Advanced GEO Radiance Estimation from Hyper Sounder Data and Preparation for MTSAT Intercalibration in JMA

February 2008

Yoshihiko Tahara Koji Kato

Meteorological Satellite Center Japan Meteorological Agency

GEO Radiance Estimation from Hyper Sounder Data

Wavenumber (cm-1)

ladiance (mW/m^2/sr/cm^-1)

1. "Gap channels" introduced To fill the spectral gaps of a LEO hyper sounder

2. "Super channel" generated To imitate a GEO channel from the hyper and gap channels by the "constraint method"

3. Radiances of missing hyper and gap channels estimated by using valid hyper channel observations and beforehand simulated radiances for 8 profiles

AIRS Gap Channels

SRFs of AIRS channels (green) and gap channels (orange)

IASI Gap Channels

- No gaps in IASI spectral
- But bands of some GEO NIR channels are not covered by IASI fully
- "IASI gap channels"
- The same intervals (0.5 cm⁻¹) as IASI L1c
- The same SRF as IASI L1c

<u>The gap channel can be treated as a member of</u> <u>hyper channels, and its observation is failed</u>

Super Channel by Constraint Method

Radiance observed by a broadband channel is $I_b = \int \underline{S_b(\nu)}I(\nu)d\nu, \quad \text{where} \quad \int S_b(\nu)d\nu = 1.$

Radiance of a super channel (linear combination of sounder radiances) is

$$I_b \approx \sum_i w_i I_i = \int \left\{ \underbrace{\sum_i w_i S_i(\nu)}_{i} \right\} \underline{I(\nu)} d\nu. \qquad \begin{array}{c} I_i = \int S_i(\nu) I(\nu) d\nu \\ \int S_i(\nu) d\nu = 1 \end{array}$$

They should be approximately equal for any I(v), then

$$S_b(
u) pprox \sum_i w_i S_i(
u)$$

To obtain optimized w_i , solve $\operatorname{argmin} J(w_1, w_2, \cdots) = \int \left\{ \underline{S_b(\nu)} - \sum_i w_i S_i(\nu) \right\}^2 d\nu.$ where $\frac{\partial J}{\partial w_k} = \int 2S_k \left\{ \underline{S_b(\nu)} - \sum_{i=1}^n w_i S_i(\nu) \right\} d\nu.$

SRF of Super Channel

Radiance Estimation for Missing Hyper Channels

• Formulation $\log I_i^e = c_0 + \sum_i c_i \log I_i^k$

Estimated radiance of blacklist channel and gap channel *i* Simulated radiance of channel *i* for model profile *k*

- For each GEO channel and each hyper sounder observing pt.
- Log radiance estimated for better fitting
- Simulated radiances for 8 model profiles
 - Tropic, US standard, Mid-latitude winter and summer profiles
 - Thick cloud at 500 hPa and 200 hPa for Tropics and US std.
- Coefficients computation
 - Solving least square problem by applying valid hyper sounder observations and corresponding simulated radiances
- No NWP fields and no RT computation in operation

Radiance Estimation of Missing Hyper Channels

AIRS Radiance Estimation over MTSAT 6.8-um

ated TB (K)

AIRS Radiance Estimation for MTSAT Channels

AIRS Radiance Estimation for Meteosat Channels

Compensation vs. No Compensation

AIRS (mW/m².sr.cm⁻¹)

12

12

AIRS (mW/m².sr.cm⁻¹)

MTSAT-1R IR3 vs. IASI (Descending) 23:30 – 01:15 UTC (08:30 – 10:15 JST)

<u>MTSAT-1R</u> <u>6.8-um</u> <u>VS.</u> <u>AIRS/IASI</u>

August 2008

- Daytime comparisons against AIRS & IASI show the same result
- Only midnight AIRS comparison shows different from others, that might indicate unknown solar effect on MTSAT

MTSAT-1R IR3 vs. AIRS (Ascending) 03:30 - 05:00 UTC (12:30 - 14:00 JST)

MTSAT-1R IR3 vs. AIRS (Descending) 15:30 – 17:00 UTC (00:30 – 02:00 JST)

Comparison between Compensation Methods

Preparation for Operation of MTSAT-1R Infrared Intercalibration

- Preparation for AIRS/IASI data download
 - Examined to download AIRS data from NASA GES DISC and IASI data from NOAA/NESDIS CLASS via the Internet
 - → Data volume and download time acceptable
 - Automatic AIRS/IASI data download script
 - → Only AIRS data from NASA supported currently
 - \rightarrow Written in Pearl script
 - \rightarrow Details will be reported in GDWG session

- Issue is we don't know where to download IASI data

- Implementation of GSICS version 1 code
 - AIRS, IASI, MTSAT/GMS data access
 - NetCDF and HDF5 output
 - Fortran90 code
 - No change on the original algorithm
 - New GEO radiance estimation implemented in addition

JMA Intercalibration Code

- Fortran90 modules to ease maintenance and introduction of new satellite and algorithm
 - GEO module, LEO module, collocation module, GEO radiance simulation module, NetCDF/HDF5 output modules
- Structure variable control to keep code intelligible
 - type(GeoData_Def) :: geo ! GEO data
 - type(LeoData_Def) :: leo ! LEO data
 - type(Colloc_Def) :: colloc ! collocation information

