

औ

 κ

- IAU

In Support of the NESDIS Next-Gen Architecture (relative to sounders, 3Dwinds)

Comparative OSE-based Assessment of spacebased atmospheric wind, on NOAA's NWP (AMVs, Aeolus and MW/IR sounders series)

Work commissioned by Systems performance Assessment Team (SAT)

Co-chairs: Sid Boukabara (OSAAP), Frank Gallagher (OSAAP)

Work done by:

NESDIS/OSAAP Systems performance Assessment Team (SAT) Internal Analysis Team, Part of the DEEVA Team

Narges Shahroudi (RTI), and K. Garrett (NWS)

12

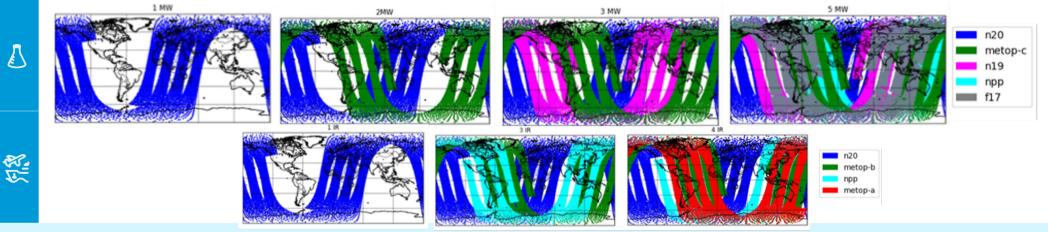
औ

 \aleph

Rel Par

Motivation

- <u>Strategic Question(s) in Support of the Next-generation Architecture Design & Planning (including the LEO Sounding constellation):</u>
 - How important is the Wind measured from satellite to the NWP system?
 - What is the relative impact of various observing systems (Active and Passive)?
 - In the case of Microwave and Infrared Sensors, how many are optimal? Do they saturate in their impact?
 - Can we get wind information from moisture tracking? How does it compare to direct measurements?
- Approach:
 - Use Real data for the assessment (OSEs) on the NOAA global NWP System.
 - The Observing Systems tested are:
 - Conventional Data (radiosondes, airborne, etc)
 - Wind lidar (Aeolus) -Active
 - AMVs from GEO/LEO sensors -Passive
 - Microwave Sounders (1,2,3,5 sensors) Passive
 - Infrared Sounders (1,3,4 sensors) Passive

