Exploring algorithms for Meteosat-HIRS Inter-Calibration

Tim Hewison
In association with:
Marianne König, Leo van de Berg, Bertrand Theodore, Lars Fiedler, Johannes Müller, Thomas Heinemann
Contents

• HIRS v IASI as Inter-Calibration Reference

• Collocation criteria

• Spectral Convolution
 – Empirical Stepwise multiple regression
 – Manual Channel selection
 – Training dataset
 – Regression method
 – Model Errors

• Spatial Convolution

• Regression

• (Results)

• Conclusions
Contents

• HIRS v IASI as Inter-Calibration Reference

• Collocation criteria

• Spectral Convolution
 – Empirical Stepwise multiple regression
 – Manual Channel selection
 – Training dataset
 – Regression method
 – Model Errors

• Spatial Convolution

• Regression

• (Results)

• Conclusions
Use of HIRS v IASI as a Reference

Meteosat Geostationary Imager
+ High-resolution InfraRed Sounder, HRIS, on Metop polar-orbiting satellite

Benefits of HIRS as reference:
• Established instrument
 – Operated by NOAA since 1970s
 – Used in climate records
 – Potential reference for archive data
• Includes on-board calibration
• On same platform as IASI
 – Well characterised against IASI
 – Can close inter-calibration triangle

Can cross-check with AIRS and other HIRSSs:
• Simultaneous Nadir Overpasses: SNOs
• Inter-calibrating Meteosat-AIRS
High-resolution Infrared Radiation Sounder on Metop/A in Sun-synchronous polar-orbit

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Infrared Channels</td>
<td>3.8 – 15 μm</td>
</tr>
<tr>
<td>IFOV size at Nadir</td>
<td>10km</td>
</tr>
<tr>
<td></td>
<td>(20km on HIRS/3)</td>
</tr>
<tr>
<td>Sampling at Nadir</td>
<td>26 km</td>
</tr>
<tr>
<td>Scan Rate</td>
<td>6.4 sec</td>
</tr>
<tr>
<td>Swath</td>
<td>±49.5°/56 pixels</td>
</tr>
<tr>
<td></td>
<td>(± 1092 km)</td>
</tr>
<tr>
<td>Blackbody cal.</td>
<td>Every 256 sec</td>
</tr>
</tbody>
</table>
Introduction to Metop/IASI

Infrared Atmospheric Sounding Interferometer on Metop/A in Sun-synchronous polar-orbit

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Range</td>
<td>645-2760 cm⁻¹ (3-15 μm)</td>
</tr>
<tr>
<td>Spectral Sampling</td>
<td>0.25 cm⁻¹</td>
</tr>
<tr>
<td>IFOV size at Nadir</td>
<td>12 km</td>
</tr>
<tr>
<td>Sampling at Nadir</td>
<td>18 km</td>
</tr>
<tr>
<td>Scan Rate</td>
<td>8 sec</td>
</tr>
<tr>
<td>Swath</td>
<td>± 48.98° (± 1066 km)</td>
</tr>
</tbody>
</table>
• HIRS v IASI as Inter-Calibration Reference

• **Collocation criteria**

• **Spectral Convolution**
 – Empirical Stepwise multiple regression
 – Manual Channel selection
 – Training dataset
 – Regression method
 – Model Errors

• **Spatial Convolution**

• **Regression**

• **(Results)**

• **Conclusions**
1. Collocation
 - Finding observations coincident in space and time

2. Transformation
 - To allow direct comparison
 - Spatial averaging
 - Spectral averaging

3. Filtering
 - Selecting scenes of interest
 - Reducing noise & rejecting outliers

4. Analysis
 - Comparing observations
 - Calculating biases and errors

5. Developing corrections
1. Collocation
 • Finding observations coincident in space and time

2. Transformation
 • To allow direct comparison
 • Spatial averaging
 • Spectral averaging

3. Filtering
 • Selecting scenes of interest
 • Reducing noise & rejecting outliers

4. Analysis
 • Comparing observations
 • Calculating biases and errors

5. Developing corrections
Collocation Criteria

Simultaneous near-Nadir Overpasses of Meteosat and Metop

- Only night-time data
- $\Delta \text{Lat} < 35^\circ$, $\Delta \text{Lon} < 35^\circ$ of SSP
- $\Delta t < 15$ mins (scan period)
- $\Delta \theta < 1\%$ (Atmospheric path diff.)
- 3×3 MSG pixels / HIRS/4 iFoV

Restricts collocations to Tropics
- ~ 1 orbit/day
- ~ 200 good collocations?
Contents

