general bi andbj varywith each atmosphere and cannot be obtain-

ed from satellite measurements. One can however define an average bi

and bj with an ensemble of data subject to the condition that the mea-
sured temperature Ti or Tj is constant. With this subset of data, Eq. 4
yields:

TS Tið Þ ¼ Ti þ ki � bi Tið Þ
TS Tj
� � ¼ Tj þ kj � bj Tj

� � ð6Þ

Themean surface temperature estimates are channel dependent be-
cause the ensemble of data used to compute themeans is different with
each channel. In addition to the channel dependence, there is an instru-
mental dependence, resulting from the different relative spectral re-
sponse functions of the same channels on different instruments (P.J.
Minnett, personal communication). Subsequently these single tempera-
ture estimates will be designated as SSTi and SSTj. Eq. 6 defines the ab-
sorption coefficients as a function of the single channel temperature
measurements and substituting these expressions into Eq. 4, one ob-
tains the following set of equations:

Ti ¼ TS– SSTi–Tið Þ � bi=
�bi Tið Þ

Tj ¼ TS– SSTj–Tj
� � � bj =

�bj Tj
� � ð7Þ

Assuming bi=bi ¼ bj=bj, Eq. 7 represents two equations with two
unknowns resulting in the following solutions:

GNLSST ¼ Ti þ
SSTi−Ti

SSTj−Tj þ Ti−SSTi
� Ti−Tj
� � ð8Þ

bi=bi ¼ Ti–Tj
� �

= SSTj−Tj þ Ti−SSTi
� � ð9Þ

It should be noted that the GNLSST solution involves less restrictive
assumptions than the MCSST. Most notably, the mean atmospheric
temperatures, Tia and Tja need not be equal. However, even if the
MCSST assumptions were correct, the GNLSST would still represent
a viable alternative solution for the measurement of SST. The differ-
ence between these solutions results from the application of the sin-
gle channel algorithms, SSTi and SSTj in the GNLSST formalism. These
algorithms are insensitive to variable water vapor absorption at a
fixed temperature, providing only a mean correction. However
they are sensitive to temperature dependent effects such as the sat-
uration water vapor concentration of the atmosphere as well as ab-
sorption by uniform gases. These physical effects are completely
excluded in the MCSST derivation. It is interesting that these single
temperature algorithms, which were originally used in the 1970s
to provide approximate estimates of SST, are here used to describe
the temperature dependence of the gamma parameter in the GNLSST
formalism. With Eq. 8, it is observed that if the single channel tem-
perature estimates are equal then the GNLSST is identical to the sin-
gle channel estimate, SSTi. With Eq. 9 it is seen that this only occurs

in a typical or climatological atmosphere when bi ¼ bi. In an atypical
atmosphere, the two single channel solutions diverge, and themulti-
channel GNLSST solution provides the greater accuracy.

Before one can apply the GNLSST algorithm, the single channel SST
estimates, SSTi and SSTj, must be specified. A simple linear expression



Fig. 1.Themaximum(T11− T12) vs. T11. Themaximumtemperaturedifference ismodeled
using two criteria. Curve 1 assumes a maximum sea surface temperature of 30 °C while
curve 2 assumes a value of 32 °C.

Table 1
The minimum and maximum temperature solutions to Eq. 12 as a function of ΔT.

ΔT 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

T1 0 3.6 5.2 6.5 7.7 8.9 10 11.1 12.3 13.5 14.8 16.5 20
T2 30 29.6 29.2 28.8 28.3 27.9 27.3 26.7 26.1 25.3 24.4 23.2 20
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is sufficient for this purpose:

SST11 � T11 ¼ S11 � T11 þ I11
SST12 � T12 ¼ S12 � T12 þ I12

ð10Þ

In this equation, SI and II represent the slope and intercept coeffi-
cients for the 11 and 12 μm channels. With open ocean satellite data,
these coefficients can be obtained by linear regression using a data set
of coincident buoy SST measurements and satellite radiometer temper-
ature measurements. These coefficients can also be obtained with sim-
ulation data derived from a radiative transfer model (May and Holyer,
1993; Walton et al., 1998).

3. Modeling the atmospheric water vapor absorption in the 11-
13 μm window spectral region

Based on the previously cited 1988 and 1998 studies with data sets of
simulated and actual satellitemeasurements, it is possible to estimate the
maximum and minimum atmospheric absorption in the split-window
channels used in the differential absorption algorithms. Specifically, it is
assumed that the maximum temperature difference between coincident
split-window measurements, ΔT, can be modeled as a function of the
temperature measurement in one channel, T, over a range from 0 to
30 °C. A cubic equation is assumed to be adequate for this purpose:

ΔTmax ¼ aþ b � Tþ c � T2 þ d � T3 ð11Þ

The coefficients are defined by specifying three points along the
curve. The following physical restraints help to specify these points:

(1) The saturation water vapor concentration is temperature depen-
dent, approaching zero as the atmospheric temperature ap-
proaches 0 °C (Stephens, 1990).

(2) Bulk open ocean temperatures achieve a maximum of approxi-
mately 30 °C over the earth, based on buoy and ship measure-
ments (see Figs. 4 & 5 in Hosoda and Qin, 2011). This limit is a
consequence of heat budget considerations. Radiant solar
heating is balanced by ocean mixing between the surface and
the bulk, evaporative ocean cooling and surface infra-red radiant
emission. Consequently, satellite temperaturemeasurements ap-
proaching 30 °C should only occur in very dry or near isothermal
atmospheric conditions with ΔT restrained to very small values.

(3) The maximum temperature difference between split-window
channel measurements, found in both a global set of cloud free
data and a simulation data set, is approximately 3 °C occurring
at satellite measured temperatures between 20 and 25 °C (see
Figs. 2 & 3 in Walton et al., 1998 and Figs. 3 & 4 in Walton,
1988). The exact value is instrument dependent since each in-
strument has slightly different spectral response functions for
the same split-window channels.

