

BoM – NOAA SST Workshop 18 – 21 April 2017, Melbourne, Australia

ACSPO Clear-Sky Mask (ACSM)

Boris Petrenko^(1,2), Alexander Ignatov⁽¹⁾, Yury Kihai^(1,2), Maxim Kramar^(1,2) Xinjia Zhou ^(1,3), Kai He^(1,2), Yanni Ding^(1,3)

⁽¹⁾NOAA STAR, ⁽²⁾GST, Inc., ⁽³⁾CIRA

The Evolution of the ACSPO Clear-Sky Mask Concept

- ACSPO initially adopted the "Clouds from AVHRR, extended" (CLAVR-x, by A. Heidinger) a set of cloud tests relying mainly on radiative properties of clouds
- Eventually, the focus in the ACSPO Clear-Sky Mask (ACSM) has been shifted from cloud properties to predictors more relevant to SST:
 - ✓ SST increments:

 ΔT_s = Retrieved SST - Reference SST

Currently, Reference SST is L4 SST by the Canadian Meteorological Center (CMC)

- ✓ Reflectance **R** in the visible bands (*daytime only*)
- ✓ Spatial uniformity of retrieved SST
- ✓ BT increments:

 ΔT_B = Observed BTs – Simulated clear-sky BTs

Clear-sky BTs are simulated in ACSPO with the Community Radiative Transfer Model (CRTM), using as input Reference SST and GFS atmospheric profiles.

The latest ACSM versions do not use ΔT_B pending more accurate input to CRTM

<u>Reference:</u> Petrenko B., A. Ignatov, Y. Kihai, A. Heidinger, Clear-sky mask for the Advanced Clear-Sky Processor for Oceans. J. Atmos. Ocean. Technol. **2010**, 27, 1609–1623.

The ACSPO Flow Chart

Unlike other SST systems (e.g., OSI-SAF), ACSPO performs Clear-Sky BT simulations and SST retrievals in <u>all</u> ocean pixels <u>before the ACSM</u>. This allows using ΔT_s and ΔT_B as clear-sky predictors

The ACSM Filters for Himawari-8 AHI and GOES-16 ABI

- All filters are binary:
 - ✓ Filters 1 3 classify pixels into "Clear" or "Cloudy"
 - ✓ Filters 4 and 5 classify pixels into "Clear" or "Probably Cloudy"
- Filters 3 and 5 are for daytime only

ACSM filter	Predictor	Comments
1. Static SST	ΔT_s	 Rejects colder ΔT_s using static threshold. Under certain conditions, rejects large warm ΔT_s caused by warm stratus clouds. Provides the first guess for filter 2.
2. Adaptive SST	ΔT_s	Refines the cloud detection by filter 1 analyzing local ΔT_s statistics for "clear" and "cloudy" pixels
3. Reflectance	R_{0.86} in AHI/ABI band 4	Detects brighter R _{0.86} values during day
4. Uniformity	Spatial SD of T_s - median(T_s)	Detects subpixel clouds by SST variability <u>above</u> the noise level.
5. SST/Reflectance Cross-correlation	Correlation between ΔT_s and $R_{0.86}$	Detects subpixel clouds by SST variability <u>below</u> the noise level during day

The ACSPO Quality Levels are linked to the ACSM Output

Quality Level	Meaning	Conditions
5	Clear	All filters show "clear"
4	Probably Cloudy	Filters 1-3 show "clear", Uniformity filters 4 or 5 show "probably cloudy"
3	Cloudy	At least one of the filters 1-3 shows "cloudy"
1, 2		Not used
0	Invalid	Invalid (Land, ice etc.)

