

Implementation of GEO-AIRS Inter-Calibration at NESDIS

X. Wu, NOAA/NESDIS

In collaboration with Y. Tahara, K. Kato, M. Gunshor, D. Tobin, M. König, Y. Li, S. Sohn, H. Sun, and F. Yu

Implementation

Operation

Algorithm Theoretical Basis Document GSICS GEO-AIRS Inter-Calibration

Introduction

- <u>Background</u>
- Scope
- <u>History</u>
- Design Principle and Justification
- Algorithm Description
 - Input Data
 - <u>Subsetting</u>
 - Interior to GEO FOR
 - Collocated in Space
 - Concurrent in Time
 - Subset
 - <u>Collocation</u>
 - Collocated in Space
 - Concurrent in Time
 - Aligned in Line-Of-Sight Zenith Angle
 - Aligned in Line-Of-Sight Azimuth Angle
 - Uniform Environment
 - BACKGROUND
 - IMPLEMENTATION
 - OVER-SAMPLING
 - Normal Sample
 - Spatial Averaging
 - Spectral Convolution
 - Output Data
- References

ATBD Introduction – Scope

This ATBD is one of many, specifically for the intercalibration between an imaging instrument on a GEO and AIRS on LEO for GSICS.

- Not GEO-GEO, LEO-LEO
- Not visible
- Not Sounder
- Many ways for comparison of other purposes.

This ATBD currently is for data collection only.

- Analysis is the next step to reach the goal of intercalibration
- That is a rapidly developing field.

ATBD Introduction – History

- Version 0, May 2007
 - Not well documented
- Version 1.0, Oct. 2007, initial release
 - ATBD will be amended later
- Version 1.1, Dec. 2007
 - Debugging and expand to more GEO
- Version 1.2, Jan. 2008
 - Some changes. More debugging and expansion.

ATBD Introduction – History

To be discussed after break

- Version 1.x as needed
- Version 2 to incorporate JMA modular design
- Convention for versions
 - How big a change qualifies for Version 2.x instead of Version 1.x or Version 1.2.x?
 - How little a change qualifies for a new version at all?
 - What if ATBD didn't change, only the implementation?
 - Document what have been changed?
 - Procedure for community feedback and version release
- Compatibility
 - Encourage innovation and ensure compatibility
 - Baseline algorithm, uniform output

ATBD Design – Definition

Calibration

- Wikipedia The process of verification that an instrument is within its designated accuracy.
- CEOS The process of quantitatively defining the system responses to known, controlled signal inputs.
- It may be obvious which is better, but the main point is the need for common definition
- Inter-Calibration
 - The evaluation of agreement among collocated measurements compared to the expected uncertainty

ATBD Design – Definition

To be discussed tomorrow

- If that definition is adopted, need to quantify uncertainty
 - Spatial collocation
 - Temporal concurrence
 - Geometric alignment
 - Spectral convolution
 - Instrument noise
- Perhaps in a collaborative way

ATBD Design – Goals

GSICS Goals/Objectives

- Quantify the difference between measurements by two satellites for the collocations being considered.
 - Minimum goal
 - Useful only if the results can be generalized, albeit often implicitly
- Evaluate instrument performance
 - Advanced goal
 - Characteristics of the difference
 - Channel, satellite, time, day, angle, scene, ...
 - Cause of the difference

Key (necessary condition) to both goals – sampling

ATBD Design – Sampling

Samples must include all conditions under which the satellites operate, i.e., the normal range of:

- Spectral band
- Scene temperature
- Geographic location
- Viewing geometry
- Time of day
- Day of year
- Satellite age

All bands Single pixel Off nadir Off nadir Off nadir¹ Continue for long term² Continue for long term²

Sun-synchronous satellites (most LEOs) always pass the nadir of a geostationary satellite (all GEOs) at the fixed time of day (local time).
 GSICS must be a system instead of a campaign

