
MTSAT-1R Intercalibration Monitor and Approach to Intercalibration using High Spectrum Resolution Sounder

22-23 January 2007

Yoshihiko Tahara

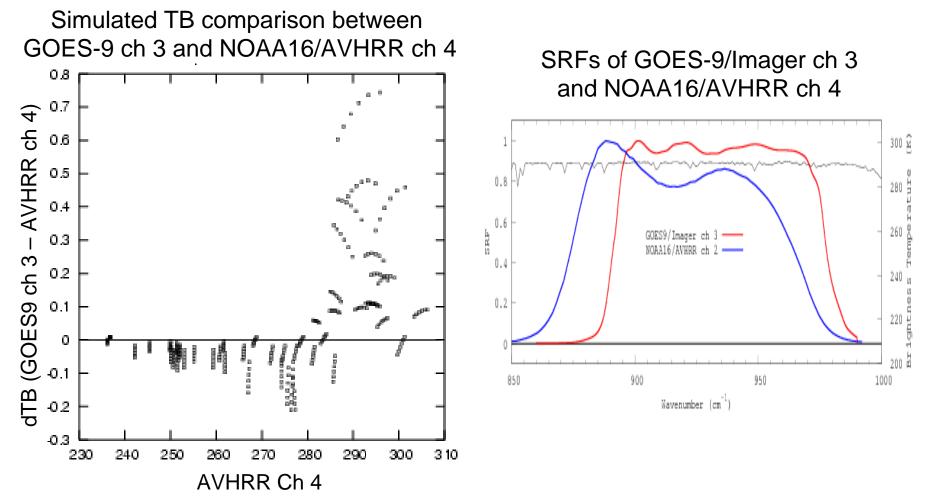
Meteorological Satellite Center Japan Meteorological Agency

MTSAT-1R Intercalibration Monitor

GSICS Research Working Group Meeting I on 22-23 Jan 2007

MTSAT-1R Intercalibration (infrared)

- Comparison with <u>AVHRR on NOAA16, 17 and 18</u> (GAC)
- Disclosed on the Internet
 - Categories
 - Clear sky comparison for warmer TB range
 - <u>Smooth cloud top</u> comparison for colder TB range
 - Images for each comparison for the latest two months
 - Statistics for last month
 - Each NOAA orbit (ascending and descending)
 - Scatter plots, mean differences, standard deviations
- Monitored on the Intranet
 - Images for each comparison since the MTSAT-1R operation
 - Statistics in addition to the disclosed Web page
 - Each and monthly statistics since the MTSAT-1R operation
 - Temporal variation charts (mean differences and STDV)


Match Up Conditions

Comparison	Clear sky and ocean	Smooth cloud top		
Domain	30 N to 30 S	30 N to 30 S		
	Ocean	30 14 10 30 3		
Position	Difference of observing positions between MTSAT-1R and NOAA < 3 km	Same as left		
Time	Difference of observing times < <mark>30 minutes</mark>	Difference of observing times < <mark>5 minutes</mark>		
Satellite zenith angle (SZA)	Difference of secant SZAs < 0.03	Same as left		
Uniformity check	Tb(target) – Tb(5x5 surrounding pixels)	Tb(target) – Tb(5x5 surrounding pixels)		
	< 0.2 K	< <mark>3 K</mark>		
	for MTSAT-1R IR1 and AVHRR Ch. 4	for MTSAT-1R IR1 and AVHRR Ch. 4		
Tb range	none	Tb < 260 K		
	(Tb > 260 K due to the uniformity chk)	for MTSAT-1R IR1 and AVHRR Ch. 4		

What's Available from MTSAT-1R Intercal.


- Method
 - Information classified into warm and cold TB regions
 - No TB simulation using RT and NWP to mitigate SRF differences
- Temporal scale
 - Diurnal cycle (3 NOAA satellites), seasonal cycle and annual trend
- Only near nadir region compared
 - No scan, look or solar angle dependency (only night for 3.8 um channel)
 - No mirror angles or other sensor/satellite parameter dependency
- Statistics
 - Mean differences (and standard deviations)
 - No regression fitting
- Images
 - Map images for each comparison
 - No averaged comparison map
- Offline information
 - Charts of SRFs
 - No comparison of simulated TBs regarding sample atmospheric profiles

Why High Spectral Resolution Sounder (HSRS) Needed for Intercalibration?

- TBs are computed by using simulated transmittances regarding the 48 UBMC atmospheric profile set with 6 incidence angles.
- The transmittances are computed by Paul van Delst by using LBLRTM with the HITRAN2000 spectroscopy database including AER updates.