Accounting for global biases in SST (BT) increments

- ΔT_s may be biased due to sensor calibration or algorithm errors
- Using biased ΔT_s as a predictor may cause cloud leakages/false cloud detections
- The global biases are estimated as positions of maxima of histograms of increments, accumulated during the past ~12 to 24 hrs over "all-sky ocean" pixels
- No crosstalk between estimated biases and the ACSM output
- Accounting for global biases stabilizes the ACSM output

All-sky AHI images (no ACSM), 08/15/2016, 3:10 UTC

* CF is clear-sky fraction – a clear-sky part of all ocean pixels in %
 ** The ACSPO AHI SST is defined for view zenith angles < 67°

Cold (and, sometimes, warm) large SST deviations, and 0.86 µm reflectance (during day) are used as cloud predictors

Static SST filter

- temperature at 12.3 μm
- **D**_{sst} estimated bias

Δ*T_s*: Bias=0.07 K, SD=0.96K, CF=36%

• The filter rejects most obvious cloud effects on ΔT_s

Adaptive SST filter

 $P_{clear}(\Delta T_{s}) > P_{cloud}(\Delta T_{s})?$

If yes, then the pixel is "Clear", otherwise it's "Cloudy"

 ΔT_s is SST increment at tested pixel P_{clear} and P_{cloud} are "clear-sky" and "cloudy" PDFs of ΔT_s within the moving 17×17 window

- The first guess *P_{clear}* and *P_{cloud}* are derived from the output of the Static SST filter
- On each iteration, the pixels within the window are reclassified into "clear" and "cloudy" based on the current PDFs, and the PDFs are recalculated
- The iterations are repeated 3 times unless the tested pixel becomes "cloudy" earlier

Δ*T_s*: Bias=0.43 K, SD=0.61K, CF=26%

0.86 µm Reflectance and SST-CMC <u>before</u> the Reflectance filter

 $R_{0.86} < T_R(\Theta_{solar}, \Theta_{glint})$? - If yes, the pixel is "clear", otherwise it is "cloudy" Θ_{solar} is solar zenith angle, Θ_{glint} is glint angle

0.86 µm Reflectance and SST-CMC after the Reflectance filter

The threshold is set as a function of Θ_{solar} and Θ_{glint} to preserve the glint area and ensure smooth transition between day and night

The Uniformity and CC filters

The Spatial Uniformity filter:

- **Σ(X) < η?** If yes then the pixel is clear; Otherwise, it's cloudy
- $\begin{array}{ll} \textbf{X} = \textbf{T}_{s} median(\textbf{T}_{s}) \\ \textbf{\Sigma}(\textbf{X}) & \text{spatial standard deviation within} \\ & 3 \times 3 \text{ window} \\ \textbf{\eta} & \text{threshold} \end{array}$

 $median(T_s)$ spatial median of SST

The Cross-Correlation filter (daytime):

 $r^2 D(T_s) < \gamma$? - If yes then the pixel is "clear"
otherwise it's "cloudy"rspatial correlation of T_s and $R_{0.86}$ $D(T_s)$ spatial variance of SST
 γ γ threshold

ΔT_s , Bias=0.53 K, SD=0.52K, CF=17.7%

- The ACSPO Uniformity filter detects subpixel cloud <u>above the noise level</u>, preserves high SST gradients
- The Cross-Correlation filter detects subpixel cloud below the noise level
- The spatial uniformity and CC filters warm up bias & reduce clear-sky fraction, slightly change SD

AHI 0.86µm reflectance and SST-CMC, 2016-08-15, 3:10 UTC Before the Uniformity and CC filters

albedo_ch4_SCANS_AMASK_N0B7B8-08-15_0310-0320_1

SSTR-CMC_SCANS_AMASK_NOB788-08-15_0310-0320_2

- Subpixel cloud shows itself both in $R_{0.86}$ and ΔT_s
- The effect of subpixel cloud on $R_{0.86}$ is comparable with the effect of sun glint

AHI 0.86µm reflectance and SST-CMC, 2016-08-15, 3:10 UTC After the Uniformity and CC filters

albedo_ch4_SCANS_AMASK-08-15_0310-0320_2016

SSTR-CMC_SCANS_AMASK-08-15_0310-0320_2016

• The Uniformity filter rejects spatial ΔT_s variations exceeding the noise level

• The CC filter rejects less intensive variations in ΔT_s by their correlation with R_8