Exceptions to these restraints will occur under unusual atmospheric
or sea state conditions such as strong diurnal solar heating of the near
surface ocean layers when the sea is calm and large air-sea temperature
differences which can occur near coastlines. A combination of high solar
insolation and lowwind speed can result in a diurnal variation of SST of
1 °C or more (Webster et al., 1996). Surface air-sea temperature differ-
ences of 10 °C or more provide similar variations in satellite measured
SST and are algorithm dependent (May and Holyer, 1993). However,
these conditions are rare and transitory by nature.

Based on the prior restraints, the following three points define a
curve:

ΔTmax = 0 at the temperature extremes, T = 0 and T = 30 °C and
ΔTmax attains a maximum value of 3 at T = 20 °C yielding:

ΔTmax ¼ 9=400 � T2−3=4000 � T3 ð12Þ
This curve is shown in Fig. 1. Different curves could be derived con-
sistent with the general restraints described previously. A second curve
shown in Fig. 1 uses the same criteria as above except that the maxi-
mum surface temperature is assumed to be 32 °C. Obviously, there is a
family of curves which satisfy the general criteria given above. Eq. 12
has been chosen somewhat arbitrarily due to its simplicity. In general,
details such as the appropriate value ofΔT at the temperature extremes,
zero or a small positive or negative value, as well as the measured tem-
perature at which ΔT achieves its maximum value, 20 to 25 °C, are in-
consequential to the results obtained in this study.

The minimum temperature difference, ΔTmin, is easier to define.
Water vapor concentration is highly variable and can be near zero
even in a hot atmospheric environment. Additionally, even in moist at-
mospheres, if the atmospheric temperature profile is near isothermal,
therewill be no net atmospheric absorption. Therefore,ΔTmin is approx-
imately zero over the entire ocean temperature range. These parame-
ters, ΔTmin and ΔTmax will be applied to various GNLSST algorithms, as
described in the following sections, to demonstrate the temperature
and water vapor dependence of the associated gamma parameters.

It is also useful to determine the variation of the gamma parame-
ter as a function of ΔT. For this purpose it is necessary to determine
the minimum and maximum temperatures associated with a given
value of ΔT which is consistent with Eq. 12. This requires solving
the cubic Eq. 12 for different values of ΔT. The solution yields three
values for temperature, one of which is imaginary. The remaining
two values represent minimum and maximum temperatures associ-
ated with a given value of ΔT. The following table provides this
information:



Fig. 2. GNLSST gamma vs. T11 − T12. Envelope #1 is obtained from single channel slope
and intercept parameters derived from simulation data described in the 1998 study.
Envelope #2 is obtained from parameters derived from NOAA 14 AVHRR satellite ocean
temperature measurements described in the same study. The individual data points
were obtained in the same study from radiosonde atmospheric temperature and
humidity measurements applied in a radiative transfer model. In this and subsequent
figures, the parameters T1 & T2 represent the minimum and maximum temperatures
associated with a given value of T11 − T12 as shown in Table 1 of the text. A value of one
has been added to the envelope #1 data to separate the two data sets.

Fig. 3. GNLSST gamma vs. SST. Envelope #1 is obtained from single channel slope and
intercept parameters derived from simulation data described in the 1998 study.
Envelope #2 is obtained from parameters derived from NOAA 14 AVHRR satellite ocean
temperature measurements. The individual data points were obtained in the same study
from radiosonde atmospheric temperature and humidity measurements applied in a
radiative transfer model. In this and subsequent figures, gamma (0) and gamma (max)
are the values obtained when T11 − T12 = 0 and T11 − T12 is the maximum for a given
value of T11 as is depicted in Fig. 1. A value of one has been added to the envelope #1
data to separate the data.
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The valuesΔTmax andΔTmin represent the extreme effects of variable
water vapor absorption on satellite window channel measurements.
Each of these values may be applied to the GNLSST gamma parameter,
defined with Eq. 8, to obtain a curve representing the GNLSST gamma
parameter as a function of temperature. These two curves form an enve-
lopewhich specifies themaximumscatter in gamma resulting fromvar-
iable water vapor concentrations. Nearly all individual satellite
measurement of gamma should be within this envelope. Similarly, the
maximum scatter of gamma as a function of ΔT is defined by substitut-
ing the temperatures T1 and T2, given in Table 1, into the GNLSST
gamma parameter. The resulting two curves as a function of ΔT form
an envelope which should encompass nearly all the individual satellite
measurements of gamma. These effects are demonstrated with Figs. 2
and 3. These figures show two envelopes. The top envelope is derived
as described above, using a data set consisting of 115 simulated satellite
measurements, which is described in the Introduction. This data set is
used to derive the single channel algorithms, SST11 and SST12. The sea
surface temperature is assumed to be equal to the radiosonde surface
air temperature measurement although, over nearly all of the oceans,
the SST is slightly warmer than the surface air temperature (P. Minnett,
personal communication). The bottom envelope is derived using actual
satellite measurements coincident with drifting buoy measurements of
sea surface temperature to define the single channel algorithms. The en-
velopes are separated by a value of 1 on the ordinate scale to separate
the data. The actual single channel algorithms, SST11 and SST12, are ob-
tained from the equations provided in the 1998 study. The individual
data points are derived from individual radiosonde temperature and
moisture profiles and are obtained from the relevant figures provided
in the 1998 study. The data points are superimposed over the appropri-
ate envelopes to produce the results shown in Figs. 2 and 3. It is seen
that a large majority of the 115 data points fall within the envelopes
providing a proof of concept for the modeling procedure developed in
this study. These data are not representative of a global data set and
are included for illustrative purposes only. Most of the outliers are in
cold temperature regions where the simulated satellite temperature
measurements may be below 0 °C (negative temperatures are not in-
cluded in the derivation of the envelopes shown in Figs. 2 & 3).

It should be noted that the simulated temperature measurements,
T11 and T12, derived from each of the radiosonde profiles, using the radi-
ative transfer Eq. 2, are identical in the upper and lower envelopes of
these figures. It is only the single channel algorithms, SST11 and SST12,
which provide the obvious differences in the dependence of the
gamma parameter upon the temperature difference, T11-T12, and the
sea surface temperature.