Time Series of Scan Mirror Temperature An order of magnitude larger than spinners

One Week One Month GOES12 Imager Scan-Mirror Temperature GOES12 Imager Scan-Mirror Temperature ~60°K some 010 ~40°K other days 300 "now" 290 280 27 17 - ť1: 0. 0: 0 12-20 10 254 12 0: 174 · D-1.21 0 12-17-12-12-August September 23 24 2007 September 200°GOES12 Imager Scan-Mirror Temperature GOES12 Imager Scan-Mirror Temperature 540 3440 Complicated Long term 330 320 seasonal trend variations of diurnal heating 260 Jan Feb Mar Apr May June July Aug Sep SOct Nev Dec D. Han 2006 2007 Time in GMT format **One Year** One Satellite Han

ATBD Design – Summary

GSICS goals require that single pixel collocations anywhere within the GEO field of regard be collected continuously over long term for all bands.

GSICS should collect all it can to allow future selection and manipulation by users.

Implementation – Input Data

A complete set of GEO and LEO data within a common period of time (one day)

- AIRS granules from NASA DAAC
 - Channel validity as of May 2007
 - Leap second as of May 2007
 - Update strategy TBD
- GOES images from NESDIS server, CLASS, or UW
 - GOES-11/12. Some GOES-13.
 - Need tuning for other GEO.
- All four IR bands
 - Despite the large spectral gaps and shortage for the 3.9 μm and 6.7 μm channels

Implementation – Intermediate Data

Further discussion after break

- ✤ M. König suggested subsetting at GRWG-II
 - ~95% granules are outside of a GEO FOR or mismatch in time
 - When matched, ~10% of the image covers a granule
- GEO subset image: SSS##.AIRS.yyyy.mm.dd.grn.lat.long.bbb
 - So named such that only this name needs to be saved permanently
 - sss Satellite ID (e.g., GOS, MET, FY_, MTS)
 - ## Satellite series number (e.g., 07)
 - yyyy Year (2007, 2008, ...)
 - mm Month (01, 02, ..., 11, 12)
 - dd Day (01, 02, ..., 30, 31)
 - grn AIRS granule number (001, 002, ..., 239, 240)
 - lat Latitude (e.g., N04)
 - long Longitude (e.g., W120)
 - bbb Band wavelength (μ m*10, e.g., 039)

Implementation – Subsetting

LEO Time & Window

 $\cos(GP) = \cos(gra_ctr_lat)\cos(geo_nad_lon-gra_ctr_lon)$

$$SP^2 = SO^2 + OP^2 - 2 * SO * OP \cos(PG)$$

$$\sin(SPZ) = \sin(PG) * SO / SP$$

Implementation – Collocation

for each LEO pixel COLLOCATED IN SPACE if LEO pixel is outside of GEO image then next LEO pixel CONCURRENT IN TIME if $|\text{LEO time} - \text{GEO time}| > \max \text{ sec } (300 \text{ sec})$ then next LEO pixel **ALIGNED IN LINE-OF-SIGHT** if $|\cos(\text{geo zen})/\cos(\text{leo zen})-1| > \max_{zen} (0.01)$ then next LEO pixel **UNIFORM ENVIRONMENT** if env stdv > max stdv (10 count) then next LEO pixel NORMAL GEO FOV if $|\text{fov mean} - \text{env mean}| > (\text{env_stdv/n})(N-n)/(N-1)*G(3)$ then next LEO pixel SPATIAL AVERAGING simple average of GEO pixels in area comparable of LEO FOV SPECTRAL CONVOLUTION several choices **OUTPUT THE RESULTS** list of parameters provided end (next LEO pixel)

Implementation – Collocation Angle

|cos(geo_zen) - cos(leo_zen)|
|cos(geo_zen)/cos(leo_zen)-1|

geo_zen - leo_zen

IR channels are often insensitive to difference in azimuth angle

too much since this correction depends on the lapse rate

Implementation – Collocation Uniform

Implementation – Collocation Uniform

 \bullet Uniformity measured by standard deviation σ

 $\bullet \sigma$ of T_b is a bad choice.

