Calibration of Satellite Imager Channels Using Inter-Satellite Normalization and Deep Convective Cloud Targets

> Patrick Minnis, Louis Nguyen NASA Langley Research Center

> > David R. Doelling SSAI, Hampton, VA

1st Meeting GSICS Research Working Group Camp Springs, MD, 22-23 January 2007

Calibration Objectives

• Develop timely and accurate calibration equations for meteorological satellites to be able to use any platform to provide consistent retrievals of cloud, surface, and radiative properties

Need to be accurate for long-term monitoring

• Need to be timely for real-time applications

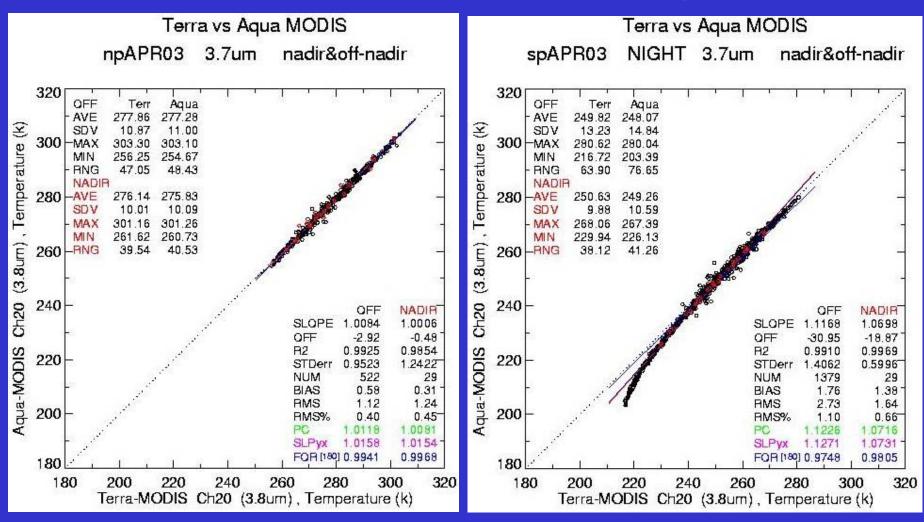
• No directed funding, everything piecemeal from various grants

Approach

• Develop automated system to normalize all imagers to 1 or 2 other "well-calibrated" reference LEO imagers

- 1. Determine stability of reference LEO imagers
- 2. Cross-calibrate every 1-3 months
 - a. Use LEO or GEO to reference every 1-3 months
 - b. Use LEO or GEO to normalized LEO/GEO
- 3. Derive degradation equations for each sensor
 - a. Predict ahead for real time; project back in time for climate
 - b. Use normalization & deep convective cloud albedo techniques
- 4. Account for spectral differences in channels theoretically

Reference Satellite Stability


- Reference Imagers
 - Terra & Aqua MODIS
 - TRMM VIRS
- Cross-calibration against each other & CERES broadband data
- Deep convective cloud albedos for solar channels

The reference satellite must be understood as well as possible!

Minnis et al., JTech, 2007

Example Reference Checking

Day-night comparisons reveal 0.5K bias and bad cold temps

LEO-to-GEO/LEO Cross-Calibration Method

• Match data & compute average radiance *L*, brightness temperature *T*, or Count *C* within a 0.5° region using following selection constraints

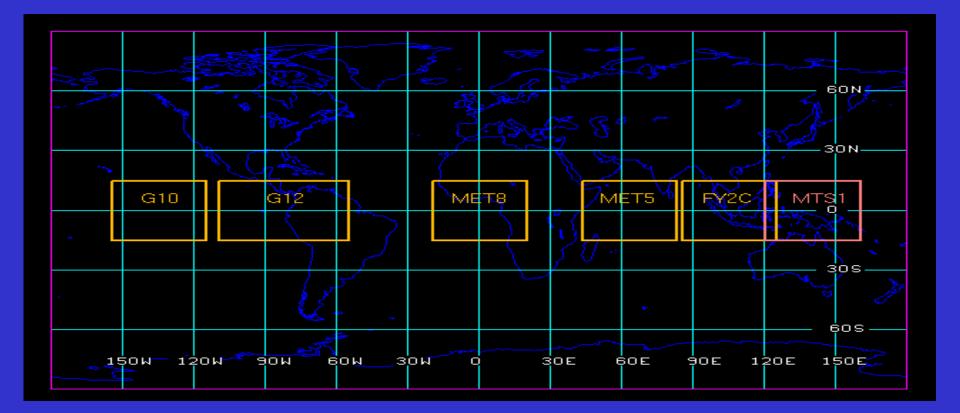
- Δ SZA < 5°, Δ VZA < 10°, Δ RAA < 15°, Δ t < 15 min, no sunglint