SST - CMC in Bay of Bengal by ACSPO and OSI-SAF MetOp-A, Feb 3, 2013, Night

- The Uniformity filter in the OSI-SAF cloud mask hides high SST gradients
- The Uniformity filter in ACSPO preserves SST gradients due to using as input $X = T_s median(T_s)$,

rather than T_s

Comparison of the performances of the ACSM and other cloud masks

The performances of the cloud masks are compared in terms of global statistics:

- 1. Global bias with respect to CMC and in situ SST
- 2. Global SD with respect to CMC and *in situ* SST
- 3. The number N of clear-sky observations or Clear-sky fraction of all ocean pixels (CF)
- In general, more conservative cloud mask produces warmer bias, smaller SD and smaller number of clear-sky pixels

AHI SST – CMC by ACSPO and JAXA (2017-03-17, 00:00 Local Solar Time, night)

*CF is clear-sky fraction – a clear-sky part of all ocean pixels in %

JAXA produces ~12% more clear-sky pixels, significantly colder bias and larger SD

AHI: Bias and SD wrt *in situ* SST and the Clear-Sky fraction by ACSPO and JAXA

Mean, SST-in situ SST SD, SST-in situ SST 0.9 0.6 0.8 Mean(Sat - IQ2_DR_TM) [°C] 0.4 SD(Sat - IQ2_DR_TM) [°C] 0.7 0.2 0.6 0.5 -0.2 0 -0.4 0 3 -0.6 0.2 Feb 2017 Mar 2017 Feb 2017 Mar 2017 Year Year - ACSPONRT_H08_L2P - JAXA_H08 - ACSPONRT_H08_L2P - JAXA_H08

Clear-Sky Fraction

JAXA vs ACSPO:

- Negative biases wrt *in situ* SST, during both day and night
- ✓ Larger SD wrt in situ SST
- Larger and more variable clear-sky fraction

Nighttime composite maps of VIIRS SST minus CMC by ACSPO and NAVO (2017-02-18)

ACSPO: Bias=0.05 K, SD=0.33 K, CF=18.7%

NAVO: Bias=0.03 K, SD=0.32K, CF=14.3%

- ACSPO VIIRS SST has been reported in full-swath since the beginning of the processing in January 2012
- NAVO VIIRS SST went full-swath in July 2015
- Currently, the statistics for both products are comparable although the clear-sky fraction is larger for ACSPO

VIIRS: Time series of bias and SD wrt in situ SST and Numbers of clear-sky pixels by ACSPO and NAVO

- Nighttime SDs of NAVO SST are somewhat smaller; daytime SDs for NAVO & ACSPO are close
- NAVO produces less clear-sky pixels during both day and night

Nighttime composite maps of METOP-B AVHRR (FRAC) SST minus CMC by ACSPO and OSI-SAF (2017-10-18)

ACSPO: Bias=0.02 K, SD=0.33 K, CF=21.8%

OSI-SAF: Bias=-0.05 K, SD=0.43K, CF=22.7%

OSI-SAF MetOp-B (FRAC) SST vs. ACSPO:

- Larger SD
- Larger clear-sky fraction
- More noticeable cloud leakages

- During night, OSI-SAF produces more clear-sky pixels and larger SD
- During day, OSI-SAF produces less clear-sky pixels and larger SD

False cloud detections in ACSM

- The ACSM uses ΔT_s as efficient predictor and, therefore, relies on accuracy of the reference SST.
- L4 SST may be inaccurate in dynamic zones with high SST variability, e.g. due to shifted SST gradients.
- The local inaccuracies in L4 SST may cause false cloud detections
- This problem will be addressed with upcoming ACSM developments

Future ACSM development

- The most important future ACSM enhancements will use new powerful sources of information:
 - ✓ Temporal variability between sequential AHI and ABI images
 - ✓ The difference between the shapes of SST anomalies caused by thermal fronts and clouds in the dynamic zones (using the pattern recognition methods)
- See presentations by Irina Gladkova
- Additional clear-sky filters may be explored based on clear-sky simulations of sensor brightness temperatures

Thank you