During the review process, it has been suggested that a much larger
simulation data set, computed using modern radiative transfer calcula-
tions, and including a greater range of atmospheric andmoisture condi-
tions should be applied here. Although beyond the scope of this
research effort, I would concur with this assessment with one caveat.
Although small in numbers, derived from 115 radiosonde soundings
over open oceans, the 1998 simulation data set of satellite radiometer
temperaturemeasurements includes awide range ofmoisture and tem-
perature conditions around the world. Historically, this type of simula-
tion data set was used at NOAA during the 1980s to compute
operational MCSST algorithms due to the lack of buoy temperature
measurements in the open oceans. The limited number of buoy-satellite
temperaturematch-ups thatwere available provided a temperature de-
pendent bias correction to the simulation MCSST algorithms (Strong
andMcClain, 1984).Modern satellite simulations aremuchmore exten-
sive and more accurate then were the simulations used at NOAA in the
1980s and 1990s. Themodeling of ocean surface emissivity as a function
of satellite zenith angle in modern radiative transfer models allows for
the simulation of satellite measurements over the entire scan of the ra-
diometer. Rather than using radiosonde soundings to provide the tem-
perature and moisture profiles of the atmosphere, a modern RTM
obtains this data from a Global Data Assimilation System (GDAS)
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maintained by the National Weather Service (Dash and Ignatov, 2008).
Consequently satellite radiometer temperature simulations can be
computed globally over all ocean locations. If this capability had existed
at the time of the 1998 study, then a simulation data set, similar in terms
of the number and data distribution to the approximately 4000 open
ocean buoy-satellite match-up data set, could have been applied. In
that case, the data dependence of the GNLSST solution may not have
been observed and a major incentive for the current study, to examine
that dependence, would not have existed. Today, modern satellite sim-
ulation data is used extensively at NOAA to monitor biases in satellite
derived clear-sky window channel temperature measurements and
sea surface temperatures (Liang and Ignatov, 2011). In the Conclusion,
it is suggested that regional users of satellite datamight consider the ap-
plication of regional GNLSST algorithms for measuring sea surface tem-
perature. The application of modern satellite simulation data in the
study of various regional GNLSST algorithms as well as in the computa-
tion of sea surface temperatures using a global GNLSST algorithm may
provide new research opportunities.

The various curves and envelopes shown here and in the following
sections are based on calculations performed at specific temperature
(T11) intervals or temperature difference (T11–T12) intervals. Although
any interval value could be applied, a temperature interval of 2.5 °C is
adopted over the range from 0 °C to 30 °C. Similarly a temperature dif-
ference interval of 0.25 °C is applied over the temperature difference
range from 0 to 3 °C. At each interval, all the relevant parameters are
computed. This includes the minimum and maximum T11 or T12 values
derived from Eq. 12 or Table 1, and the single channel sea surface tem-
perature values, SST11 and SST12. These values define the associated
minimum and maximum gamma parameters curves and envelopes,
which are discussed in the subsequent sections.

4. Behavior of theGNLSST gammaparameter under special conditions

In the following section the behavior of the gamma parameter will
be examined as the slope and intercept parameters, as defined with
Eq. 10, are varied. In this section, special conditions are considered
mathematically. Substituting Eq. 10 into Eq. 8 one obtains the following
expression for the GNLSST gamma parameter:

Γ ¼ S11 � T11 þ I11ð Þ= S12 � T12−S11 � T11 þ I12−I11ð Þ ð13Þ

Generally, these slope and intercept parameters, obtained by linear
regression using a global data set of independent SST measurements
and coincident satellite radiometer measurements, have small positive
values. Certain combinations of these parameter values result in special
types of algorithms which are examined here.

Type 1: The MCSST approximation: S11 = S12 = 0.
In this case, gamma = I11 / (I12 − I11). Gamma is a constant, inde-

pendent of temperature or water vapor absorption, which is the
MCSST approximation. This is generally a bad approximation because
of the strong water vapor saturation temperature dependence. This re-
sults in lowwater vapor concentrations in polar regions (0.5 cm precip-
itable water) compared to tropical regions (5 cm precipitable water on
average) (Stephens, 1990). Consequently, there is much less water
vapor absorption at low temperature than at higher temperatures on
average, which results in positive slope parameters. Other effects such
as a temperature dependence of the absorption coefficients (k11& k12)
are minor compared to the atmospheric water vapor saturation effect.
However, regional users of satellite data with limited temperature var-
iation such as in the tropicsmight obtain slope values that are near zero
or even negative as is described in the Conclusion.

Type 2: The single channel approximation: S11 N 0; S12= 0 or S11=
0; S12 N 0.

In this case, gamma is a function of a single channel temperature
measurement. It is difficult to imagine a situation in which these condi-
tions would apply to global data sets. Nevertheless, this possibility is
included in the graphical discussion in the following section for com-
pleteness and comparison purposes and is demonstrated with Figs. 8
& 14.

Type 3: The water vapor atmosphere approximation: I11 = I12 = 0.
In this case, gamma= S11 ∗ T11 / (S12 ∗ T12 − S11 ∗ T11). The gamma

value for the low water vapor curve of the envelope, i.e. T11 = T12, is
given by, gamma = S11 / (S12 − S11), a constant. This condition might
apply if water vapor was the only absorbing constituent in the atmo-
sphere since water vapor absorption falls to near zero in polar
atmospheres.

Type 4: S11 = a ∗ I11; S12 − S11 = b ∗ (I12 − I11) and a = b.
In this case, the gamma value for the lowwater vapor curve is given

by, gamma = I11 / (I12 − I11) = S11 / (S12 − S11), a constant. Thus, one
obtains the same result as in the previous casewithout the intercept pa-
rameters being zero. A demonstration of the resulting envelope curves
is shown in Fig. 7. Generally, the ratio, R= b / a, is a variable which pro-
vides information regarding the nature of the GNLSST algorithm. If R is
greater than unity then the gamma parameter decreases with increas-
ing temperature, at least over a portion of the temperature range,
while a negative value implies that the slope S12 is less than S11. This
is unexpected sincewater vapor absorption is greater in the 12 μmspec-
tral region than in the 11 μm region. Solutions with R in the most phys-
ically interesting range between 0 and 1 are demonstrated in the
following section. Additionally solutions with R b 0 are also considered
for completeness of the analysis.