SRFs of MTSAT-1R IR2 and AIRS

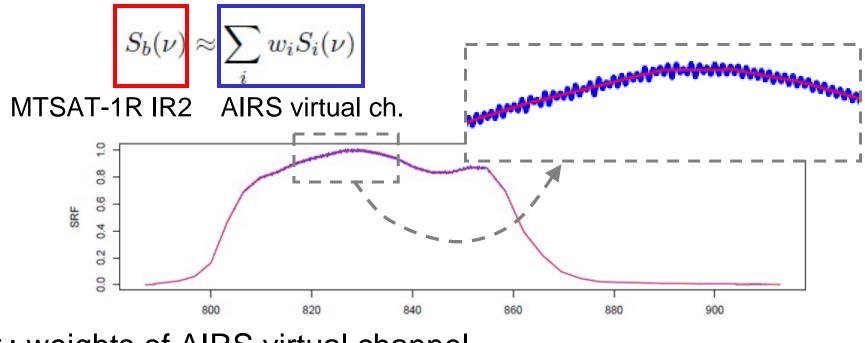
GSICS Research Working Group Meeting I on 22-23 Jan 2007

7/16

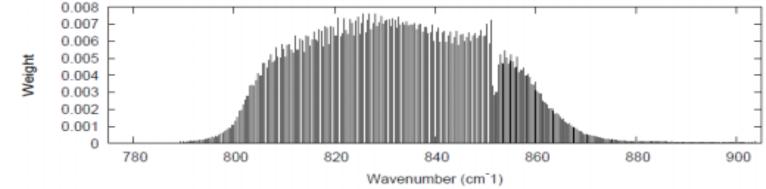
Generation of Virtual Channel from HSRS

Radiance observed by a broadband channel is $I_b = \int \underline{S_b(\nu)I(\nu)}d\nu, \quad \text{where} \quad \int S_b(\nu)d\nu = 1.$

Radiance of a virtual channel (linear combination of HSRS radiances) is


$$I_b \approx \sum_i w_i I_i = \int \left\{ \sum_i w_i S_i(\nu) \right\} \underline{I(\nu)} d\nu. \qquad I_i = \int S_i(\nu) I(\nu) d\nu \\ \int S_i(\nu) d\nu = 1$$

They should be approximately equal for any *I(v), then*


To obtain
$$w_i$$
, solve
 $\operatorname{argmin} J(w_1, w_2, \cdots) = \int \left\{ \underbrace{S_b(\nu)}_{i} - \underbrace{\sum_i w_i S_i(\nu)}_{i} \right\}^2 d\nu.$
where
 $\frac{\partial J}{\partial w_k} = \int 2S_k \left\{ \underbrace{S_b(\nu)}_{i=1} - \sum_{i=1}^n w_i S_i(\nu) \right\} d\nu.$

AIRS Virtual Channel for MTSAT-1R IR2

Spectral Response Functions

GSICS Research Working Group Meeting I on 22-23 Jan 2007

Radiance and TB of Virtual Channel

Radiance of the virtual channel is obtained by combining HSRS radiances

$$I_{v} = \frac{\sum_{i} w_{i}I_{i}}{\sum_{i} w_{i}} \qquad \left(\text{ or } I_{v} = \sum_{i} w_{i}I_{i} \quad \text{ if } \sum_{i} w_{i} = 1 \right)$$

Inverse sensor Planck function is used to compute brightness temperature of the virtual channel

$$I_v = \frac{\int \sum_{i=1}^n w_i S_i(\nu) B(\nu, T_v) d\nu}{\int \sum_{i=1}^n w_i S_i(\nu) d\nu} = \frac{2hc^2(\bar{\nu}_v)^3}{\exp\left(\frac{hc\bar{\nu}_v}{KT_e}\right) - 1}$$

where $T_e \approx c_1 + c_2 T_v (+c_3 T_v^2 + \cdots)$

Comparison of Simulated Radiance and TB

Comparisons of simulated radiances and TBs show that the virtual channel eliminate the SRF differences

	Radiance (mW/m²/sr/cm ⁻¹)	TB (K)
MTSAT-1R Channel IR2	110.91	289.23
Corresponding AIRS virtual channel	110.92	289.23


Simulated radiances and TBs

Simulated by LBLRTM (ver. 9.4) with HITRAN2000 and AER updates regarding the U.S. standard atmosphere