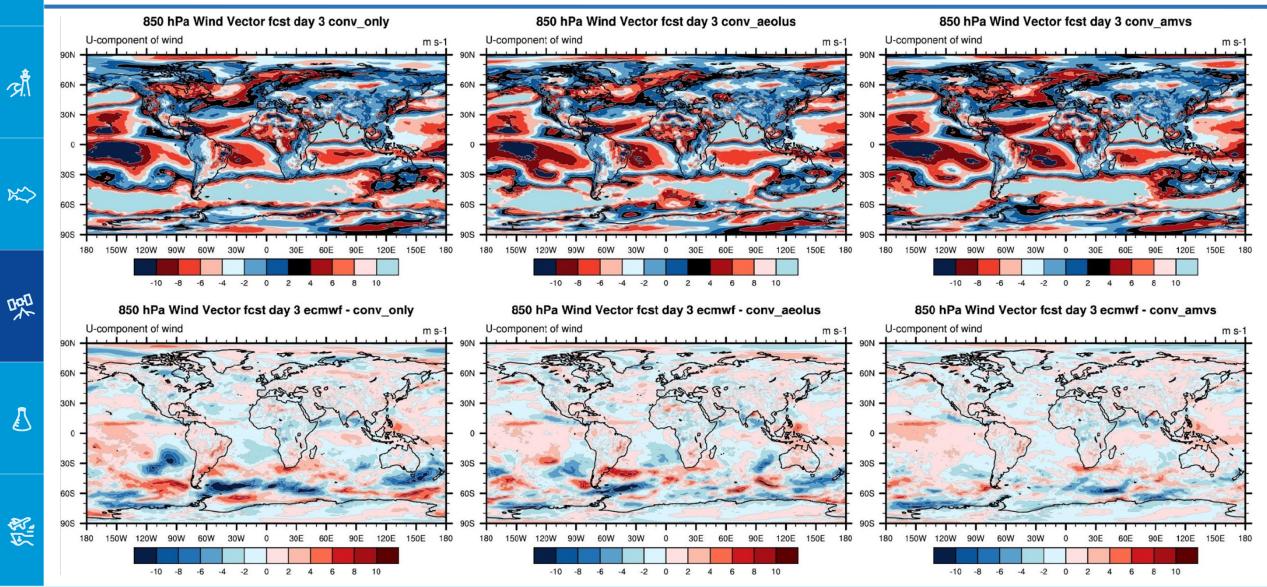

12

Experiment Setup

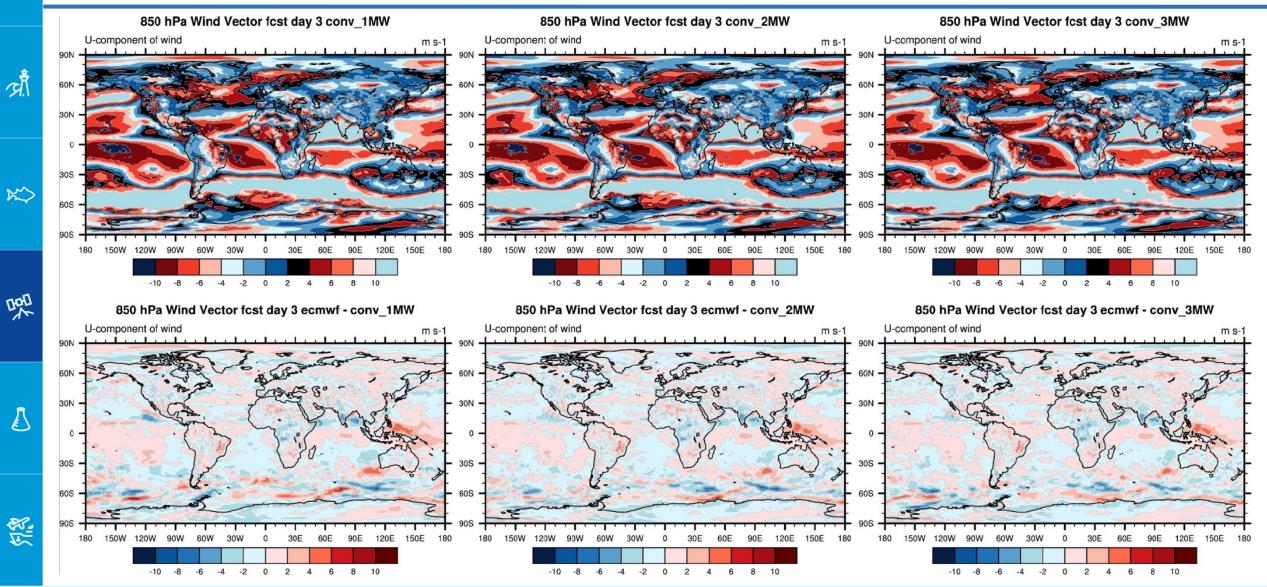
	Exps	Satellites/Observations
	No Sats	Conventional Only
	Aeolus	Conventional + Aeolus
	AMVs	Conventional + AMVs
	1 MW	Conventional + NOAA20 (ATMS)
>	2 MW	Conventional + NOAA20 + MetOP-C(AMSUA,MHS)
	3 MW	Conventional + NOAA20+ MetOP-C(AMSUA,MHS) +NOAA19(AMSUA,MHS)
	5 MW	Conventional + NOAA-20+Metop-C+ NOAA-19+F17(SSMIS)+NPP(ATMS)
	1 IR	Conventional + NOAA20 (CrlS)
7	3 IR	Conventional + NOAA20+ MetOP-B(IASI) +NPP(CrIS)
6	4 IR	Conventional + NOAA20+ MetOP-B(IASI) + NPP(CrIS)+MetOP-A(IASI)

- GFS/FV3 Version : 16.1.4
- Analysis Res=384
- Ensemble Res=192
- Ensemble members=80
- Experiment Period: August 1st 2020 to September 30th 2020