Type 5: The NLSST approximation: S12 = S11 N 0.
Substituting Eq. 10 into Eq. 8 and assuming S11 = S12, it is readily

shown that the GNLSST and its associated gamma parameter are given
by:

GNLSST ¼ fI11 � T11−T12ð Þ þ T11 � I12−I11ð Þg=fS11 � T12−T11ð Þ þ I12−I11g ð14Þ

Γ ¼ S11 � T11 þ I11ð Þ=fS11 � T12−T11ð Þ þ I12−I11g ð15Þ

When S11 = S12, it can be proven that the GNLSST algorithm sim-
plifies to the familiar NLSST. The NLSST formalism requires that
gamma is a linear function of the sea surface temperature:

NLSST gamma ¼ c � GNLSSTþ d: ð16Þ

It is easily shown that, with the following values for the coefficients,
Eq. 15 and 16 are identical, verifying the assertion:

c ¼ S11= I12−I11ð Þ; d ¼ I11= I12−I11ð Þ ð17Þ

It has been demonstrated in this section that, under specific condi-
tions, the GNLSST degenerates into either the familiar MCSST or NLSST
algorithm. Certainly, the conditions for the NLSST formalism are less re-
strictive than that for the MCSST. As has been stated previously, the
NLSST algorithm has been a favorite of the sea surface temperature re-
mote sensing community for the past 25 years. Nevertheless, the
NLSST is an approximation of themore general GNLSST.With both sim-
ulation and open ocean satellite data sets it has been found that the
slope S12 is somewhat greater then S11, as should be expected since
the water vapor absorption is greater in the 12 μm spectral region. (In
the Conclusion, it is demonstrated that this statement may not apply
to regional or local scale data sets in which the temperature range of
the data is limited.)

Type 6: The QSST approximation.
Fig. 2 plots theGNLSST gammaparameter, derived from a simulation

data set described in the 1998 study, as a function of the temperature
difference, T11 − T12. The high and low temperature curves, as defined
with Table 1, cross at the intermediate value of T11 − T12 = ΔTC =
2.1. At this point, the gamma parameter is a constant independent of
the T11 temperature. Because the curves cross, the envelope of allowable
gamma values, as a function of T11 − T12, is very restrictive and the



Fig. 4. Gamma vs. T11. The three envelopes show the effect of adding an offset, c, to the
intercept, I11, while the single channel slopes, S11 & S12 are constant. The single channel
slope and intercept values are those developed in the 1988 study, based on simulation
data. Here and in the following graphs, the low and high water vapor curves are
identified with open and solid markers, respectively.

Fig. 5. Gamma vs. T11 − T12. The three envelopes show the effect of adding an offset, c, to
the intercept, I11, while the single channel slopes, S11& S12 are constant. The single channel
slope and intercept values are based on the 1988 study referenced in the text. Envelope#1
approximates the QSST algorithm.
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gammaparametermay be approximated as a linear function of the tem-
perature difference, T11 − T12. This approximation yields the Quadratic
Sea Surface Temperature Algorithm (QSST)where the SST is a quadratic
function of T11 − T12 (Kumar et al., 2003). It is useful to consider under
what conditions the GNLSST approximates the QSST. Equating the
GNLSST gamma parameters, defined with Eq. 13, when T11 − T12 =
ΔTC, at two different temperatures values, T11, between the extremes
listed in Table 1, one obtains:

I12−I11 ¼ ΔTC � S12 þ I11 � S12−S11ð Þ=S11 ð18Þ

Given values for the slope and intercept values (S11, S12 and I11),
which can be obtained from either a simulation or open ocean data
set, Eq. 18 defines a value for the intercept, I12, such that the QSST ap-
proximationmay apply. The resulting algorithmmay ormaynot be use-
ful for estimating SST, depending on the magnitude of the associated
gamma parameter. Substituting Eq. 18 into Eq. 13, one finds
gamma = S11 / (S12 − S11) at the point that the envelope curves
cross, T11-T12=ΔTC. It is seen that gamma is a strong function of the dif-
ference in slope values, S12− S11. It is perhaps remarkable that the slope
and intercept parameters obtained from the simulation data sets devel-
oped in both the 1998 and 1988 studies, with S12− S11= 0.06, are such
that the optimal GNLSST algorithm approximates the QSST formulation.
This is not the case when the parameters are derived from the open
ocean satellite data set with S12 − S11 = 0.04.

Type 7: The uniform surface temperature approximation S11 b 0;
S12 b 0.

The previous types of solutions may occur in global data sets in
which there is a large range of surface temperatures and satellite tem-
perature measurements. Type 7 solutions may occur in regional or
local scale data sets in which the variation in satellite temperaturemea-
surements due to variable water vapor absorption may be greater than
the variation in sea surface temperature. In the limit that the SST is a
constant within a given data set, it is easily verified that a linear regres-
sion will yield the slope parameters, defined with Eq. 10, S11 =
S12 = −1 and the intercept parameters I11 = I12 = the constant SST.
Thus, in this limit, the GNLSST solution degenerates to the constant
SST, independent of the satellite temperature measurements T11 and
T12. The associated gamma parameter becomes an inverse function of
the temperature difference, T11 − T12. An example of this type of solu-
tion is provided in the Conclusion.

5. A graphical description of the GNLSST gamma parameter as slope
and intercept parameters are varied

It is desired to show graphically the behavior of the GNLSST gamma
parameter as the single channel slope and intercept parameters, defined
with Eq. 10, are varied. In the 1988 and 1998 studies these parameters
are derived fromdata sets of simulated or actual satellitemeasurements
in the 11 μm and 12 μm spectral intervals. In this study one may freely
vary these parameters since actual satellite measurements are not uti-
lized. However, restrictions are placed on the parameters to insure
that the resulting solutions are realistic. The 11 μm single channel
slope and intercept values are not varied. The values for these parame-
ters are taken from the 1988 or 1998 studies. The slope and intercept
values for the 12 μm channel are varied but restrained so that the
resulting gamma parameter, g, generally increases with increasing tem-
perature and has realistic values, i.e. 0 b g b 4, over the entire sea surface
temperature range.

