NASA-Langley satellite cross-calibration, deep convective cloud calibration, and MTSAT case study

D. R. Doelling L. Nguyen, P. Minnis NASA Langley Research Center

L. A. Avey, D. A. Spangenberg SSAI

3rd Conference of GSICS Research Working Group (GRWG-III) Camp Springs, Maryland, 19-21 February 2008,

OUTLINE

- Deep Convective Clouds
 - G12 Case study
 - G12,G10,G08 DCC trends
 - Terra-MODIS, Aqua-MODIS, TRMM-VIRS
 - G07 Pinatubo
- LEO/GEO cross-calibration monthly regressions
 - standard error improvements
- MTSAT case study
- Conclusions

Deep Convective Cloud Technique (DCCT)

• Cold bright tropopause targets located at the equator

- ~ 80% albedos at low solar zenith angle (SZA) ensuring very bright targets
- Stable reflectivity is achieved when the reflection and absorption are in equilibrium
- Identified with simple IR threshold, no navigation needed

• Monitors gain degradation over time, but does not provide absolute calibration

•Fu-Liou radiative transfer code

- -McClatchey Tropical Profile
- -10km thick ice cloud over ocean
- –60µm particle size
- -Vary cloud optical depth from 1 to 1000
- -Cos(sza) = 0.9

NASA Langley Research Ce

• Limit GEO search area to $\pm 15^{\circ}$ latitude and ± 20 in longitude from subsat point Use 5 daily 1-hourly images centered at the subsat local noon

GOES-12 June 2003 DCC monthly PDFs

- Draw monthly PDFs from ~ 100000 DCC identified pixels
- Note that reducing the IR threshold increases the PDF peak
- Sharpen PDF peak by only using pixels that have a IR standard deviation < 1° K and visible < 3%, based on the 8 surrounding pixels

- Hu Model is a DCC Theoretical based bidirectional model (Hu et al. 2004)
- CERES model is the CERES bidirectional model (Ice, 50 $\tau)$
- Limit viewing geometry where there is near Isotropic reflection at low sun angles < 40° and view angles < 40°
- Normalize radiance (counts) to overhead sun

GOES-12 June 2003 DCC monthly PDFs

Comparison of VIRS DCC radiances and the CERES DCC directional model

- Validate CERES directional model by stratifying VIRS DCC radiances by SZA
- VIRS precesses every 46 days thereby observes all SZA
- VIRS has onboard visible calibration, employing a solar diffuser
- 9.2% reduction in radiance between 5° and 75° SZA

GOES-12 June 2003 DCC monthly PDFs

- DCC reflectances are spatially and temporally consistent
- DCC formed over land and water generate the same PDF shape

2003-2007 GOES-12 DCC monthly PDF counts

• Plot the monthly visible DC as a function of time

• Compute the monthly mean and mode in terms of visible DC

Comparison of GOES-12 visible gain degradation

GOES 12 using Terra-MODIS

GOES 12 using DCC

normalize the DCC counts with the 5-year mean and invert
apply the mid-timeline G12/Terra-MODIS gain to the DCC monthly gain ratios to place the DCC gains ontop of the G12/Terra gains

Comparison of GOES-12 visible gain degradation

* G12/Terra 8.99e-5 ° DCC mode 9.01e-5 ° DCC mean 9.05e-5

• It is remarkable the gain trends are within 0.7%

Time Series of GOES-8 Slope Trend

NASA

GOES-10 Calibration Using G8/VIRS & G12/VIRS

Comparison of GOES-10 visible gain degradation

• Terra-MODIS/VIRS gain ratio = 1.03

Comparison of MET8 visible gain degradation

Comparison of GOES-8 gains based on VIRS and DCC

VIRS DCC degradation

Version 5A

Version 6

VIRS DCCT degradation

1.10

VIRS Ver6/Ver5A correction

VIRS Ver6 corrected

COLD CLOUD COUNT for VIRS during 1998-2006

YEAR

VIRS DCC trend = 0.12%/yr-1
 NASA Langley Research Center / Atmospheric Sciences

Terra-MODIS DCC degradation

- Apparent trend due to gain jump in late 2003
- Correction needed after

Open squares corrected for gain change

G12 as a function of longitude

Mt Pinatubo stratospheric aerosol effects

Goestationary Visible Calibration Approach

- Determine stability of reference LEO imagers

 a. Use ATSR, VIRS, *Terra & Aqua* MODIS, VIIRS, CLARREO
 b. Validate with LEO/LEO and DCC
- 2. Cross-calibrate every 1-3 months
 - a. Use LEO/GEO using "well-calibrated" reference LEO imagersb. Use GEO/GEO to confirm calibration, 3-way calibrationc. Use DCC to validate calibration stability
- 3. Derive degradation equations for each GEO sensor
- 4. Account for spectral differences in channels theoretically

a. CLAREREO is a solar hyperspectral instrument and will provide absolute calibration relying on instrument spectral response

LEO-to-GEO/LEO Cross-Calibration Method

• Match data & compute average radiance *L* , brightness temperature *T*, or Count *C* within a 0.5° region using selection constraints

- Δ SZA < 5°, Δ VZA < 10°, Δ RAA < 15°, Δ t < 15 min, no sunglint

- Normalize all solar channels to common solar constants
- Normalize each radiance to a common SZA
- Perform linear regression