- HIRS v IASI as Inter-Calibration Reference
- Collocation criteria
- **Spectral Convolution**
 - Empirical Stepwise multiple regression
 - Manual Channel selection
 - Training dataset
 - Regression method
 - Model Errors
- Spatial Convolution
- Regression
- (Results)
- Conclusions
1. Collocation
 • Finding observations coincident in space and time

2. Transformation
 • To allow direct comparison
 • Spatial averaging
 • Spectral averaging

3. Filtering
 • Selecting scenes of interest
 • Reducing noise & rejecting outliers

4. Analysis
 • Comparing observations
 • Calculating biases and errors

5. Developing corrections
IASI Tb Spectrum + HIRS SRFs + MSG SRFs + MTP SRFs

IASI Tb Spectrum – Covers all HIRS IR channels

HIRS SRFs

MTP SRFs – WV Channel ~ HIRS Ch12, IR Channel ~ HIRS Ch8

MSG SRFs – 7.3 & 8.7μm Channels not covered by HIRS

- Single Ch for 10.8/12.0 μm
- 3.9μm Ch covered by HIRS Ch17+18+19
Accounting for SRF Differences

- Meteosat and HIRS have different SRFs
 - Would introduce errors into direct comparisons of radiance
- Need to ‘correct’ HIRS radiances
 - to account for spectral differences
- And/or combine HIRS channels
 - with different weights
- Use Radiative Transfer Model (RTM)
 - to generate synthetic radiances
 - for Meteosat & HIRS
- Calculate coefficients by regression
 - and uncertainty introduced
 - compare this uncertainty with variability
Stepwise Regression to Select Channels

- Attempted Stepwise Regression
 - to select channels match-ups
 - and estimate relative weights of each HIRS channel to simulate each Meteosat channel
 - Completely empirically
 - Results are obviously nonsense!
 - e.g. MSG 3.9μm channel fitted HIRS Ch18,13,5 & 11 (not 17&19)
 - Some HIRS channels can be given negative weights

- However, stepwise regression may be a useful tool to analyse results
 - e.g. dependence of bias on scan angle, latitude, time of day, phase of moon, etc.
Selecting Channels for Comparison ‘Manually’

<table>
<thead>
<tr>
<th>MTP MVIRI</th>
<th>×</th>
<th>WV</th>
<th>×</th>
<th>×</th>
<th>×</th>
<th>IR</th>
<th>×</th>
<th>×</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRS</td>
<td>×</td>
<td>Ch12</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>Ch8</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>MSG SEVIRI</td>
<td>3.9µm</td>
<td>6.2µm</td>
<td>7.3µm</td>
<td>8.7µm</td>
<td>9.7µm</td>
<td>10.8µm</td>
<td>12.0µm</td>
<td>13.4µm</td>
</tr>
<tr>
<td>HIRS</td>
<td>Ch17 Ch18 Ch19</td>
<td>Ch12</td>
<td>Ch11</td>
<td>N/A</td>
<td>Ch9</td>
<td>Ch8</td>
<td>Ch8</td>
<td>Ch7</td>
</tr>
</tbody>
</table>
- RTTOV-9 Radiative Transfer Model

- Diverse 52 profiles at 60 levels
 - From ECMWF (Chevallier’01)
 - Temperature, Water Vapour and Ozone
 - Covers global range
 - Represents natural variability

- Duplicate profile set:
 - 1 set for clear sky
 - 1 set with mid-level cloud (700hPa)
 - 1 set with high cloud (100hpa)

- Run RTM twice at incidence angles:
 - Zenith
 - 60°
Quadratic Regression
Quadratic Regression - residuals
Regression Results

- Quadratic Regression gives better fit for IR10.8 and IR12.0
- IR6.2 show large scatter in clear sky (also IR3.9 in cloud)
 - IR6.2: Systematic difference between nadir and 60° views (WFs)
- IR8.7 doesn’t match any HIRS channel – nonsense results
- Largest scatter in clear sky cases (most spectral information)
- Could improve fit by excluding arctic data
- Should validate using independent test dataset
- Should calc uncertainty at L_{ref} using coefficients full covariance
- Noise < Model Error < ~ Variability on single collocation
 - But, correlation in model errors between collocated pixels…
Compare Model Error with Variability

- Variability for 8 IR channels of MSG
 - \(\text{RMSD}_t(\Delta t=15\text{min}) \)
 - \(\text{RMSD}_x(\Delta x=10\text{km}) \)
 - \(\approx \text{RMSD}_y(\Delta y=10\text{km}) \)
 Reduced by \(\sqrt{n_{col}} \) e.g. \(n_{col}=100 \)

