

BoM – NOAA SST Workshop 18 – 21 April 2017, Melbourbe, Australia

Further developments of ACSPO SST: approaching SST_{skin} and SST_{depth}

Boris Petrenko^(1,2), Alexander Ignatov⁽¹⁾, Maxim Kramar^(1,2), Yury Kihai^(1,2)

(1) NOAA STAR, (2) GST, Inc.

Definitions of SST_{skin} and **SST**_{depth}

- Satellite brightness temperatures are sensitive to SST_{skin} the temperature of the upper ~10 μm ocean layer
- Regression SST is trained and validated against SST_{depth} measured by drifting and moored buoys at ~1-2 m depth
- The magnitudes of diurnal variations in SST_{skin} are larger than in SST_{depth}

Objectives

- The superior performance of the Himawari-8 AHI and GOES-16 ABI enables continuous monitoring of the diurnal cycle (DC) in SST.
- However, besides instrument capabilities, the quantitative DC monitoring requires optimization of SST algorithms
- In general, retrieved SST mixes the properties of SST_{skin} or SST_{depth}, which requires more specific targeting of retrievals at SST_{skin} or SST_{depth}.
- The current ACSPO v.2.41 already produces certain approximations of SST_{skin} and SST_{depth}:
 - Baseline SST (BSST), aka "sub-skin" SST, is sensitive to SST_{skin}
 - De-biased SST (DSST) precisely fits SST_{depth} with SD ~0.25 K.
- This presentation discusses the performance of the ACSPO v.2.41 SSTs in terms of DC monitoring and the upcoming modifications of SST products in ACSPO v.2.50.

AHI/ABI BSST equation

$$T_{s} = a_{0} + a_{1}T_{11} + a_{2}(T_{11} - T_{8}) + a_{3}(T_{11} - T_{10}) + a_{4}(T_{11} - T_{12}) +$$

$$+ [a_{5} + a_{6}T_{11} + a_{7}(T_{11} - T_{8}) + a_{8}(T_{11} - T_{10}) + a_{9}(T_{11} - T_{12})]S_{\vartheta} +$$

$$+ [a_{10}(T_{11} - T_{8}) + a_{11}(T_{11} - T_{10}) + a_{12}(T_{11} - T_{12})]T_{s}^{0}$$

- The BSST is currently the closest approximation of SST_{skin}
- On average, BSST is reasonably precise wrt in situ SST (SST_{depth}) and sensitive* to SST_{skin}
- The DC monitoring requires accurate estimation of spatial and temporal SST variations. This, in turn, requires minimization of spatial and temporal variations in BSST biases and sensitivity

*SST sensitivity μ is RTM-based metric, which characterizes response of retrieved SST to variations in SST_{skin} (*Merchant et al., GRL, 2009*).

SST

Training BSST regression coefficients

• Initially (since May 2015) AHI BSST coefficients were trained with the conventional Least-Squares (LS) method:

(1)

SST_{skin}

- T_s retrieved SST
- **T**_{IS} in situ SST
- <*> denotes averaging over MDS
- The sensitivity of AHI BSST with LS-estimates of coefficients was found too low
- Since April 2016, the AHI BSST coefficients are retrained with the <u>Constrained Least-Squares method (CLS</u>), which poses a constraint on the mean sensitivity over the MDS (*Petrenko et al., SPIE, 2016*):

$$\begin{cases} <(T_s - T_{Is})^2 >= min \\ <\mu >= \mu_{0,} \\ \mu_0 & \text{predefined value of mean sensitivity} \end{cases}$$
(2)

- The adjustment of mean sensitivity makes BSST biases and sensitivity even more non-uniform.
- To limit this non-uniformity, BSST coefficients are trained with μ_0 = 0.95, rather than with μ_0 = 1

The effect of narrow SST histogram on AHI BSST sensitivity

 Training AHI SST coefficients with the LS method results in much lower <µ> than for VIIRS

Instrument	VIIRS (day)	VIIRS (night)	AHI (LS)	AHI (CLS)
<µ>	0.83	0.90	0.64	0.95

SS⁻

The Experimental PWR SST_{skin} in ACSPO v.2.50

•The experimental PWR SST_{skin} was designed to reduce the non-uniformity of biases and sensitivity:

- ✓ <u>Unlike BSST</u>, the PWR SST_{skin} uses PWR approach based on segmentation of the SST domain in the *R*-space, similarly to DSST in v.2.41
- ✓ <u>Unlike DSST</u>, the PWR SST_{skin} coefficients for each segment are trained with the CLS method under the constraint $<\mu>=1$.

