Implementing Inter-calibration of Meteosat with IASI

Tim Hewison Marianne König

Contents

- Use of IASI as inter-calibration reference
- Regression of collocated Meteosat IASI radiances
 - Weighted according to Spatial Variability
- Calculation of relative bias
 - For reference scene radiances
- Investigated the relative non-linearity
- Results for Meteosat-7 IASI Meteosat-8 – IASI Meteosat-9 – IASI
- EUMETSAT Implementation Plans for 2008

IASI and/or AIRS as a reference?

EUMETSAT: Meteosat-IASI NOAA: AIRS-IASI

IASI has no spectral gaps IASI + HIRS/4 on same platform

A lot of work for us to complete the triangle: Meteosat-AIRS (Integrity check)

Collocation Criteria

New Radiance Definition

Marianne told us all about the new radiance definition ECP833 also includes changes to non-linearity corrections

As a temporary work around for 2007 data, needed to ensure consistent definition of radiance:

- Read in old IMPF-defined radiances
- Convert to brightness temperatures
- Convert back to effective radiances

Uncertainty due to Spatial Variability

Estimate uncertainty due to spatial variability as Standard Deviation of Meteosat pixels within collocated IASI iFoVs

Use as error bars in weighted regression

Weighted Regression of Meteosat v IASI

Non-linearity

Compare linear regression with quadratic fit:

V. little difference at ref. scenes <0.05K

Difference increases for low T_b As expected for non-linear errors Only significant for MSG 7.3µm channel and still <1K at T_b =220K

But differences are v. variable Error bars currently underestimated

MVIRI on Meteosat-7 – IASI on Metop

Time series of brightness temperature differences between Met7-IASI for typical clear-sky radiances: Each Met7 infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

SEVIRI on Meteosat-8 – IASI on Metop

Time series of brightness temperature differences between MSG1-IASI for typical clear-sky radiances. Each MSG infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

SEVIRI on Meteosat-9 – IASI on Metop

Time series of brightness temperature differences between MSG2-IASI for typical clear-sky radiances. Each MSG infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

EUMETSAT Inter-calibration Plans: 2008

IASI – Meteosat intercalibration:

Investigate impact of MSG radiance definition Include temporal variability in error propagation Investigate angular dependence using Rapid Scan at ~40°N Compare with NWP bias monitoring statistics Assess collocation requirements – WV, window, O₃ channels

Extend inter-calibration to HIRS: Compare HIRS/4-IASI on Metop-A Compare HIRS-Meteosat-8 and -9 Build-up time series with older HIRS and MVIRI

Set-up GSICS Data and Products server

