GEO/LEO Infrared Intercalibration

Mat Gunshor, Tim Schmit, Paul Menzel, and Dave Tobin University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS)

1st Meeting of GSICS Research Working Group (GRWG-I)

22-23 January 2007

NOAA Science Building

Camp Springs, MD

PURPOSE

➤ Intercalibrate the world's operational geostationary imagers with a single polar-orbiter.

> Assess radiometric accuracy.

Especially important during post-launch check-outs.

Or times of calibration flux:

New ground system, new processing software, etc.

MTSAT-1R (JAMI) IR4 (3.7 μ m) band compared to AIRS

Quantifying Improvements through Intercal

Comparisons can only show differences between instruments; they cannot truly measure calibration accuracy. Must account for spectral response function differences between broad-bands channels.

Highlighting the difficulties intercalibrating broadband instruments: **Correcting for Spectral Response Differences**

- Is it even reasonable to compare these water vapor bands?
- How do you characterize the state of the atmosphere?

Why AIRS?

>AIRS has been proven to be extremely well calibrated.

➢ Hyperspectral data can be manipulated spectrally to fit nearly any broadband instrument.

➤ AIRS can be used for both quick and long-term intercalibration.

Drawbacks to AIRS

➤ AIRS footprint size is rather large (~13km) compared to geostationary imagers with 3-5km footprints (is also a problem with HIRS).

> There are spectral gaps (some very large) in AIRS data

METHODS

- > Collocation in time and space.
 - Within 30 minutes at geostationary subpoint
 - Low Satellite View Angles (< 14)

METHODS

- > Collocation in time and space.
 - Within 30 minutes at geostationary subpoint
 - Low Satellite View Angles (< 14)
- Spatial smoothing
 - 100km "running average" mitigates the negative effects of poor spatial and temporal collocation, poor navigation, and spatial resolution differences.
 - Average radiances, not temperatures.
- > Convolve AIRS Radiance spectra with GEO SRF.
 - Compare mean scene brightness temperatures (converted from mean scene radiances).

	Convolve radiances and convert to an effective temperature using FK1, FK2, BC1, BC2			Conver monochro	Convert radiances to temperature using monochromatic conversion and then convolve temperatures			Effective Temperature – Convolved Temperature Difference			Average Difference		
μm	std	wet	dry	col	std	wet	dry	col	Std	wet	dry	col	for each band
3.9	288.28	301.31	306.12	274.65	288.23	301.17	306	274.65	0.05	0.14	0.12	0	0.1
6.8 (10)	238.34	249.89	248.59	244.09	236.18	246.6	245.85	241.57	2.16	3.29	2.74	2.52	2.7
6.8 (12)	242.23	253.9	252.32	246.83	238.46	249.29	248.31	243.45	3.77	4.61	4.01	3.38	3.9
11	288.75	299.15	305.76	275.55	288.72	299.12	305.72	275.54	0.03	0.03	0.04	0.01	0.0
12	287.46	296.68	303.52	275.01	287.41	296.62	303.4	275.01	0.05	0.06	0.12	0	0.1
13	270.58	279.24	282.14	261.2	269.33	277.91	280.46	260.04	1.25	1.33	1.68	1.16	1.4
Std = U.S. Standard Atmosphere Wet = Warm & Moist													
Dry = Hot & Dry						Со	= (Cold					

* Bands are from GOES-12 except for 6.8(10) and 12 which are from GOES-10

MTSAT 11µm 07 July 2005 at 15:33UTC

AIRS convolved with MTSAT 11µm 07 July 2005 at 15:36UTC

100km-smoothed MTSAT comparison area

100km-smoothed AIRS convolved with MTSAT comparison area

 $(\Delta Tbb = -0.4 \text{ K})$

1-23 June 2005

1-23 June 2005

6.8μm (7.3μm)Water Vapor Brightness Temperature Differences (GEO-AIRS with spectral gaps)

IR Window (11 μ m) comparisons with AIRS (1-23 June 2005).

Geo:	GOES-9	GOES-10	GOES-12	Met-8
Ν	13	5	14	15
ΔTbb (K)	0.8	-0.3	0.1	0.6
STD (k)	0.8	0.2	0.5	0.1

WV channel(~6.8µm) comparisons with AIRS (1-23 June 2005).

Geo:	GOES-9	GOES-10	GOES-12	Met-8 (7.4)
Ν	13	5	14	15
ΔTbb (K)	1.2	1.4	-6.4	-1.0
STD (k)	0.4	0.2	0.3	0.2

Meteosat-8 7.3µm Spectral Response (blue) with AIRS spectra (black). Gaps filled with adjusted US Standard Atmosphere spectra (green).

6.8μm (7.3μm)Water Vapor Brightness Temperature Differences (GEO-AIRS). Before and After filling gaps.

WV channel(~ 6.8μ m) comparisons with AIRS (1-23 June 2005).

Geo:	GOES-9	GOES-10	GOES-12	Met-8 (7.4)
Ν	13	5	14	15
ΔTbb (K)	1.2	1.4	-6.4	-1.0
STD (k)	0.4	0.2	0.3	0.2

WV channel($\sim 6.8 \mu m$) comparisons with spectral gaps filled.

Geo:	GOES-9	GOES-10	GOES-12	Met-8 (7.4)
Ν	13	5	8	15
ΔTbb (K)	0.8	0.3	0.1	-0.2
STD (k)	0.4	0.2	0.3	0.2

Shortwave channel(3.9µm) comparisons with AIRS (1-23 June 2005).

Geo:	GOES-9	GOES-10	GOES-12
Ν	13	5	14
Day	5	0	10
Night	8	5	4
∆Tbb (K)	0.3	0.3	-0.4
ΔTbb (K) Day	0.3	0.3 NA	-0.4 -0.6
∆Tbb (K) Day Night	0.3 0.4 0.2	0.3 NA 0.3	-0.4 -0.6 -0.04
ΔTbb (K) Day Night STD (k)	0.3 0.4 0.2 0.5	0.3 NA 0.3 0.1	-0.4 -0.6 -0.04 0.4
ΔTbb (K) Day Night STD (k) Day	0.3 0.4 0.2 0.5 0.3	0.3 NA 0.3 0.3 0.1 NA	-0.4 -0.6 -0.04 0.4 0.4

SUMMARY

➤ The infrared bands on most geostationary imagers are well calibrated to within specifications (1K) for most bands.

➤ A simple technique to fill AIRS spectral gaps with a modified US Standard Atmosphere spectra improves comparisons for several bands.

➤ AIRS can be used for both quick and long-term intercalibration.

Immediate Future of Intercalibration: High spectral sounders used to validate radiances from broadband imagers (with aircraft flights and ARM site measurements used to validate space-borne high spectral sounders).

Use IASI to assess spectral gap compensation methods.