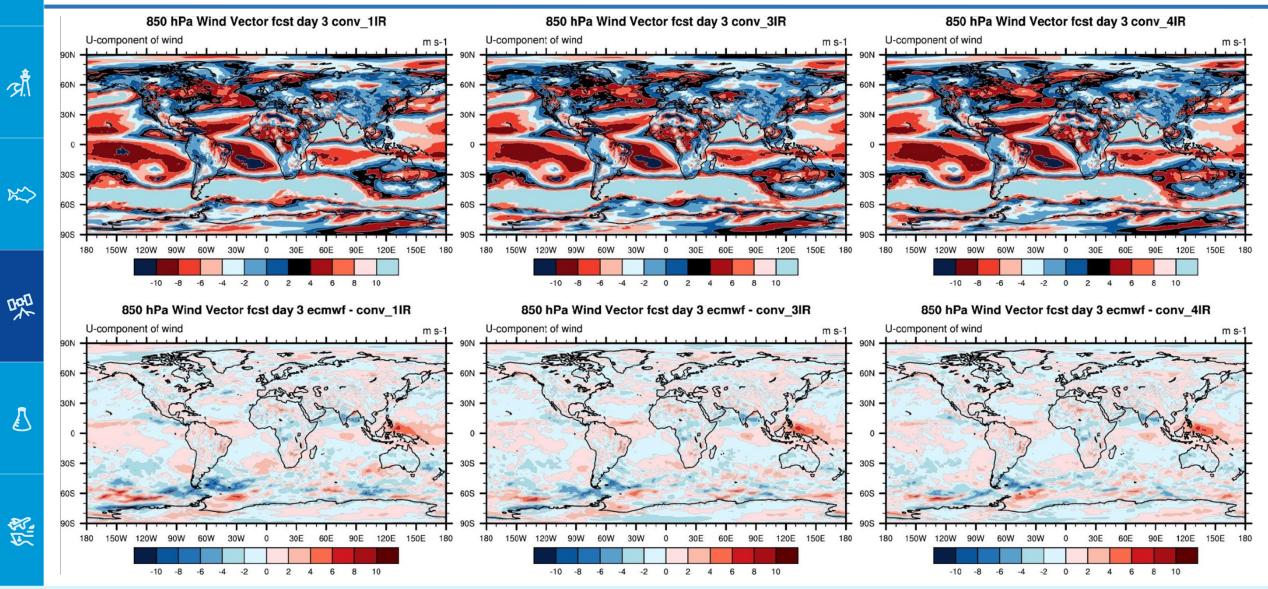
*A month of all experiments completed. The results shown are over the month of August after 5 days spin up.


ž

A.


K

Line Line


Day 3 forecast Wind Vector maps 850hPa for each exp and their diff with ECMWF valid at the 00Z analysis time

Day 3 forecast Wind Vector maps 850hPa for each exp and their diff with ECMWF valid at the 00Z analysis time

Day 3 forecast Wind Vector maps 850hPa for each exp and their diff with ECMWF valid at the 00Z analysis time

Anomaly Correlation HGT P500 NHX and SHX

South Hemisphere

Verified against ECWMF analysis

North Hemisphere

ज़ौ.