- $\bullet \sigma$ of radiance is better.
 - Varies with scene T_b and wavelength weighted by mean

		6.6 μm	10.7 μm	12.0 μm	13.3 μm
	3.9 μm				
290°K	1.2K	2.0K	3.1K	3.6K	3.9K
250°K	0.9K	1.5K	2.4K	2.7K	2.8K
210°K	0.6K	1.0K	1.5K	1.8K	2.0K

Table 1: δT_b in response to 5% δR for GOES IR channels at selected scene temperature.

Implementation – Collocation Uniform

 $\bullet \sigma$ of count is the best

Table 2: δT_{-b} in response to 10 counts for GOES IR channels at selected scene temperature.

	3.9 μm	6.6 μ m	10.7 μm	12.0 μm	13.3 μm
290°K	1.6K	0.5K	1.2K	1.2K	1.1K
250°K	7.5K	1.1K	1.9K	1.8K	1.5K
210°K	27K	3.8K	3.7K	3.1K	2.4K

Implementation – Collocation Normal

$$\left|\frac{1}{n^2}\sum_{i=1}^{n^2}R_i - M\right| \le \frac{S}{n}\frac{N-n}{N-1}Gaussian(=3)$$

$$R_{GEO} = \frac{1}{n^2} \sum_{i=1}^{n^2} R_i$$

Spectral convolution of LEO radiances

$$R'_{GEO} = \frac{\int_{v} R_{v} \Phi_{v} dv}{\int_{v} \Phi_{v} dv}$$

O ATMO

NOAF

ARTMENT OF C

Implementation – Output Results

Real * 4	yyddd	year and day of year
Real * 4	hhmmss	hour/minute/sec of GEO observation
Real * 4	time_diff	LEO_time – GEO_time (sec)
Real * 4	zeni_diff	$\cos(\theta \text{GEO})/\cos(\theta \text{LEO})$ - 1
Real * 8	time	LEO time of observation (TAI second)
Real * 4	latitude	collocation latitude (degree east positive)
Real * 4	longitude	collocation longitude (degree north positive)
Real * 4	geo_zen	GEO zenith angle (degree)
Real * 4	leo_zen	LEO zenith angle (degree)
Real * 4	sol_zen	SUN zenith angle (degree)
Real * 4	geo_azi	GEO azimuth angle (degree)
Real * 4	leo_azi	LEO azimuth angle (degree)
Real * 4	sol_azi	SUN azimuth angle (degree)
Real * 4	airs_cnv_shift	Ch6 shift SRF (irrelevant in general – to be deleted)
Real * 4	airs_mmg_shift	Ch6 shift SRF (irrelevant in general – to be deleted)
Real * 4	stat(6,4)	mean & stdv of collocation environment, mean & stdv of collocation target, convoluted AIRS radiance using modified Kato and Gunshor methods, for four channels
Real * 4	leo_rad(2378)	AIRS spectral radiances at 2378 channels
Real * 4	geo_rad(17,9,4)	GEO rad at 17 elements, 9 lines, and 4 channels

Further discussion after break

GOES 10.7 μm Co-locations with AIRS, 21feb02

GOES 13.3 μm Co-locations with AIRS, 21feb02

All bands data saved even if only one band qualifies for collocation

Operation – Input Data

- A complete set of GEO and LEO data within a common period of time (one day)
 - AIRS granules from NASADAAC
 - Take no short-cut available to the world
 - Run after 3 days near real time
 - Run again after 10 days ->90% (and presumably no more) data
 - GOES images from NESDIS server, CLASS, or UW
 - GOES-11/12. Some GOES-13.
 - Ready to re-process 2007 GOES-12