First only the intercept value, I11, is varied with the parameters S11
and S12 and I12 provided from the 1988 study. Figs. 4 & 5 show the effect
of adding a small offset, c, to the intercept I11 obtained from the 1988
study. In Fig. 4, g(max) corresponds to the maximum temperature dif-
ference, T11 − T12, resulting from water vapor absorption, as plotted
in Fig. 1, and g(0) represents the minimum temperature difference,
T11 − T12 = 0. The three different envelopes correspond to three
different values of the offset to the intercept, c. Generally, decreasing
the offset, c, increases the magnitude of the gamma parameter. In
Fig. 5, g(T1) and g(T2) are the gamma values at the temperatures
provided in Table 1. These temperatures represent respectively the



Fig. 6. Single channel SST algorithms (SSTI − TI) vs. T11. The curves represent four
examples of simulated single channel SST algorithms applied in this study. Curve 1 is
derived from simulations performed in the 1998 study referenced in the text while the
remaining 3 curves are simulations developed in this study.

Fig. 7. Gamma as a function of T11 for three envelopes defined with different values of the
single channel slope parameter, S12, such that the ratio parameter R N = 0. Envelope #3
represents a type #4 algorithm as described in Section 4 of the text with R = 1.
Envelope #1 represents the NLSST with S11 = S12 and R = 0.

Fig. 8. Gamma as a function of T11 for three envelopes defined with different values of the
single channel slope parameter, S12, such that the ratio parameter R b = 0. Envelope #1
converges to a curve representing algorithm type #2 as described in Section 4 of the
text. Envelope #2 represents the NLSST with S11 = S12.
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minimum and maximum 11 μm channel temperatures associated with
a given value of the temperature difference, T11 − T12. As before, the
three envelopes correspond to three different values of the offset
parameter c. It should be noted that with the intermediate intercept
offset, c=0.2, the high and low temperature curves cross at an interme-
diate value of T11 − T12, forming a narrow envelope especially for high
values of T11 − T12. This example represents the QSST approximation,
described in the previous section, where the temperature correction,
SST-T11, is a quadratic function of the temperature difference, T11− T12.

The application of the offset, c, has an alternative interpretation
when it is applied to actual data. The 1988 study, using simulation
data, describes a procedure for minimizing the error of the GNLSST rel-
ative to the measured SST, after the single channel slope and intercept
parameters have been computed. A small addition, c, is applied to the
temperature measurement, T11.

The value of the parameter c is adjusted to minimize the tempera-
ture error, ∑(GNLSST − SST)2, statistically. This same procedure is
also applied in the 1998 study. In terms of gamma, adding c to one of
the temperatures, T11 or T12 is equivalent to adding c to one of the inter-
cept parameters. In the 1988 study, it was found that the value of c
which minimizes the error of the GNLSST, when applied to simulation
data, is 0.2, which is depicted with the middle envelope in Figs. 4 & 5.
Thus the most accurate GNLSST solution, obtained from the 1988 simu-
lation data, approximates the QSST algorithm. This resultwas also found
to be true in the 1998 study as depicted in Fig. 11. Interestingly, the first
differential absorption algorithm used operationally at NOAA/NESDIS
with NOAA-7 satellite data in 1981 was a QSST algorithm, which was
based on simulation studies performed at that time (Kidwell, 1995).
Subsequently, it was found that the QSST algorithm resulted in signifi-
cant errors when applied to open ocean satellite data. It was replaced
three months after its implementation with the MCSST.

Next, the behavior of gamma is explored when both the slope and
intercept values, S12 & I12, are varied. The parameters, S11 & I11 are con-
stants obtained from the 1998 simulation data. (Use of the simulation
values is arbitrary since the values derived from the open ocean satellite
data could also be applied here.) The S12 parameter is assigned specific
values (0, 0.10, 0.14, 0.18, and 0.22) while the S11 slope parameter has a
value of 0.14. The I12 parameters are then chosen so that themagnitude
of the resulting gamma parameter is realistic in terms of providing a
correction for atmospheric absorption. The choices also demonstrate
some of the special conditions described in Section 4. Fig. 6 shows the



Fig. 9. Gamma as a function of SST for three envelopes having different single channel
slope parameters, S12, such that the ratio parameter R N = 0. Envelope #1 converges to
a straight line representing the NLSST with S11 = S12. Envelope #3 represents algorithm
type #4 as described in Section 4 of the text.

Fig. 10. Gamma vs. SST for three envelopes defined with different single channel slope
values, S12, such that the ratio R b = 0. Envelope #2 converges to a straight line with
R = 0, representing the NLSST. Envelope #1 represents algorithm type #2 as described
in Section 4 of the text.
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temperature dependence of the single channel algorithms SST11 − T11
and SST12 − T12 resulting from the application of these parameter
values.

Figs. 7 & 8 demonstrate the temperature dependence of the GNLSST
gamma parameter with three envelopes derived from three different
values of the S12 slope parameter. These figures differ in the choice of
the single channel slope parameters. In the former they are chosen so
that S12 − S11≥ 0 while in the latter S12 − S11 b = 0. Figs. 9 and 10
are similar to Figs. 7 and 8 except that the abscissa is changed from sin-
gle channel temperature measurement to sea surface temperature as
defined with Eq. 8. This transformation is achieved with a straight for-
ward interpolation procedure. It is noticed that in Figs. 7 and 8, the
curves forming the envelopes converge as the measured T11 tempera-
ture approaches 30 °C, although they do not converge in Figs. 9 and 10
as the sea surface temperature approaches the same value. This is a con-
sequence of the supposition that the amount of atmospheric absorption
is severely constrained as the satellitemeasured temperatures approach
30 °C, as explained in Section 3. This constraint does not apply to sea
surface temperature. Also, the low moisture curves, g(0), in these fig-
ures are unchanged in Figs. 7 and 9 as well as Figs. 8 and 10. This results
from the fact that the lowmoisture curves are obtained assuming T11=
T12. With this condition, the single channel temperature measurement
is the sea surface temperature. Comparing envelope #1 in Figs. 7 and
9, one sees that the curves merge together in Fig. 9 to form a straight
line, demonstrating that gamma is a linear function of SST, which is
the NLSST solution. Comparing Figs. 9 and 10, which depict gamma as
a function of SST, one sees that when the ratio parameter, R, is positive,
the curves and envelopes have a concave shape but when R b 0 the
curves are convex. Also, with R N 0, the high moisture curves provide
the greatest gamma values while the opposite is true when R b 0. As is
demonstrated in the conclusion, solutions with R N = 0 should be ex-
pected in data sets containing a large range of temperature and mois-
ture conditions while solutions with R b 0 may occur in regional or
local scale data sets. Finally, Fig. 11 plots the envelopes associated
with three different S12 slope values as a function of the T11 – T12 tem-
perature difference. The broad envelope #1 represents the NLSST ap-
proximation, S11 = S12 and R = 0. The high temperature curve, g(T2),
yields the highest gamma values. Envelope #2 demonstrates the
gamma dependence when the ratio parameter, R, is unity. In this case,
the low temperature curve, g(T1), yields the higher gamma values. En-
velope #3 is defined using the slope and intercept values obtained from
the 1998 study. This envelope shows the high and low temperature
curves crossing, demonstrating the QSST approximation.