Unusable HSRS channels

Unusable channels known in advance

 \rightarrow Weights and sensor Planck function without blacklist channels

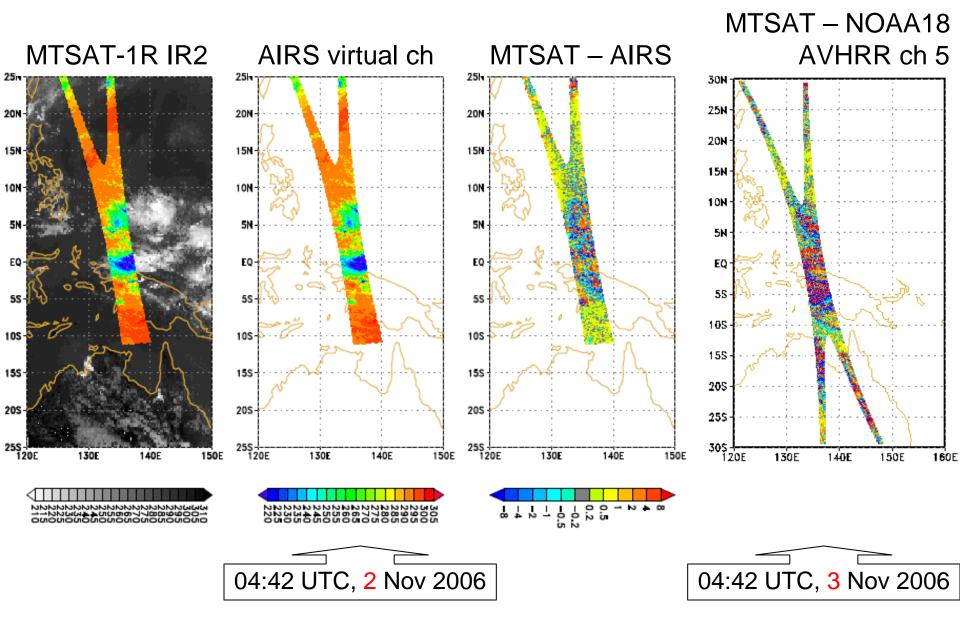
Unusable channels obtained in practical (missing observations) → Weights and sensor Planck function without modification

$$I_v'' = \frac{\sum_{\substack{i \notin \text{missing} \\ i \notin \text{blacklist}}} w_i' I_i}{\sum_{\substack{i \notin \text{missing} \\ i \notin \text{blacklist}}} w_i'} \qquad \qquad T_v'' = B_v'^{-1}(I_v'')$$

 \rightarrow Brightness temperature deviation due to the missing observations

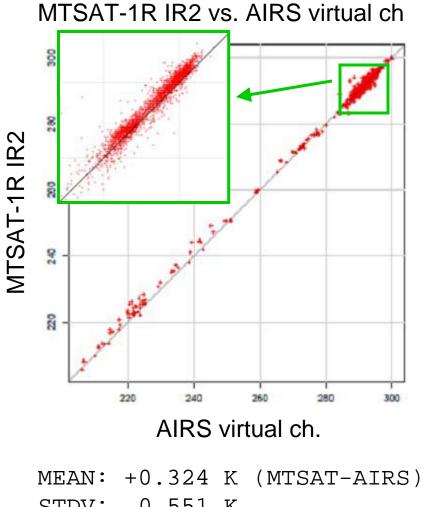
$$T_v'' - T_v' = B_v'^{-1} \left(\sum_{\substack{i \notin \text{missing} \\ i \notin \text{blacklist}}} w_i' I_i \middle/ \sum_{\substack{i \notin \text{missing} \\ i \notin \text{blacklist}}} w_i' \right) - T_i'$$

Degradation by HSRS Missing Observation

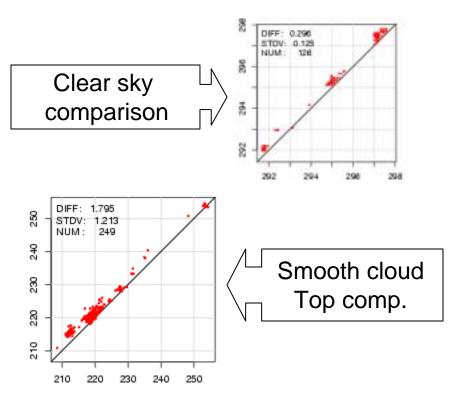

Deviation caused by HSRS missing observations can be estimated in advance by assuming blackbody observation

Brightness temperature deviation of AIRS super channel (a) for MTSAT-1R IR2 in case of missing one AIRS channel 3lackbody Temperature (K) 300 MAX DEV: 0.016 0.015 MIN DEV: -0.017 0.010 260 0.005 0.000 Central wavenumber -0.005220 of MTSAT-1R IR2 -0.010-0.015180 800 820 880 840 860 900

Wavenumber of AIRS missing channel


- One missing channel yields at most 0.017 K TB deviation of AIRS virtual channel for MTSAT-1R IR2
- A few missing observations in AIRS channels are acceptable to generate the virtual channel