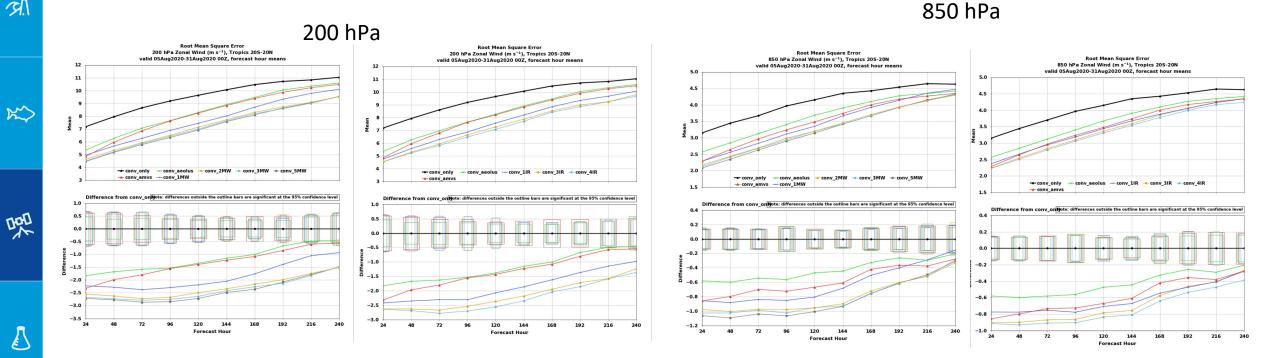
 \aleph

男

ž

Anomaly Correlation Coefficient 500 hPa Geopotential Height (gpm), Southern Hemisphere 205-805 valid 05Aug2020-31Aug2020 002, forecast hour means Anomaly Correlation Coefficien Anomaly Correlation Coefficient 500 hPa Geopotential Height (gpm), Northern Hemisphere 20N-80N valid 05Aug2020-31Aug2020 002, forecast hour means Anomaly Correlation Coefficient 500 hPa Geopotential Height (gpm), Southern Hemisphere 205-805 valid 05Aug2020-31Aug2020 002, forecast hour means 500 hPa Geopotential Height (gpm), Northern Hemisphere 20N-80N valid 05Aug2020-31Aug2020 002, forecast hour means 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.6 c 0.6 0.6 g 0.5 g 0.5 ž 0.5 Σ° 0.5 ž 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 - conv 1IR - conv_3IR - conv_4I conv 1IR conv 3IR - conv 4IF - conv aeolus - conv only conv aeolus conv only - conv aeolus · conv only - conv 1MW CORV 1MM tony ar 0. 0.0 0 0 rom conv_onNote: differences outside the outline bars are significant at the 95% Difference from conv on Note: differences outside the outline bars are significant at the 95% co 0.20 0.20 0.7 0.6 0.5 0.15 0.1 0.5 0.4 0.10 0.10 0.4 03 0.3 0.2 0.2 0.1 -0.0 -0.05 -0.1 -0.10 -0.15 -0.15 -0.2 120 216

Anomaly Correlation improves as we add wind observations and MW and IR observations. More improvement for AMVS over Aeolus. More improvement for MW and IR over AMVS