- Normalize all solar channels to common solar constants
- Normalize each radiance to a common SZA
- Perform linear regression

 $X_{ref} = a Y_{sat} + b$

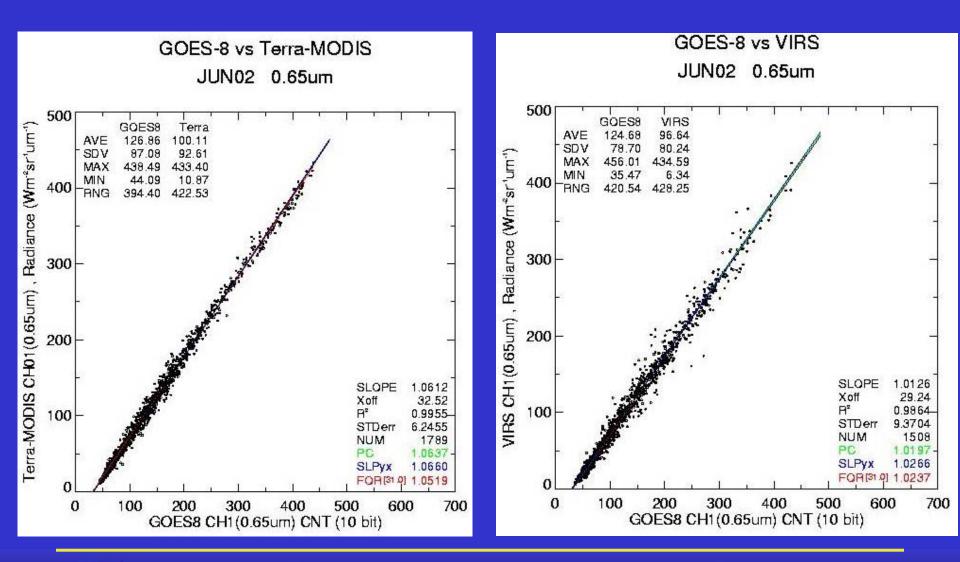
X = L or T; Y = L, T, or C

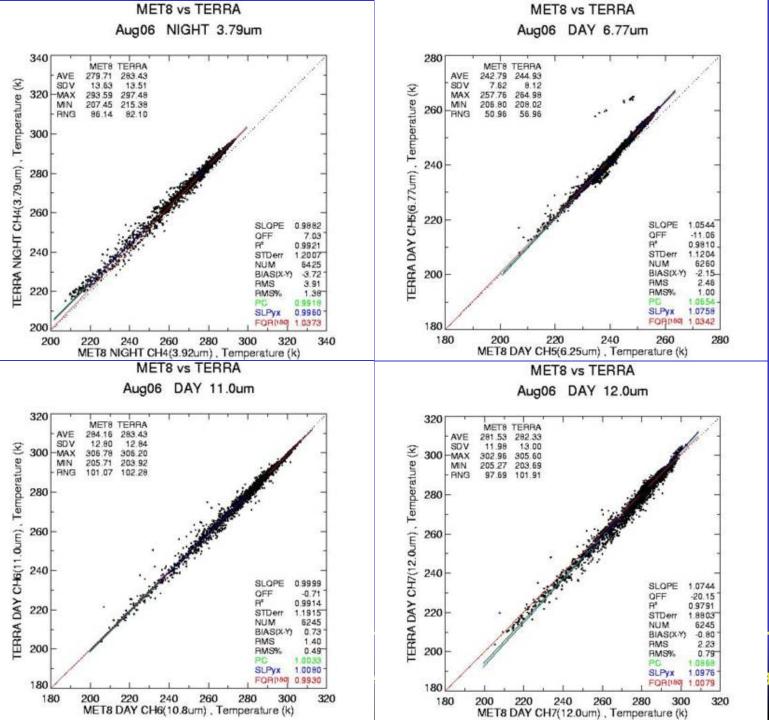
• Compute trends in a(t) and b(t) from sets of coefficients