 $X_{ref} = a Y_{sat} + b$

X = L or T; Y = L, T, or C

• Compute trends in a(t) and b(t) from sets of coefficients

 $a = c_0 + c_1 DSR + c_2 DSR^2$; $b = d_0 + d_1 DSR + d_2 DSR^2$

DSR = days since reference date

NASA Langley Research Center / Atmospher Minnis et al., JTech, 2002

AVHRR N18/N17 Visible standard error (%)

MET8/Terra VIS spatial sigma limits

N17/N18 FOV and MET/Terra IR sigma limits

12.0

MTSAT case study

- Space count
- Visible nonlinearity gain
- Daily gain fluctuations

Note that many terminator MTSAT pixels have counts of 0 when the SZA<90°

MTSAT VIS, Sept 17, 2007

MET8 VIS, July 1, 2006

GOES11 VIS, July 18, 2006

MTSAT 10bit visible calibration, Sep 2007

- Use dual gain approach, breakpoint at 160, fix space count at 0
- Difficult to detect nonlinearity using stable reflective targets (DCC)
- Note the MODIS cross-calibration occurs near noon

MTSAT dual fit calibration, Nov 2007

MTSAT/Terra

MTSAT/Aqua

- 2DUAL, force spc=0, breakpoint=160, both gains = breakpoint
- Note very consistent high gains
- Spatial visible standard deviation threshold at 40%

The use of DCC to detect sudden gain shifts Dec 2007

• Seems to be shift in the visible calibration ~ Dec 18, 2007

Comparison of MTSAT DCC for Dec 2007

IR, red T<205°K

VIS, DC>650 green

Conclusions

•Well-calibrated GEO & LEO radiances necessary to produce accurate & cross-platform consistent cloud properties and fluxes

- Reference imager radiances necessary
- Cross-platform normalization can provide accurate calibrations
- Deep Convective Clouds can be used to monitor stability

• NASA-Langley has developed a prototype end-to-end system linking the calibration of relevant channels on a host of satellites

- MODIS serves as reference
- Multiple approaches ensure redundancy & error checking
- Radiative transfer methods used to adjust normalized results
- Automated data ingestion and web based analysis L. Nguyen

Visible Calibration Summary

	ADVANTAGES	DISADVANTAGES
REFERENCESATELLITE	Resolve entire dynamic range	Continuoussatellites measurements
CROSS-CALIBRATION		needed
Hyperspectral visible	The ideal calibration transfer which takes	Multi-spectral footprints are are large.
CLARREO	into acc ount the spectral response	SCHIAMACHY is 30x60km and CLARREO
SCHIAMACHY	function	is~100x100km
SNO method	No ADMs needed	Critical pixel to pixel matching. Pixels must
	Many LEO/LEO matches	be same size. Few LEO/GEO matches
Ray-matching	Uses gridded pixel matching, more	Noise from time, angular and spectral
	matches than SNO	mismatches
STABLE REFLECTIVE	No satellite instruments needed	Cannot resolve entire visible dynamic
TARGETS		range
Deep convective clouds	Abundent tropical targets. Identified by IR	Longterm stratospheric and microphysics
	threshold No apriori information	unknown
Stable desert sites	Deserts are near the GEO subsat point.	Limited geographically Unknown longterm
	Large stable desert areas can monitored	albedo stability. Needs apriori surface
	daily	BDRF and atmospheric profiles. Needs
		accurate clear-sky detection
Bright playas	Designed for absolute calibration by	Limited sites. V erys mall footprint, requiring
	resolving the calibration spectrally.	accurate navigation to locate pixcls over
	Surface albedo, BDRF and atmospheric	the site. Sites need to be actively
	profile are measured for every match	maintained. Limited sampling
Lunar calibration	The Moon's reflectance is very stable	Reflectance is only 15% of brightest earth
	both spectrally and temporally	targets. Observed once a month

Comparison of Terra/Aqua MODIS 3.7µm channel

- Will be corrected in Collection 6
- Not enough resolution in the Terra DC at low temperatures

Comparison of AIRS and Aqua-MODIS 11µm temperature, 1 orbit, June 20, 2006

Terra-MODIS RSB Response Trending

• ~45% decrease in band 8 (0.4µm) response

shorter wavelengths degrade faster over time

Theoretical Spectral Correction

- Spectral filter functions vary from imager to imager
 - Atmospheric scatter and absorption vary with wavelength
 - Surface and cloud reflectance vary with wavelength
 - Need to correct intercalibrated radiances
- Approach
 - Use radiative transfer models to compute $L_{sat}[L_{ref}(K)]$, K = sfc typeCompute L_x for range of atmospheres, clouds, & aerosols for all imagers x $L_{sat}(K) = f(L_{ref}(K))$ (1)
 - Use SBDART, 3 SZAs, albedo not L, 3 sfc types: ocean,

vegetation, sand

- Given normalized value of L'_{sat} from intercalibration, compute final value as $L_{sat}(K) = f(L'_{sat}(K))$

Visible Channel Spectral Response Functions

Similar variations seen in other channels!

Examples of Spectral Corrections, MODIS to GOES

0.65 µm

Ocean and sand are very similar, vegetation brighter for GOES

Spectral Corrections to *Terra* MODIS, Ocean only

Satellite	a	b
GOES	0.9584	0.0056
Meteosat-7	$A(\mu_o)$	$B(\mu_o)$
Meteosat-8	0.9741	0.0036
MTSAT-1R	$C(\mu_o)$	$D(\mu_o)$
VIRS	0.9540	0.0109
N14	0.9484	0.0030

• Broadbands have SZA dependence

SEVIRI closest to MODIS