- Model error >> Variability for
 - IR6.2 (different weighting functions)
 - IR8.7 (no HIRS equivalent)

- Model error \(\sim \) Variability
 - for other SEVIRI channels
 - Expect increased noise on inter-calibration results by \(\sim \sqrt{2} \)

<table>
<thead>
<tr>
<th>SEVIRI Channel [(\mu m])</th>
<th>Temporal Variability (\text{RMSD}_t(\Delta t=15\text{min})/\sqrt{100}) [K]</th>
<th>Spatial Variability (\text{RMSD}_x(\Delta x=10\text{km})/\sqrt{100}) [K]</th>
<th>MSG-HIRS Modelling Error [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>0.30</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>6.2</td>
<td>0.08</td>
<td>0.12</td>
<td>1.07</td>
</tr>
<tr>
<td>7.3</td>
<td>0.17</td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>8.7</td>
<td>0.32</td>
<td>0.40</td>
<td>3.11</td>
</tr>
<tr>
<td>9.7</td>
<td>0.19</td>
<td>0.30</td>
<td>0.14</td>
</tr>
<tr>
<td>10.8</td>
<td>0.35</td>
<td>0.40</td>
<td>0.18</td>
</tr>
<tr>
<td>12.0</td>
<td>0.36</td>
<td>0.40</td>
<td>0.42</td>
</tr>
<tr>
<td>13.4</td>
<td>0.25</td>
<td>0.30</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Temporal and Spatial Variability of Meteosat brightness temperatures on scales of 15 min and 10 km, respectively, compared with MSG-HIRS modelling error.
Contents

- HIRS v IASI as Inter-Calibration Reference
- Collocation criteria
- Spectral Convolution
 - Empirical Stepwise multiple regression
 - Manual Channel selection
 - Training dataset
 - Regression method
 - Model Errors
- Spatial Convolution
- Regression
- (Results)
- Conclusions
Spatial Averaging

Average Meteosat pixels within each HIRS iFoV

Estimate uncertainty due to spatial variability as Standard Deviation of Meteosat pixels

Use in weighted regression
1. Collocation
 • Finding observations coincident in space and time

2. Transformation
 • To allow direct comparison
 • Spatial averaging
 • Spectral averaging

3. Filtering
 • Selecting scenes of interest
 • Reducing noise & rejecting outliers

4. Analysis
 • Comparing observations
 • Calculating biases and errors

5. Developing corrections
Contents

• HIRS v IASI as Inter-Calibration Reference

• Collocation criteria

• Spectral Convolution
 – Empirical Stepwise multiple regression
 – Manual Channel selection
 – Training dataset
 – Regression method
 – Model Errors

• Spatial Convolution

• Regression

• (Results)

• Conclusions
Offset ≠ 0 Slope ≠ 1 => Difference is scene-dependent

Reference Scene, L_{REF}

Weighted Regression
Error bars = Variance

Reference Scene defined as modal value (typical clear sky radiance)
Meteosat-7 – HIRS Inter-Comparisons (not GSICS!)

- Comparisons of Met-7 – HIRS
 - Processed operationally at EUMETSAT
 - Used to check Met-7 calibration
- Needs to account for different SRFs
 - Increases uncertainty
- Noisy, but stable
- WV: +2.8 ± 1.0 K
- IR: -2.5 ± 0.6 K
- Biases similar to Met-7 – IASI
- Variances much larger
Time series of brightness temperature differences between Met7-IASI for typical clear-sky radiances: Each Met7 infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).
Contents

• HIRS v IASI as Inter-Calibration Reference

• Collocation criteria

• Spectral Convolution
 – Empirical Stepwise multiple regression
 – Manual Channel selection
 – Training dataset
 – Regression method
 – Model Errors

• Spatial Convolution

• Regression

• (Results)

• Conclusions
Conclusions

- Can use HIRS as inter-calibration reference for Meteosat
 - (instead of IASI)

- Need to account for spectral differences
 - Transform HIRS observations to Meteosat-space
 - Using coefficients derived from regression of modelled radiances
 - Based on RTTOV + data set of diverse profiles + cloud
 - Not possible for IR8.7
 - Noisy for IR6.2
 - Introduces error in inter-calibration ~ Variability (for ~100 collocations)
 - “Closing the triangle”: <MSG-IASI> ≠ <MSG-HIRS> - <HIRS-IASI>

- EUMETSAT plan to implement prototype in 2009
Thank you

Questions and Answers