 $a = c_o + c_1 DSR + c_2 DSR^2$; $b = d_o + d_1 DSR + d_2 DSR^2$

DSR = days since reference date

Minnis et al., JTech, 2002


Current LEO-to-GEO Domains & Pairs


LEO-LEO normalizations use polar data

Examples of LEO-to-GEO Normalizations

NASA

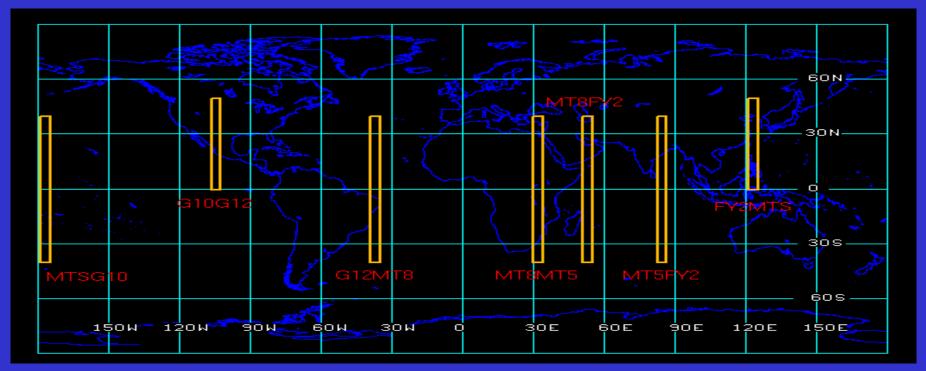
MET-8 Vs Terra Aug 2006

inch

GEO-to-GEO/LEO Cross-Calibration Method

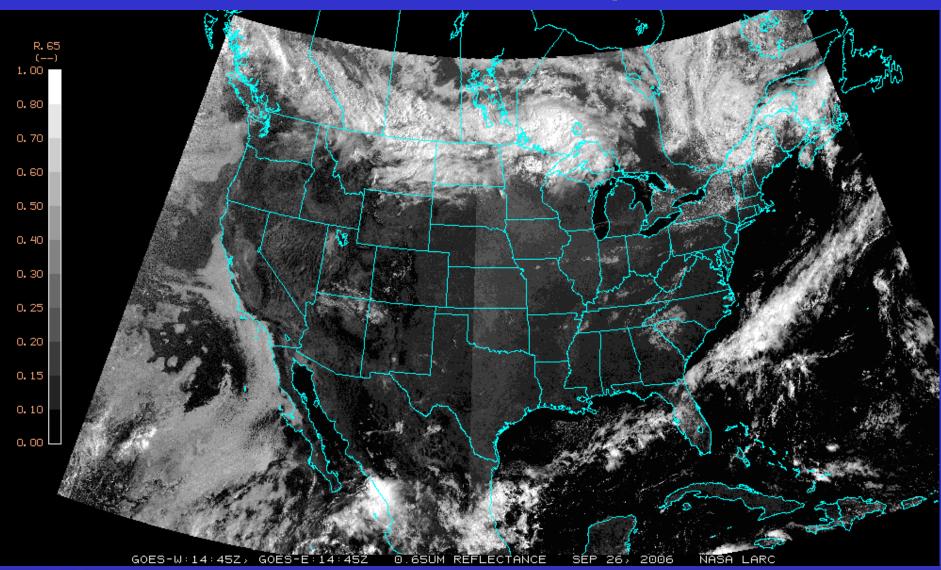
• GEO-GEO

- Match data & compute average radiance L, brightness temperature T, or Count C within each 1.0° region straddling the bisecting longitude at time closest to local noon for solar channels (ensures matched SZA, RAZ, & VZA) and at anytime for IR channels
- Follow same procedure as LEO-GEO for normalizing