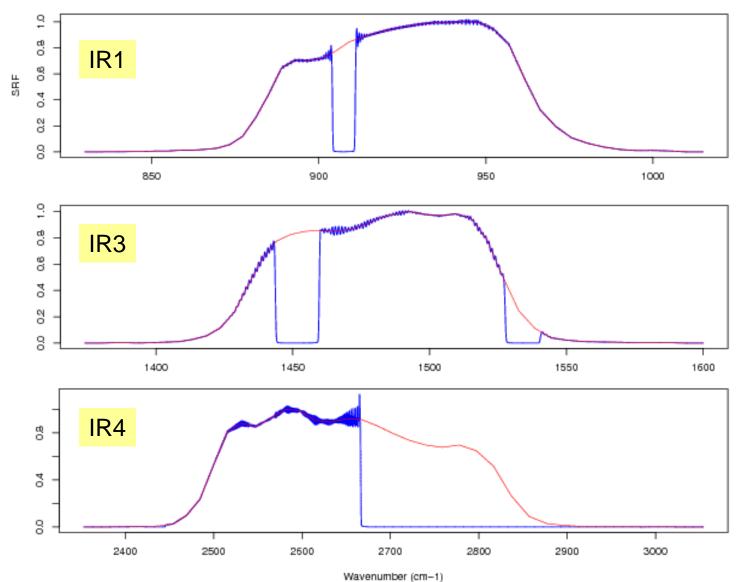
Real Data Comparison (map)



GSICS Research Working Group Meeting I on 22-23 Jan 2007

Real Data Comparison (statistics)

MTSAT-1R vs. NOAA-18/AVHRR ch 5



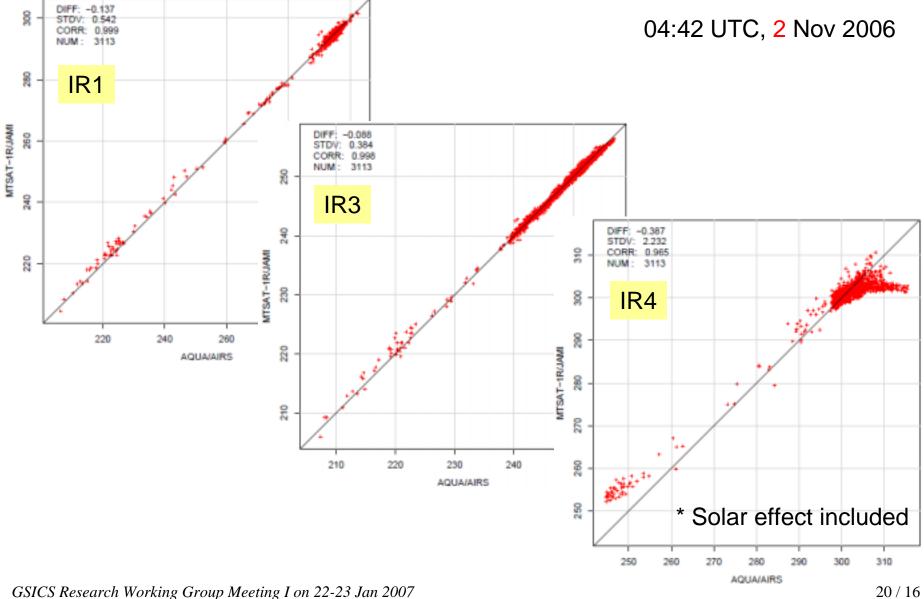
MEAN: +0.324 K (MTSAT STDV: 0.551 K CORR: 0.998 NUM: 3113

Elements of Intercalibration with HSRS

- Generation of virtual channel
 - SRFs of broadband and HSRS channels
 - Prior accuracy information regarding HSRS channels
 - Software to generate a virtual channel and its sensor Planck function
 - (optional) Evaluation of simulated radiances and TBs
 - (optional) Estimation of the impact of HSRS missing channels (Sensor Planck functions of the HSRS channels required)
- Conduction of inter-comparison
 - Usual inter-comparison tools
 - Data collection, condition check, statistics computation, drawing, Web pages, analyses and reports
 - Quality control system of HSRS data (NWP comparison?)
 - Software to compute TBs of the virtual channel
 - Or the TBs computed at a particular HSRS data center and delivered to save network traffic

SRFs of MTSAT-1R IR1, 3, 4 and AIRS virtual channels

GSICS Research Working Group Meeting I on 22-23 Jan 2007


18 / 16

<u>Comparisons of simulated</u> <u>radiances and TBs</u>

		IR1	IR2	IR3	IR4
	MTSAT-1R	290.48	289.23	238.26	290.99
TB (K)	AIRS virtual Ch.	290.53	289.23	237.95	290.92
	Difference	0.05	0.00	0.31	0.07
	MTSAT-1R	97.23	110.91	5.06	0.477
Radiance	AIRS virtual Ch.	97.04	110.92	4.93	0.599
$(\mathrm{mW/m^2/sr/cm^{-1}})$	Difference (%)	0.2	0.01	2.6	25.6

Simulated by LBLRTM (ver. 9.4) with HITRAN2000 and AER updates regarding the U.S. standard atmosphere

Comparisons of Real Observations

20/16