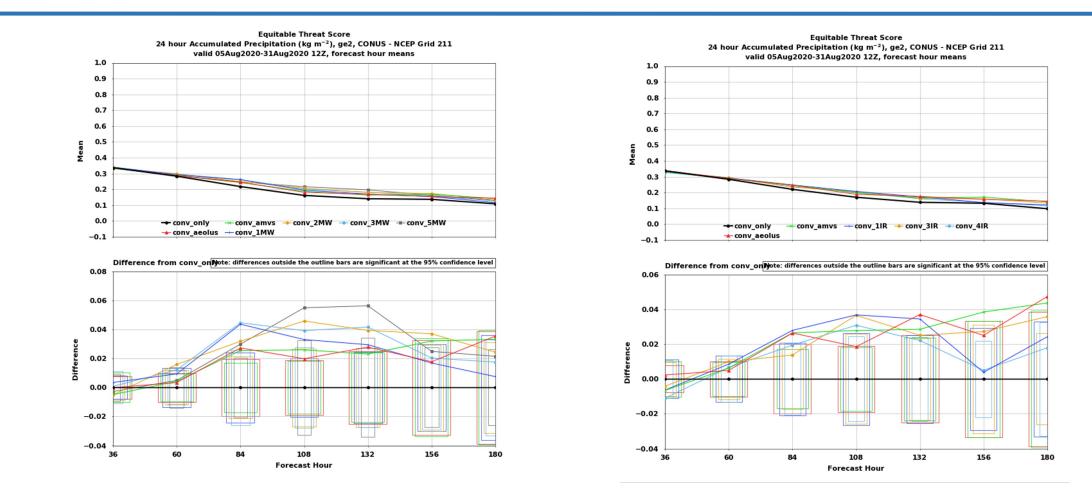


RMSE Wind P200 and P850 for TRO

Verified against ECWMF analysis

औ

ž

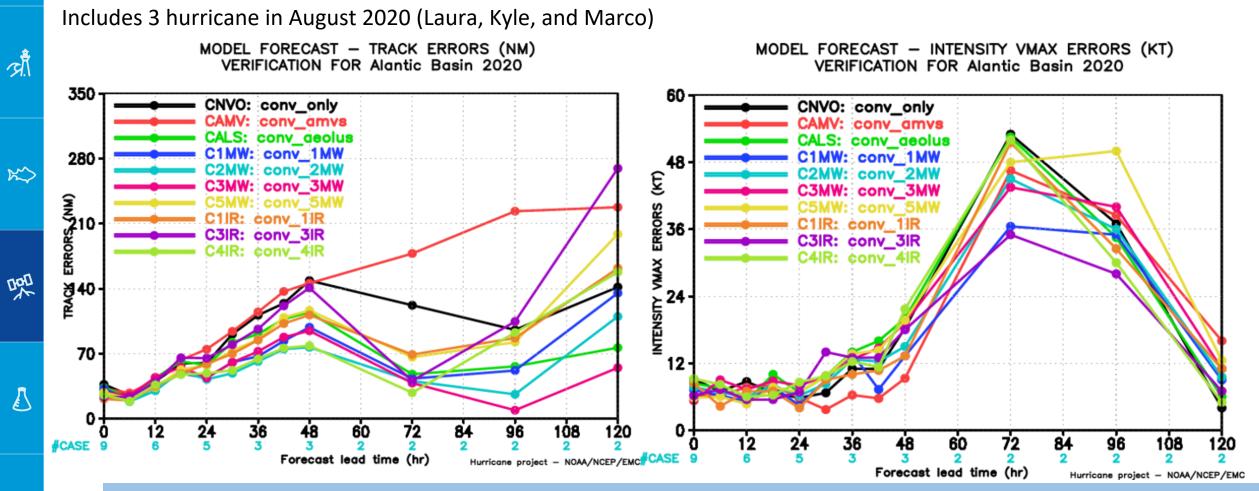


RMSE decreases as we add wind observations and MW and IR observations. AMVS and Aeolus are about the same at 200hPa. More improvement for AMVS over Aeolus at 850hPa. More improvement for MW and IR over AMVS

24 hour Precipitation Equitable Threat Score over CONUS

Precipitation score improves as we add wind obs and MW and IR observations.

12


ž

त्रौ

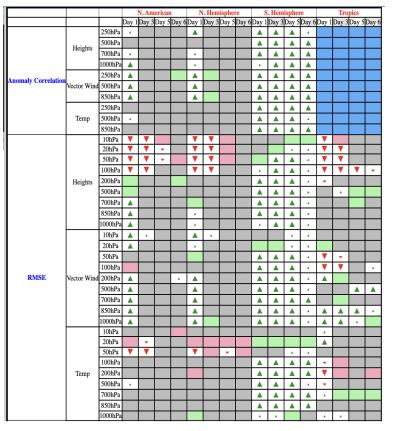
 κ

THE

Hurricane Track and intensity

The track error has the highest error at most forecast hours for AMVS and and lowest error for 4IR for the first 72 hours and 3MW after 72hour. About the same for the first 24hour for intensity lowest error for 3IR and 1WM

12


Scorecards

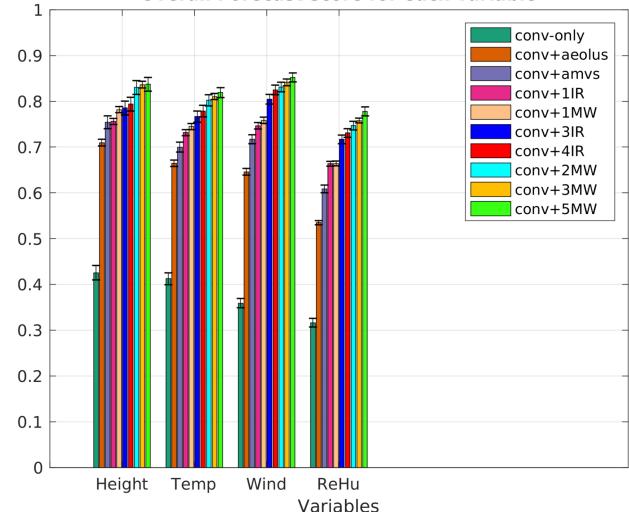
Conv_only vs Aeouls

			N. American Day 1 Day 3 Day 5 Day 6				N. Hemisphere				S. Hemisphere				Tropics			
			Day 1	Day 3	Day 5	Day 6	Day 1	Day 3	Day 5	Day 6		Day 3	Day 5	Day 6	Day 1	Day 3	Day 5	Day (
		250hPa																
	Heights	500hPa																
		700hPa																
		1000hPa																
Anomaly Correlation	lation Vector Wind	250hPa																
		850hPa																
	Temp	250hPa																
		500hPa																
		850hPa																
	Heights	10hPa																
		20hPa																
		50hPa																
		100hPa																
		200hPa																
		500hPa																
		700hPa																
		850hPa																
		1000hPa																
	Vector Wind	10hPa																
		20hPa																
		50hPa																
		100hPa																
RMSE		200hPa																
		500hPa																
		700hPa																
		850hPa																
		1000hPa																
	Temp	10hPa																
		20hPa																
		50hPa																
		100hPa																
		200hPa			-													
		500hPa				-												
		700hPa																
		850hPa			-													
		1000hPa	_													-		
		100011 a	-	-		-	-	-	-	-		-		-	-	-	-	-