6. Practical considerations resulting from this study

The mathematical properties of the GNLSST have been discussed in
this study. It is found that the associated gammaparameter dependence
on satellite measured temperature and water vapor absorption varies
greatly, depending on the difference between the single channel SST al-
gorithms, SST11 and SST12. The single channel algorithms obtained from
two data sets developed in the 1998 study have been applied to this
model. The simulated channel measurements and associated single
channel SST algorithms provide a GNLSST solutionwhich approximates
the QSST. On the other hand, the open ocean satellite measured data
provides a GNLSST solution which approximates the NLSST. Further,
the individual data points are, for the most part, enclosed within the
corresponding envelopes as shown in Figs. 2 & 3. The question of why
such dissimilar solutions are obtained with these two data sets is ad-
dressed in the Conclusion.

The ability of theGNLSST to reduce satellite derived SST temperature
errors by transforming in this manner, speaks to its robustness as a dif-
ferential absorption algorithm for measuring SST. However, the GNLSST
solution involves a level of complexity not present in the simpler algo-
rithms, i.e. the MCSST, the NLSST and the QSST described previously.
Operationally, a multiple term expression provides a satellite estimate
of SST, such as:

SST ¼ aþ b � T11 þ fc � gþ dg � T11−T12ð Þ þ e � T11−T12ð Þ � fsecΦ−1g ð19Þ

Here the coefficients a, b, c, d and e are obtained by multiple linear
regression on a large data set of satellite measurements and sea surface



Fig. 11. Gamma vs. T11 − T12 for three envelopes formed using different values for the
single channel slope parameter, S12. The parameters T1 and T2 correspond to the
temperature values given in Table 1 of the text. Envelope #3 approximates the QSST and
is obtained with both single channel slope values (S11 & S12) derived in the 1998 study.
Envelope #1 represents the NLSST while envelope #2 represents algorithm type #4 as
described in Section 4 of the text.
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temperaturemeasurements, such as provided by drifting buoys. The pa-
rameter, g, is the temperature dependent component of the gamma pa-
rameter defined with Eq. 13 and secΦ is the satellite zenith angle
measured at the surface. Thus the MCSST is obtained through a regres-
sion with c= 0 and the NLSST is obtained with g= SST0, an initial esti-
mate of the sea surface temperature. The coefficients c and d correspond
to those in Eq. 16. The QSST is obtained with g= T11− T12. The GNLSST
is obtained through a regression with d= 0. However g is a function of
the single channel algorithms, SST11 and SST12. A separate regression
must be performed to define these algorithms before Eq. 19 can be ap-
plied. Further, if the adjustable offset, described in Section 5, is included
in the calculation of g, a further complication arises. In the 1998 study, it
was found that this parameter was not needed when the GNLSST was
developed from the global open ocean satellite data set. If this is gener-
ally true, it would simplify computing a global GNLSST algorithm with
Eq. 19. However, regional GNLSST algorithms may require the use of
an offset.

Another factor favoring the NLSST is that the gamma parameter is a
linear function of the underlying SST. However, one need not use satel-
lite measurements to define an initial estimate of SST. Rather, an ana-
lyzed field of sea surface temperatures can be used to define the initial
estimate, SST0. Various global analyzes of SST at different resolution
are available for this purpose (Brasnett, 2008; Donlon et al., 2012;
Reynolds et al., 2007). This has the effect of making the NLSST gamma
parameter independent of various satellite measurement errors. Conse-
quently, the impact of satellite measurement errors on the final NLSST
estimate of sea surface temperature is considerably less, perhaps 1/3
less, than is the case with the GNLSST (May, 1993). It is demonstrated
in Fig. 3 that the NLSST provides a reasonable approximation to the
GNLSST gamma parameter when derived from a global data set of
open ocean satellite measurements. Because of the elevated impact of
measurement errors on the GNLSST, the NLSST has become the
algorithmof choice formeasuring SST in the remote sensing community
over the past 25 years.

However, it has been demonstrated in this study that the GNLSST
yields the NLSST solution only when the slope parameters, S11 & S12 of
the single channel SST algorithms are equal. This generally is not the
case so that the application of the NLSST introduces certain errors rela-
tive to the GNLSST algorithm. It is seen in Fig. 3 that the open ocean
gamma parameter has a small amount of scatter at high SST values
resulting from a variable amount of atmospheric absorption by water
vapor. Additionally, the envelope curves are not linear but have a slight
concave curvature. These effects are not accounted for with the linear
NLSST algorithm. Also, many uses of the NLSST algorithm, including
NOAA/NESDIS, have assumed that the intercept of the NLSST gamma
parameter is zero. Yet, Eq. 17 specifies that the intercept should be
non-zero. The impact of these potential sources of errors in the applica-
tion of the NLSST algorithm can be estimated with the model that has
been developed in this study.

