Development of Solar Channel Calibration for COMS and Application to MTSAT-1R

Byung-Ju 'B.J.' Sohn School of Earth and Environmental Sciences Seoul University, Korea sohn@snu.ac.kr

Desert targets selection

Selected targets

@ Target B

Error = (Cal. – Obj.)/Obj.X100

Results @ other targets

@ 555 nm
@ 670 nm
@ 765 nm

Spectral difference : MODIS vs. MTSAT 1R

Spectral conversion

Application to MTSAT 1R

MODIS BRDF Products

- MODIS BRDF parameters (MOD43C1) converted spectral BRDF parameters
- Temporal resolution : every 8 days
- Spatial resolution :0.05° X 0.05°

MTSAT 1R HRIT

- Full disk observation
- Geometric and radiometric calibration done
- 10 bit, (Digital count from 1 to 1024)
- Spatial resolution 1 X 1 km²

MTSAT 1R Radiance vs. Digital count

Simulate radiance vs. Digital count

JMA provided Calibration coefficients

Selection of DCCs

Considering seven temperature profiles, cold CTT less than 190K can be explained only by DCCs involving strong upward motion lacking of exchange with environmental air.

COT, Re Characteristics of DCCs (TB \leq 190K) from MODIS

Sensitivity of 0.646 µm reflectance to COT

Sensitivity of 0.646 µm reflectances to COT (SZA=30°)

→Cloud bidirectional reflectance distribution function (BRDF) varies up to 5% when COT increases from 100 to 200 while BRDF changes up to 2.5% when COT increases from 200 to 400. → If we assume the COT to be 200 while real COTs range from 100 to 400, then BRDF error caused by uncertain COT values would be less than 5%.

Sensitivity of 0.646 μ m reflectance to r_e (SZA=30°, COT=200)

Error range < $\pm 2\%$

DCC-based vicarious calibration for visible channels

Simulated MODIS reflectances (r_e =20 µm, COT=200)

Terra

Aqua

Time series of simulated vs. observed MODIS radiance (Terra)

Time series of simulated vs. observed MODIS radiance (Aqua)

ERROR (%) = (cal. – obs.)/obs. X 100 (%)