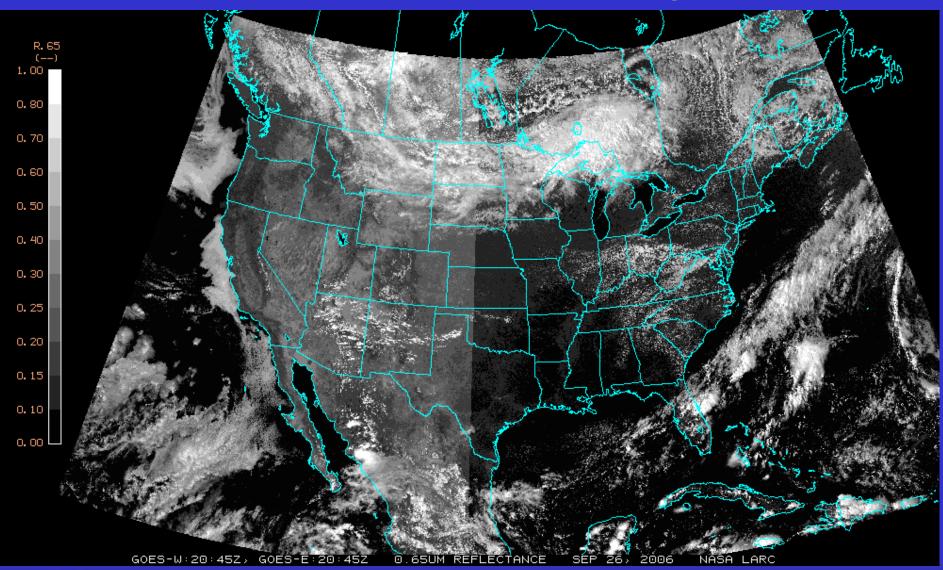

• GEO-LEO

- Follow same procedure as LEO-GEO for normalizing

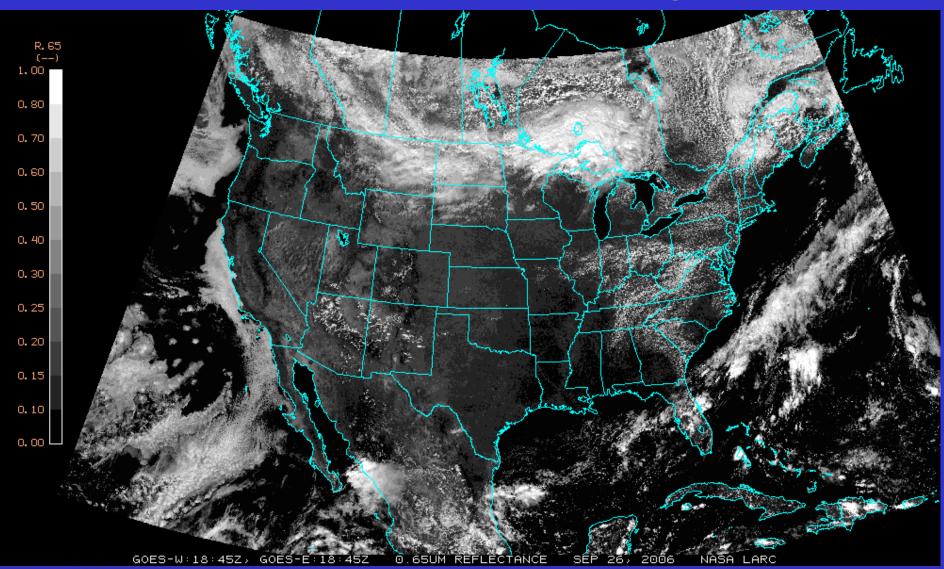
Nguyen et al., JTech, 2007


Current GEO-to-GEO Domains & Pairs

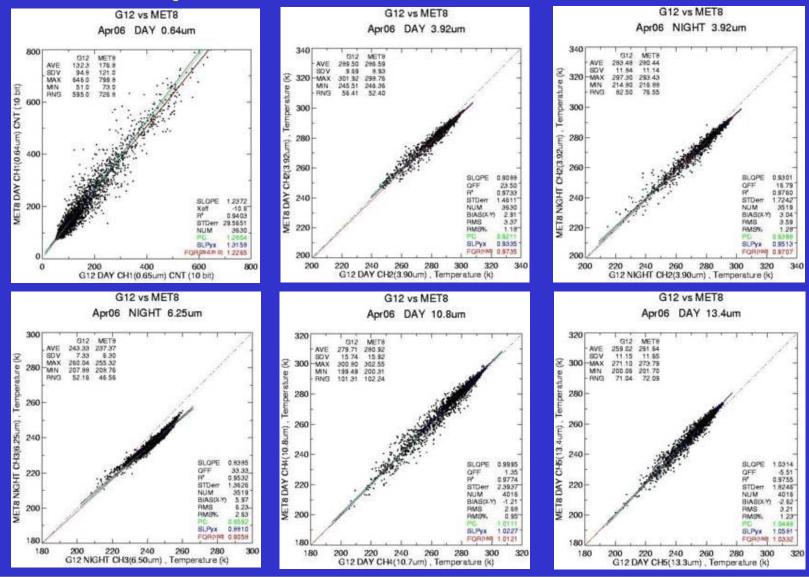
Similar matches were made for defunct satellites