	EMC Verification Scorecard
	Symbol Legend
	CONV_AEOLUS is better than CONV_ONLY at the 99.9% significance level
	CONV_AEOLUS is better than CONV_ONLY at the 99% significance level
	CONV_AEOLUS is better than CONV_ONLY at the 95% significance level
	No statistically significant difference between CONV_AEOLUS and CONV_ONLY
	CONV_AEOLUS is worse than CONV_ONLY at the 95% significance level
÷	CONV_AEOLUS is worse than CONV_ONLY at the 99% significance level
▼	CONV_AEOLUS is worse than CONV_ONLY at the 99.9% significance level
	Not statistically relevant
	Start Date: 2020080500
	End Date: 2020083100

Aeouls vs AMVS

Overall Forecast score


जैं।

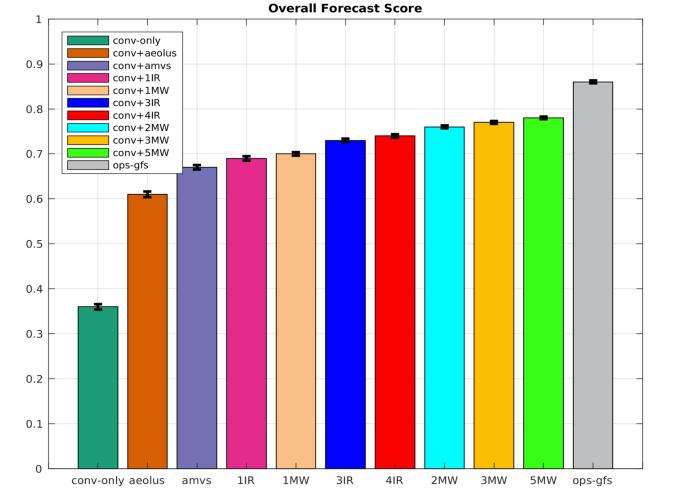
 κ

哭

MinMax) score for the each experiments for several metrics (RMS, AC), for several lead times (00-168 forecast hours), for different layers (250,500,700,850,1000hP levels), for different regions (NH ,SH , and Tropics region) averaged over for each forecast skills (HGT, Temp, Wind, and ReHu, Wind)

These results are normalized (between

Overall Forecast score for each variable



Overall Forecast score

औ These results are normalized (between

MinMax) score for the each experiments for several metrics (RMS, AC), for several lead times (00-168 forecast hours), for different layers (250,500,700,850,1000hP levels), for different regions (NH,SH, and Tropics region) and for several forecast skills (Temp, ReHu, Wind, and HGT). Averaged over.

GFS operational is also being compared to all the experiments as reference here

 κ

明

12

औ

 \aleph

四

12

Summary

- OSE experiments were performed to assess impact of real data of space-based wind on the NOAA NWP system.
- Work is still in progress but some preliminary results are indicative of the following:
 - All Observing systems assessed have significant value to NWP.
 - <u>Comparing different Observing Systems:</u> Order of highest Impact on NWP: (1) Microwave Sensors have the biggest impact on NWP followed by IR sensors (2) followed by AMVs from Geo/Leo sensors, (3) followed by Aeolus –based winds. This skill includes for T, Q, and wind.
 - <u>Assessing Optimal Number of Satellites:</u> For microwave sensors, five is better than three and two which is better than a single Microwave sensor (Increasing skills with increasing number of sensors). For IR sensors 4 is better than 3 and 1.
 - <u>Best way to capture wind information</u>: Consistent with the overall skills, Wind forecast skill is biggest when we assimilate MW and IR sensors (5MW is the best, 1MW and 1IR are about the same. 2MW and 3MW better than 3IR and 4IR). Multiple AMVs are better than one Aeolus based wind