Operation – Output Results

Names of intermediate files

- Sufficient details to obtain AIRS and GOES data to repeat collocation
- Insufficient to repeat subsetting
 - One needs all AIRS and GOES data any way for that
- Collocation results
 - One file per day per satellite
 - ~2000 collocations (25 MB) per file
 - ~10 GB per satellite per year

Operation – Reporting

Nothing operational

Evaluation and *ad hoc* analyses as needed

Issues – Algorithm Compatibility

✤ Goal/Balance

- Encourage innovation
- Ensure compatibility

Level of compatibility

- Common output (definition/format)
- Common principle
- Common logic
- Common threshold
- Common code

Questions

- Where we are and where we want to be?
- Baseline algorithm

Less compatible

Completely compatible

Issues – Design Principles

GSICS goals require that single pixel collocations anywhere within the GEO field of regard be collected continuously over long term for all bands.

GSICS should collect all it can to allow future selection and manipulation by users.

Issues – Version Control

Version 2 to incorporate JMA modular design

- Convention for versions
 - How big a change qualifies for Version 2.x instead of Version 1.x or Version 1.2.x?
 - How little a change qualifies for a new version at all?
 - What if ATBD didn't change, only the implementation?
 - Document what have been changed?
 - Procedure for community feedback and version release

Issues – Archiving Strategy

Name of SSS##.AIRS.yyyy.mm.dd.grn.lat.long.bbb

- sss Satellite ID (e.g., GOS, MET, FY_, MTS)
- ## Satellite series number (e.g., 07)
- yyyy Year (2007, 2008, ...)
- mm Month (01, 02, ..., 11, 12)
- dd Day (01, 02, ..., 30, 31)
- grn AIRS granule number (001, 002, ..., 239, 240)
- lat Latitude (e.g., N04)
- long Longitude (e.g., W120)
- bbb Band wavelength (μ m*10, e.g., 039)

Collocations (next page, ~30MB/day/GEO)

Issues – Output Parameters

Real * 4 Real * 4 Real * 4 Real * 4 Real * 8 Real * 4	yyddd hhmmss time_diff zeni_diff time pix_lat	year and day of year hour/minute/sec of GEO observation LEO_time – GEO_time (sec) $\cos(\theta GEO)/\cos(\theta LEO) - 1$ LEO time of observation (TAI second) collocation latitude (degree east positive)
Real 4		Collocation longitude (degree north positive)
Real * 4	geo_zen	GEO zenith angle (degree)
Real * 4	leo_zen	LEO zenith angle (degree)
Real * 4	sol_zen	SUN zenith angle (degree)
Real * 4	geo_azi	GEO azimuth angle (degree)
Real * 4	leo_azi	LEO azimuth angle (degree)
Real * 4	sol azi	SUN azimuth angle (degree)
Real * 4	airs cnv shift	Ch6 shift SRF (irrelevant in general – to be deleted)
Real * 4	airs mmg shift	Ch6 shift SRF (irrelevant in general – to be deleted)
Real * 4	stat(6,4)	mean & stdv of collocation environment, mean & stdv of collocation target, convoluted AIRS radiance using modified Kato and Gunshor methods, for four channels
Real * 4	leo rad(2378)	AIRS spectral radiances at 2378 channels
Real * 4	geo_rad(17,9,4)	GEO rad at 17 elements, 9 lines, and 4 channels

Real * 4 leo_lat, leo_lon, geo_lat, geo_lon, sun_lat, sun_lon

Issues – Reporting

Suggestion 1

- Unified output results
- Start with something simple, e.g., daily mean bias
- Improve as we go
- Suggestion 2

Issues – Input Data

- A complete set of GEO and LEO data within a common period of time (one day)
 - AIRS granules from NASA DAAC
 - Channel validity as of May 2007
 - Leap second as of May 2007
 - Update strategy TBD
 - Short-cut (e.g., from member of AIRS Science Team)