In the following development, it is assumed that, in the absence of
satellite measurement errors, the GNLSST represents the actual SST
and theNLSST errors aremeasured relative to theGNLSST. This assump-
tion may be reasonable in view of the robustness of the GNLSST, as de-
scribed previously, and because the GNLSST is derived directly from
radiative transfer theory. Various forms of the NLSST are evaluated, to
determine which best matches the GNLSST. A version of the NLSST, in
which g is a quadratic function of SST, is considered to account for the
concave curvature of the GNLSST gamma parameter as a function of
SST. Linear NLSST algorithms with different intercept values are also
evaluated. Given the intercept, d, a regression procedure is applied to
determine the optimal slope value, c, which minimizes the error of the
NLSST relative to the GNLSST:

X
n
T11 þ g � T11−T12ð Þ−GNLSSTð Þ2 ¼ min ð20Þ

The parameter g is defined with Eq. 16 and T11 − T12 = ΔTmax. The
summation is over the 13 temperature intervals of T11 ranging from 0 to
30 °C. This procedure yields an initial value for slope, c in Eq. 16. Howev-
er at high SST values, g is likely to exceed themaximumGNLSST gamma
parameter value of approximately 2.5. The errors of the associated
NLSST algorithm can be reduced by limiting or capping g at a value of
approximately 2.5, as is demonstrated in Fig. 12.

The resulting RMS errors and slope parameters of the NLSST, using
four different values of the intercept parameter, are given in Table 2.
The associated regression is designated as non-iterative. It is interesting
to note thatNOAA/NESDIS similarly limits g in its operational processing
by capping the initial SST estimate used to define g at 28 °C (Kidwell,
1995). The RMS error associated with the MCSST algorithm is included
for comparison.

A second or iterative regression is performed which minimizes Eq.
20 as before except that all data intervals for which g exceeds the
threshold value are excluded from the regression. This is done so that
the large errors associated excessively large gamma values do not dom-
inate the regression computations. However, all temperature intervals
are included in the computation of RMS errors shown in Table 2. It is
seen that the iterative regression considerably reduces the errors asso-
ciated with the NLSST algorithms. It should be noted that the iterative
regression increases the slope parameter, c, which may result in the
need for an additional iteration.

Including an intercept parameter in the formulation of the linear
NLSST gamma parameter increases accuracy and reduces themagnitude
of the slope parameter. The primary benefit of a quadratic version of the
NLSST (QNLSST) is that it eliminates the need for an iterative procedure.
Generally, the errors listed in Table 2 underestimate the true errors since
the scattering of the GNLSST gamma due to water vapor absorption is
not fully represented. Additionally, the effect of errors in the initial SST



Fig. 12. The GNLSST gamma and NLSST gamma vs. SST. The NLSST gamma is computed
with two different intercept values, I. The MCSST gamma is shown for comparison. The
single channel slope and intercept values which define curve #1 are obtained from
actual NOAA 14 satellite measurements used in the 1998 study. Curves 2 & 3 are
obtained with the iterative regression procedure described in Section 6 of the text.

Table 2
Coefficients and RMS errors of various NLSST algorithms.

Linear NLSST Linear NLSST QNLSST MCSST

Regression Intercept 0 0.50 0.75 1.0 0.43 2.5
Non-iterative RMS 0.39 °C 0.22 °C 0.16 °C 0.16 °C 0.10 °C 0.55 °C
Iterative RMS 0.24 °C 0.12 °C 0.10 °C 0.13 °C – –
Non-iterative Slope 0.090 0.071 0.062 0.052 – 0
Iterative Slope 0.102 0.078 0.066 0.054 – –
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estimate, SST0, used to define the NLSST gamma parameter is not con-
sidered here but is described in some detail in the 1998 study.

Normally, both the slope and intercept would be derived from a re-
gression analysis as is impliedwith Eq. 19. In this case, onefinds that the
non-iterative and iterative regressions yield intercept values of 0.99 and
0.77 respectively, which are closely approximated in Table 2. In this ex-
ample, it appears that the iterative regression procedure is just as appli-
cable and beneficial when both the slope and intercept are derived by
regression as it is when only the slope is computed.

7. Conclusion

The GNLSST algorithm has been derived from radiative transfer the-
ory with some approximations. It is demonstrated that the solution can
takemany forms depending on the temperature dependence of the sin-
gle channel algorithms, SST11 & SST12. The remote sensing community,
however, has embraced one approximate solution, the NLSST, for mea-
suring sea surface temperature in the open ocean due to its simplicity
and low noise characteristics. An obvious question is whether the
NLSST is a good approximation to theGNLSST over time andwith differ-
ent satellite instrumentation. As described in the Introduction, although
the NLSST performedwell with open ocean data in the 1998 study, with
a simulation data set of satellite measurements, it was found that the
NLSST was a poor approximation to the GNLSST algorithm. The NLSST
resulted in greater errors when compared to radiosonde surface air
temperature measurements. In order to answer the previous question,
one needs to explain the curious results described above.

It was implied in the 1998 study that the different findings obtained
with the simulation and open ocean data sets resulted from a funda-
mental difference in the temperature measurements themselves. This
assumption may not be correct. It is true that the simulation tempera-
tures are derived from an old radiative transfer model which does not
account for nonzero surface reflectivity effects. Yet the model does in-
clude detailed computations of absorption by water vapor and the
uniformed mixed gases (Weinreb and Hill, 1980). All computations
are performed at nadir so that surface reflectivity effects in the 11 and
12 μm spectral bands should be minimal (Dash and Ignatov, 2008).
The open ocean satellite measurements do include small errors
resulting from instrumental noise and perhaps residual cloud contami-
nation which are not present in the simulation data. However the sim-
ple regression procedures that provide the single channel parameters
(SST11 and SST12), which are applied in the GNLSST algorithm, should
be insensitive to these noise factors. These are minor compared to the
variation of temperature measurements resulting from variable water
vapor absorption. Therefore, it is suggested that the different results ob-
tained with the GNLSST algorithm is not a consequence of the fact that
one data set is composed of simulation data and the other is composed
of open ocean satellite measurements. Rather, the differing results may
be a consequence of the fact that the two data sets consist of totally dif-
ferent distributions of data. The simulation data set consists of simulat-
ed AVHRR temperatures derived from a 115 radiosonde soundings
representing a range of typical marine conditions around the globe.
The open ocean data set consists of over 4000 NOAA-14 AVHRR satellite
temperature measurements combined with in-situ drifting buoy mea-
surements, providing nearly complete global coverage. It is the distribu-
tion of temperatures and water vapor within each data set that
determines the form of the GNLSST solution.