 The PWR SST_{skin} has been implemented as an experimental algorithm in ACSPO v.2.50

Training of BSST and PWR SST_{skin} coefficients in ACSPO v. 2.4

- ✓ Global coefficients for BSST and local coefficients for PWR SST_{skin} are trained with the CLS method
- ✓ The offsets in the regression equations are adjusted to meet on average the nighttime relationship between SST_{skin} and SST_{depth} (Donlon et al., 2002):

$$SST_{skin} - SST_{depth} = -0.14 - 0.30exp(-V/3.7)$$

V is surface wind speed from the NOAA Global Forecast System (GFS), https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

Selection of matchups for SST_{skin}

- Matching <u>absolute</u> SST_{skin} against *in situ* SST is problematic because of significant and variable difference between SST_{skin} and SST_{depth}, depending from many factors
- However, the DC monitoring requires estimation of <u>temporal and spatial variations</u> in SST_{skin}, rather than its absolute values.
- Therefore, it is sufficient to use those matchups only, for which the difference between SST_{skin} and SST_{depth} is relatively stable
- We used matchups with V> 6 m/s, for which the relationship between SST_{skin} and SST_{depth} is "well characterized ... by a cool bias of -0.17±0.07 K" (Donlon et al., 2002)

```
Training MDS:

510296 matchups for January-December 2017

318662 matchups with V>6 m/s

Validation MDS:

103 064 matchups for January-March 2017

63574 matchups with V>6 m/s

(See iQuam-2 presentations by X. Zhou)
```

BSST: Bias wrt CMC and sensitivity (AHI, 01-08-2016, 18:00 UTC, Night)

Sensitivity: Mean=0.97, SD=0.07, P*=64%

***P** is the fraction of clear-sky pixels with 0.95 < μ <1.05

SST

PWR SST_{skin}: Bias wrt CMC and sensitivity (AHI, 01-08-2016, 18:00 UTC, Night)

- PWR SST_{skin} reduces global SD from 0.41 to 0.33, which suggests reduction in regional biases
- The PWR SST_{skin} sensitivity is closer to optimal and less variable; P increased from 64% to 84%

Statistics of BSST and PWR SST_{skin} wrt *in situ* SST

Validation MDS (V>6 m/s)

Algorithm	Bias	SD	Mean sensitivity	SD of sensitivity
		Night		
BSST	-0.08 K	0.45 K	0.95	0.09
PWR SST _{skin}	-0.13 K	0.41 K	1.00	0.07
		Day		
BSST	0.08 K	0.42 K	0.95	0.09
PWR SST _{skin}	-0.03 K	0.37 K	1.00	0.06

• PWR SST_{skin} :

- ✓ Reduces global SD during both day and night, which suggest more uniform regional biases
- ✓ Keeps mean sensitivity less variable and closer to optimal
- Reduces the difference between daytime and nighttime biases from 0.16 K to 0.10 K (suggesting that BSST overestimates the DC magnitude due to variable biases and sensitivity)

Statistics of BSST and PWR SST_{skin} wrt in situ SST as functions of latitude

•BSST biases and sensitivity increase from low to high latitudes

- •PWR SST_{skin}:
- ✓ Produces more uniform biases
- ✓ Smaller SDs
- ✓ More uniform and close to optimal sensitivity

SST

Biases of *in situ* SST, BSST and PWR SST_{skin} wrt CMC

as functions of Local Solar Time

Minima and maxima of BSST and PWR SST_{skin} happen ~2 hrs earlier than for *in situ* SST
DC magnitude in ESST_{skin} is reduced from 0.40 K to 0.28 K

Improving approximation of SST_{depth} with De-biased SST (DSST)

- Current De-biased AHI SST precisely fits SST_{depth} with SD ~0.25 K.
- However, since DSST is retrieved from BTs, sensitive to SST_{skin}, the shape of DC in DSST is closer to SST_{skin} than to SST_{depth}.
- The consistency between DSST and SST_{depth} can be improved by accounting for those variables which drive the difference between SST_{depth} and SST_{skin}.
- Two of such variables are available at the time of L2 processing:
 - ✓ Surface wind speed **V**
 - ✓ Local solar time (LST).