GOES-11/GOES-12 Visible, Sep. 26, 2006



GOES-11/GOES-12 Visible, 20:45Z, Sep. 26, 2006



GOES-11/GOES-12 Visible, 18:45Z, Sep. 26, 2006

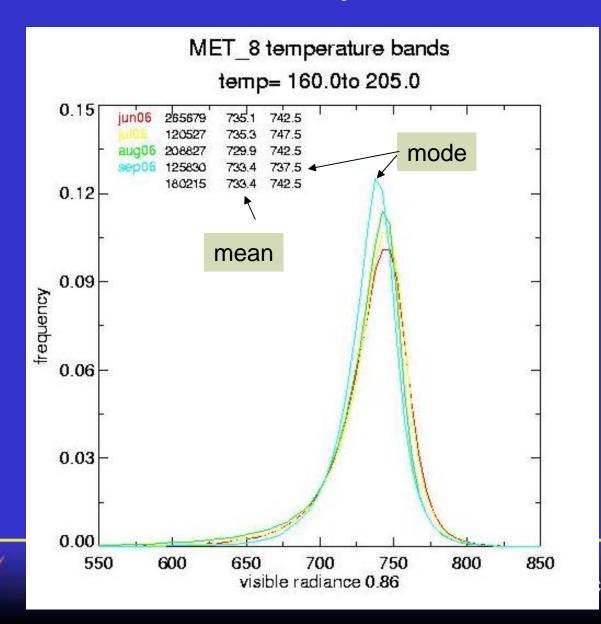
Examples of GEO-to-GEO Normalizations

Deep Convective Cloud Technique (DCCT)

Assumptions

- Mean spectral albedo of deep convective clouds (DCC) is constant over time
- Change in mean would indicate change in calibration response
- Approach
 - Select pixels *i* over ocean between 30°N and 30°S that meet

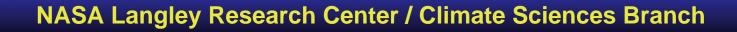
 $T_{III} < 205.0 \text{ K}, SZA < 40^{\circ}, VZA < 40^{\circ}, 10^{\circ} < RAA < 170^{\circ}$


 $\sigma(T_{II}) < 1.0$ K, & $\sigma(\rho) < 0.02 \rho_I$ of for *i* + 8 surrounding pixels

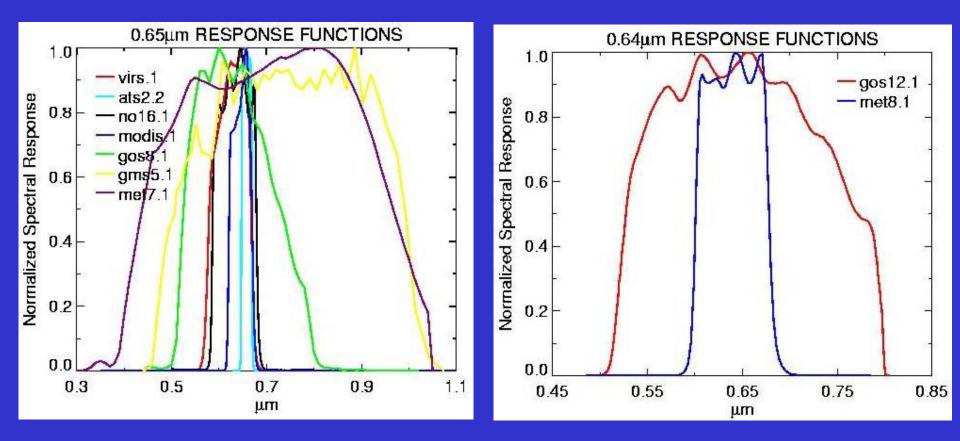
- Correct for anisotropy, normalize reflectance to SZA = 0°
- Create histogram, compute mean & mode
- Compute trends in mean and mode

