

VNIR channels Calibration for Fengyun Series by using of the Earth-based Reference Site field campaign

LI Yuan, RONG Zhi-guo, ZHENG Zhao-jun, LIU Jing-jing, ZHANG Lijun, ZHANG Li-yang, HU Xiu-qing, ZHANG Yong, ZHANG Peng *National Satellite Meteorological Center,* CMA

Earth-based reference sites and field experiments

Four Earth-based reference sites in China

Site	Characteristic	Location	Purpose			
Dunhuang	Gebi Desert, homogenous surface, dry atmosphere, and high visibility	40° 10′ N, 94° 20′ E Elevation: 1176 m	On-orbit calibration for VNIR band			
Qinghai	Lake, Good Lambertian feature, dry atmosphere, and high visibility	36° 45′ N, 100° 20′ E Elevation: 3196 m	On-orbit calibration for TIR band			
Beijing	Laboratory on the top of NSMC build	116.46° N, 39.92° E Elevation: 48 m	 Validation for the calculation from radiation transfer code with very high spectral resolution Benchmark measurements 			
Lijiang	Local meteorological observation station, dry atmosphere, high visibility	100.25° N, 26.86° E Elevation: 2300 m	Pre-launch calibration for VNIR band of engineering and flight model			

Latest Activities in 2008

- The latest China remote satellite radiometric calibration experiment was held in September, 2008 at Dun-huang site, Gan-su province, China.
- In the experiment, the Visible and Nearinfrared Channels of FY-3A/VIRR were calibrated.

CALIBRATION FLOW

Site & synchronization points

- Dunhuang site is 30 km away from residential area. The distance is far enough to avoid air pollution but convenient for traffic.
- 11 synchronization points were selected in Dunhuang site, covered 10*10km2 area.

Reflectance Measuring

- The vertical reflectance of 11 synchronization points was measured by ASD FR spectral meter.
- the directional
 reflectance at the
 moment the platform
 passing by was
 calculated by AMBRALS
 and corrected by the
 measured one.
- NSMC bought a new device to measure directional reflectance.

BRF

Aerosol optical depth (AOD)

- Aerosol optical depth (AOD) was measured by sun photometer CE318 placed in the Dunhuang national climatic station and the site.
- Normal meteorological observation was also taken in the site

The total water content (TWC)

The total water content (TWC) was calculated by the sounding data measured by Dunhuang national climatic station synchronously.

Correcting the Reflectance

- The directional reflectance from the payload view was calculated by AMBRALS and corrected by vertical reflectance measured in Dunhuang.
- The correction coefficients were gotten by vertical reflectance measured by ASD and calculated by AMBRALS.

 $\rho_{AMBRALS}(\theta_{s}, \theta_{v}, \varphi_{s} - \varphi_{v}) = f_{iso} + f_{vol}RossThick + f_{geo}LiSparse$

$$\rho_{DIRECTIONAL}(\theta_s, \theta_v, \phi_s - \phi_v) = \left[\frac{1}{n} \sum_{i=1}^n A_i(\theta_s)\right] \rho_{AMBRALS}(\theta_s, \theta_v, \phi_s - \phi_v) \quad n = 11$$

$$A_{i}(\theta_{s}) = \frac{\rho_{\text{ASD}}(\theta_{s}, 0, 0)}{\rho_{\text{AMBRALS}}(\theta_{s}, 0, 0)} \quad i = 1, 2 \cdots 11$$

Average correction coefficient

In some bands of VIRR, the correction coefficient was around 92%, that showed the difference between measured one and calculated one reached about 8%.

Calibration Results

The relative standard deviation (RSD) of 3 day's calibration slope was below 3% except for the water absorption band.

Slope	2008/09/06	2008/09/10	2008/09/11	Average	RSD
Band1	0.1236	0.1217	0.1254	0.1236	1.50%
Band2	0.1276	0.1253	0.1304	0.1278	2.00%
Band6	0.0965	0.0972	0.1012	0.0983	2.58%
Band7	0.0615	0.0621	0.0622	0.0619	0.61%
Band8	0.0582	0.0577	0.0586	0.0582	0.78%
Band9	0.0561	0.0553	0.0567	0.0560	1.25%
Band10	0.0636	0.0619	0.0683	0.0646	5.13%

Calibration for other payload

FY-1C, FY-1D, FY-2B, FY-3A/MERSI, FY-2C, FY-2D, CBERS-1, CBERS-02, CBERS-02B, HY-1, HY-1B

SPOT-4, NOAA17/18/METOP_AVHRR, TERRA_MODIS

Some calibration results showed below

TERRA_MODIS

		SLOPE	RELATIVE ERROR WITH THE MODIS 1B			
MODIS	Sept. 4, 2008	Sept. 6, 2008	Sept. 11, 2008	Sept. 4, 2008	Sept. 6, 2008	Sept. 11, 2008
BAND1	5.2170E-05	5.2494E-05	5.2687E-05	-0.06%	0.65%	1.28%
BAND2	3.1332E-05	3.1493E-05	3.1622E-05	-1.84%	-1.23%	-0.55%
BAND3	4.1784E-05	4.1991E-05	4.1453E-05	0.81%	1.36%	0.21%
BAND4	3.5386E-05	3.5557E-05	3.5542E-05	-1.10%	-0.53%	-0.36%
BAND5	3.5058E-05	3.4982E-05	3.8998E-05	-8.07%	-8.18%	2.94%
BAND6	3.3719E-05	3.3375E-05	3.4671E-05	-2.29%	-3.21%	0.85%
BAND7	2.9053E-05	2.8603E-05	2.8015E-05	3.59%	2.13%	0.30%

The red font color showed large difference, that's because of the detector trouble of band 5.

NOAA17_AVHRR

SLOPE	2008	0902	2008	80906	20080910		m	nean		std	0909 RELEASE		RELATI VE ERROR		
band1	0.05	578	0.0	0.0598		0.0577)584	84 2.0125%		0.0561		4.0183%		
band2	0.07	733	0.0	738	0.	0713	0713 0.0728		1.8	3450% (0.0675		7.5627%	
I NTER	I NTERCEPT 20080902		20080)906 2008091		910	me	an sto		1	0909 RELEASE		RELATI VE ERROR		
ban	d1	-2.3	712	-2.45	512	-2.364	47	-2.40	080	2.541	8%	-2.246	50	6.9603%	
ban	d2	-2.9	316	-2.95	520	-2.85	05	-2.90	012	2.474	2%	-2.649	90	9.0882%	

Conclusion

• Since there are no calibration system onboard for current VNIR channels in FY series, the earth-base reference site calibration are taken as the operational way to calibrate VNIR channels for FY series (both polar and Geo).

• Earth-base reference site calibration (for example, Dunhuang Gobi desert) can provide consistent and stable information for satellite calibration

The End!