Modified $DSST_{depth}$ in ACSPO v.2.50

The DSST of ACSPO v.2.41 was modified to DSST_{depth} in ACSPO v. 2.50 as follows:

$$T_{s} = a_{0} + a_{1}T_{11} + a_{2}(T_{11} - T_{8}) + a_{3}(T_{11} - T_{10}) + a_{4}(T_{11} - T_{12}) + + [a_{5} + a_{6}T_{11} + a_{7}(T_{11} - T_{8}) + a_{8}(T_{11} - T_{10}) + a_{9}(T_{11} - T_{12})]S_{\vartheta} + + [a_{10}(T_{11} - T_{8}) + a_{11}(T_{11} - T_{10}) + a_{12}(T_{11} - T_{12})]T_{s}^{0} + a_{13}V$$

DSST_{depth}:

- Similarly to DSST in ACSPO v. 2.41, exploits segmentation of the *R*-space and LSestimates for coefficients
- Adds **V** as a regressor to the equation
- The dependency from LST is more complicated than from V
- The offsets of the SST equations for each segment are corrected for specific LST hours using the corresponding matchups. During L2 processing, the offsets are interpolated to actual LST.

Statistics of ACSPO AHI SSTs wrt in situ SST and CMC

- Training MDS: 510298 matchups for January-December 2016
- Validation MDS: 103064 matchups for January-March 2017

Validation MDS, all wind speeds

SST	SST-In situ SST		SST-CMC	
	Bias	SD	Bias	SD
In situ SST	-	-	0.07	0.279
DSST v.2.41	0.02	0.254	0.09	0.173
DSST _{depth} v. 2.50	0.02	0.249	0.09	0.200

• SD of DSST_{depth} wrt *in situ* SST is smaller than for DSST in ACSPO v.2.41

• However, DSST_{depth} SD wrt CMC is larger

SST_{depth}

Nighttime and daytime SST bias wrt CMC as functions of surface wind speed

• The dependency of DSST_{depth} bias from wind speed is more consistent with *in situ* SST than the same dependency for DSST in v.2.41

SST_{depth}

Bias wrt CMC as function of Local Solar Time (validation MDS)

- The DC magnitude in DSST_{depth} is larger and closer to *in situ* SST
- The times of maximum and minimum of bias in DSST v.2.41 are the same as for SST_{skin} (cf. slide 15)
- The times of maximum and minimum of bias in DSST_{depth} are closer to in situ SST
- Overall, the DSST_{depth} brings the DC shape and magnitude closer to *in situ* SST

Deviations of DSST and DSST_{depth} from CMC (January 8 2016, 5:00 UTC - Day)

Accounting for wind speed and LST dependencies warms up daytime $\mathsf{DSST}_{\mathsf{depth}}$ bias, increases SD wrt CMC

GFS wind speed and the difference DSST-DSST_{depth} (January 8 2016, 5:00 UTC - Day)

DSST_{depth} increases daytime deviations from CMC in the regions with low wind speed

Time series of bias and SD of Baseline SST, PWR SST_{skin} and DSST_{depth} wrt CMC in ACSPO v.2.50 (5 – 9 January 2016)

PWR SST_{skin}:

- ✓ DC magnitude reduces from ~0.6 K (for BSST) to ~0.4 K
- ✓ SD reduces from 0.45 -0.55 K (for BSST) to 0.35K-0.45 K
- ✓ Nighttime PWR SST_{skin} is closer to expected bias wrt CMC of -0.17 K

DSST_{depth}:

- ✓ Shows the DC magnitude of ~0.15-0.2 K
- ✓ Shifts DC minima and maxima late compared with BSST and PWR SST_{skin}

 \checkmark Fits CMC with SD of ~0.15 – 0.25 K

Summary and future work

- In version 2.50 of ACSPO, the capabilities of the quantitative DC monitoring will be explored by more specific targeting SST algorithms at SST_{skin} and SST_{depth}.
- The approximation of SST_{skin} will be improved by:

 \checkmark Using the piecewise regression, to make regional biases and sensitivity more uniform

✓ Training regression coefficients under the optimal constraint on mean sensitivity

- The approximation of SST_{depth} will be improved by accounting for variables driving the SST_{skin}/SST_{depth} difference, such as GFS wind speed and Local solar time.
- The new SST_{skin} algorithm is implemented in ACSPO v. 2.50 as "experimental"
- The new SST_{depth} algorithm replaces the current ACSPO DSST
- The future work will be focused at extensive validation and further enhancement of the ACSPO SST_{skin} and SST_{depth} products.

Thank you