• No change on GRWG algorithm version 1

 New GEO radiance estimation algorithm implemented in addition to the GRWG version 1 algorithm

Access to IASI and MTSAT native data besides AIRS

- IASI PFS L1c data
- AIRS HDF L1b data
- MTSAT/GMS native data (using JMA original library)

Program Flow

F90 Modules

New satellite implemented by replacing either GEO module "access_geo" or LEO module "access_leo"

program **geo_leo_intercal_ir** [variable definition] geo, leo, colloc

call open_geo(geo, GeoFile)

call get_geo_radiance(geo)

call open_leo(leo, LeoFile)

call get_leo_data(leo)

call colloc_geo_leo(geo, leo, colloc)

call get_simgeo_convolution call get_simgeo_constrain (geo, leo, colloc)

call write_colloc_netcdf/HDF (geo, leo, colloc, CollocFile)

call close_geo(geo)

call close_leo(leo)

module common_constants

Basic constants defined

module access_geo

- Definition of GEO data structure
- Subroutines to open/close GEO, get GEO data, deallocate arrays

module access_leo

- Definition of LEO data structure
- Subroutines to open/close LEO, get LEO data, deallocate arrays

module collocate_geo_leo

- Definition of collocation data structure
- Subroutines to collocate GEO-LEO, deallocate arrays

module simulate_georad_convolution module simulate_georad_constrain

 Subroutines to estimate GEO radiances from LEO data, deallocate arrays

module write_colloc

Subroutine to write out results

Libraries for Make

- To read AIRS L1b HDF
 - HDF4 and HDF5 library
 - http://hdf.ncsa.uiuc.edu/index.html
 - HDF-EOS2 libraries
 - http://hdfeos.org/software.php
- To read IASI PFS L1c
 - Library in AAPP software
 - http://www.metoffice.gov.uk/research/interproj/nwpsaf/aapp/
- To simulate GEO radiance by new compensation method
 - LAPACK (Fortran interface)
 - http://www.netlib.org/lapack/
- To write out results in NetCDF format
 - NetCDF library
 - http://www.unidata.ucar.edu/software/netcdf/

Parameter Files for GEO Simulation

LBL radiance files

- -0.001 cm⁻¹ resolution from 550 cm⁻¹ to 3050 cm⁻¹
- -LBLRTM (ver 11.1) with HITRAN2004 including AER updates (ver 2)
- -8 model profiles (US, Trop, mid-lat summer/winter under clear, cloudy)

Hyper sounder simulated radiance files

-Radiances of AIRS, IASI and their gap channels for 8 model profiles

-Computed from the LBL radiances

Super channel weight files

- -Weights computed by the "convolution" and "constraint" methods
 - MTSAT-1R, 2 ←→ AIRS, IASI
 - GOES-10, 11, 12, 13 $\leftarrow \rightarrow$ AIRS, IASI (for "constraint" only)
 - METEOSAT-8, 9 ←→ AIRS, IASI (for "constraint" only)

Code to compute the parameter files

 Written in the R language (free and powerful statistical tool, http://www.r-project.org/)

Compensation vs. No Compensation

August 2008

- Daytime comparisons against AIRS & IASI show the same result
- Only midnight AIRS comparison shows different from others, that might indicate unknown solar effect on MTSAT

MTSAT-1R IR1 vs. IASI (Ascending) 11:30 - 13:15 UTC (21:30 - 22:15 JST)

MTSAT-1R IR1 vs. AIRS (Ascending) 03:30 - 05:00 UTC (12:30 - 14:00 JST)

MTSAT-1R IR1 vs. AIRS (Descending) 15:30 – 17:00 UTC (00:30 – 02:00 JST)

August 2008

- Daytime comparisons against AIRS & IASI show the same result
- Only midnight AIRS comparison shows different from others, that might indicate unknown solar effect on MTSAT

MTSAT-1R IR2 vs. IASI (Descending) 23:30 - 01:15 UTC (08:30 - 10:15 JST)

IASI (mW/m².sr.cm⁻¹)

MTSAT-1R IR2 vs. AIRS (Ascending) 03:30 - 05:00 UTC (12:30 - 14:00 JST)

MTSAT-1R IR2 vs. IASI (Ascending) 11:30 - 13:15 UTC (21:30 - 22:15 JST)

MTSAT-1R IR2 vs. AIRS (Descending) 15:30 – 17:00 UTC (00:30 – 02:00 JST)

Compensation vs. No Compensation

MTSAT-1R IR4 vs. IASI (Ascending)

0.0031

SD RES: 0.0084 NUMBER: 2619 ²21 – 22 JST 0.3 0.4 0.5 0.6 IASI (mW/m².sr.cm⁻¹)

MTSAT-1R IR4 vs. IASI (Ascending) 11:30 - 13:15 UTC (21:30 - 22:15 JST)

INTER: 0.0031

SLOP : -0.0154

MN DIF: -0.0041

SD DIF: 0.0090

MTSAT-1R IR4 vs. AIRS (Descending) 15:30 - 17:00 UTC (00:30 - 02:00 JST)

AIRS Radiance Estimation over MTSAT 10.8-um

AIRS Radiance Estimation over MTSAT 3.8-um

AIRS Radiance Estimation over Meteosat 13.4-um

AIRS Radiance Estimation over Meteosat 9.7-um

AIRS Radiance Estimation over Meteosat 3.9-um