The sensitivity of the GNLSST solution to the distribution of the tem-
perature measurements is explained with Fig. 13. Here the GNLSST, de-
rived from the open ocean data in the 1998 study, is plotted against the
split-window temperatures (T11 & T12), developedwith thewater vapor
model described in Section 3. In this application, any reasonable SST al-
gorithm such as a MCSST or QSST algorithm would provide similar
curves. The two curves associated with each spectral temperature,
resulting from minimum and maximum water vapor absorption, form
an envelope. The T11 and T12 envelopes have been separated by 5° for
clarity. The central curve in the T12 envelope represents an average
water vapor conditionwithΔT=ΔTmax / 2 at each temperature interval,
withΔTmax defined in Eq. 12. The flattening of the non-zerowater vapor
curves at high temperatures is a consequence of the constraint on ΔT as
described in Section 3. Individual data points within a given data set of
split-window temperature measurements paired with in-situ measure-
ments of SST should be containedwithin the appropriate envelopes. Fig.
13 demonstrates that the single channel SST algorithms, SST11 & SST12,
which define the GNLSST solution, are sensitive to the distribution of
datawithin the envelopes. If the data is approximately equally distribut-
ed between 0 and 25 °C and scattered between the two curves forming
each envelope due to varyingwater vapor absorption, then the linear re-
gression slope parameters, S11, and S12, definedwith Eq. 10, will be pos-
itive. If the data is restricted to between 20 and 30 °C then these
parameters will be negative. If the data is equally distributed between
15 and 25 °C then the slope parameters may be close to zero, as repre-
sented by the straight zero absorption lines forming the base of each
envelope.

Fig. 14 illustrates the gammaparameter dependence on temperature
for each of these three data distribution scenarios. It is assumed that av-
erage water vapor conditions apply so that the mean curve, shown in
the T12 envelope of Fig. 13, represents the mean of the data points as a
function of temperature. The linear regression, defining SST11 and



Fig. 13. An estimate of SST vs.T11 and T12, using a GNLSST algorithm developed with open
ocean data in the 1988 study. T11 and T12 values are applied assuming minimum and
maximum water vapor conditions as described in Section 3. The resulting T11 and T12
envelopes are separated by 5° on the ordinate axis for clarity. A linear regression using
data within these envelopes provide the single channel algorithms, SST11 and SST12,
which define the GNLSST gamma. The medium curve in the T12 envelope represents
average water vapor conditions.

Fig. 14. Gamma vs. T11 for three envelopes, obtained assuming average water vapor
conditions. The SST11 and SST12 parameters applicable in each envelope are derived by
linear regression using a different distribution of temperature data. Envelopes 1, 2 and 3
assume respectively uniform temperature distributions 0 b T11 b 25, 15 b T11 b 25, and
20 b T11 b 30. The corresponding slope parameters, S11 and S12, associated with each
envelope, are respectively, (0.14, 0.22), (0.037, 0.025), and (−0.31, −0.41).
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SST12 with Eq. 10, provides the best fit to themean curve within the ap-
propriate temperature range. The envelopes shown in Fig. 14 are not
representative of what would be obtained with actual data and are
shown for illustrative purposes only. Envelope 1 is somewhat represen-
tative of a Type 6 QSST algorithm while envelopes 2 and 3 are best ap-
proximated as Type 2 and Type 7 algorithms as described in Section 4.
Other distributions of data may result in different types of solutions.
For instance, if the data distribution is approximately uniform over the
entire temperature range from 0 to 30 °C, then the GNLSST solution is
best represented with a NLSST Type 5 algorithm.

The sensitivity of the GNLSST algorithm to the data distribution im-
plies that no single algorithm for measuring SST is optimal for all users
of split-window data. To answer the question presented at the begin-
ning of this section, an NLSST type solution may provide consistent re-
sults with global data obtained with different polar orbiting AVHRR
type instruments because the data distribution is consistent over time.
However, regional users of satellite datamay find that a global NLSST al-
gorithm is not appropriate for their application. Modern satellite simu-
lation data could be used to evaluate alternative regional algorithms.
Whether a GNLSST algorithm or a global NLSST algorithm provides the
most accurate results in a given application can only be determined by
each user individually. With all multi-channel SST algorithms, perhaps
particularly with regional GNLSST algorithms, it is very important that
the dependent data set, used to derive the algorithm coefficients, in-
clude the entire range of temperature and moisture conditions which
will be found in subsequent independent data sets.

One problem involved with the use of the GNLSST is the elevated
noise associated this algorithm as compared with the NLSST, which is
discussed in Section 6. One method of reducing this noise is to apply a
smoothing procedure. The GNLSST gamma parameter, defined with
Eq. 8 & 13, could be smoothed spatially and temporally. If the resulting
resolution was equivalent to the resolution of the temperature analysis
used to define theNLSST gamma value, SST0, much of the elevated noise
would probably be removed. Another possibility is to applymodern sat-
ellite simulation data in the computation of the GNLSST. A parallel sim-
ulation measurement, associated with each satellite measurement of
split-window data, is computed as part of the current operational pro-
cessing at NOAA. The process uses a global analysis of SST and a Global
Forecast System upper-air fields as input to a fast radiative transfer
model (Liang and Ignatov, 2011). Consequently, in the derivation of
theGNLSST, one could apply the simulation temperaturemeasurements
to define gamma while using the actual satellite measurements to de-
rive the SST estimate as represented with Eq. 8 and 19. This procedure
should remove any correlation between the errors associated with the
computation of gammaand those associatedwith the satellitemeasure-
ments applied in theGNLSST algorithm. This should significantly reduce
the overall noise of the algorithm. Given the pervasive nature of residual
satellitemeasurement errors, whether the GNLSST canmatch or exceed
the accuracy of the global NLSST algorithm, using either of these noise
reduction procedures, remains an open question.
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