Minnis et al., JTech, 2007

MET-8 0.86µm DCCT monthly PDFs June - September 2006


es Branch

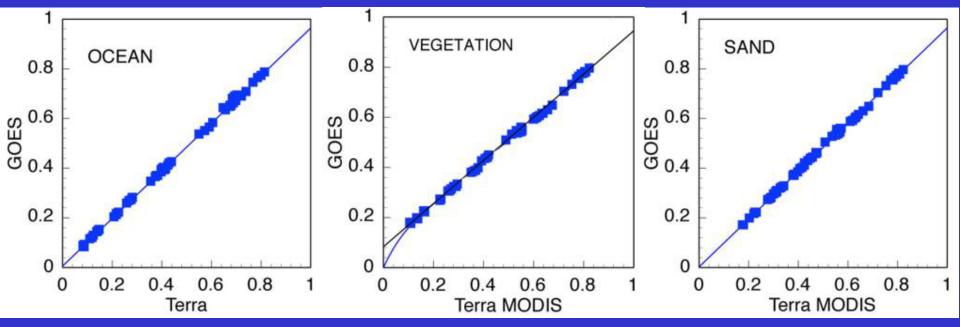
Theoretical Spectral Correction


- Spectral filter functions vary from imager to imager
 - Atmospheric scatter and absorption vary with wavelength
 - Surface and cloud reflectance, emissivity vary with wavelength
 - Need to correct intercalibrated radiances
- Approach
 - Use radiative transfer models to compute $L_{sat}[L_{ref}(K)]$, K = sfc typeCompute L_x for range of atmospheres, clouds, & aerosols for all imagers x $L_{sat}(K) = f(L_{ref}(K))$ (1)
 - Use SBDART, 3 SZAs, albedo not L, 3 sfc types: ocean,

vegetation, sand

- Given normalized value of L'_{sat} from intercalibration, compute final value as $L_{sat}(K) = f(L'_{sat}(K))$

Visible Channel Spectral Response Functions



Similar variations seen in other channels!

Examples of Spectral Corrections, MODIS to GOES

0.65 µm

Ocean and sand are very similar, vegetation brighter for GOES

Spectral Corrections to Terra MODIS, Ocean only

Satellite	a	b
GOES	0.9584	0.0056
Meteosat-7	$A(\mu_o)$	$B(\mu_o)$
Meteosat-8	0.9741	0.0036
MTSAT-1R	C(µ _o)	$D(\mu_o)$
VIRS	0.9540	0.0109
N14	0.9484	0.0030

• Broadbands have SZA dependence

SEVIRI closest to MODIS

Nguyen et al., JTech, 2007

Processing

Ingest data from

- UW-SSEC McIDAS (GEOsats)
- NASA LaRC ASDC (TRMM)
- NASA GSFC DAAC (MODIS)
- NOAA SSA (AVHRR)
- Run matching routines, collect output
- Perform regressions
- Produce & post graphical & numerical output
- Link to webpages (real-time & archival)

Archive Calibration Page

Satellite Cross-Calibrations

	VIRS	Terra_MODIS	Aqua_MODIS	GOES-8	GOES-12	MET-8	NOAA-16	NOAA-17
VIRS		VIRS/Terra	VIRS/Aqua	VIRS/GOES-8	VIRS/GOES-12		VIRS/NOAA-16	
Terra-MODIS	Tema/VIRS	Terra4/Terra3	Terra/Aqua	Terra/GOES-8	Terra/GOES-12	Terra/MET-8	Terra/NOAA-16	
Aqua-MODIS	Aqua/VIRS	Aqua/Terra	-		Aqua/GOES-12	Aqua/MET-8		Aqua/NOAA-17
GOES-8	GOES-8/VIRS	GOES-8/Terra					GOES-8/NOAA-16	
GOES-12	GOES-12/VIRS	GOES-12/Terra	GOES-12/Aqua	1		1	GOES-12/NOAA-16	GOES-12/NOAA-17
MET-8		MET-8/Terra	MET-8/Aqua					
NOAA-16	NOAA-16/VIRS	NOAA-16/Terra		NOAA-16/GOES-8	NOAA-16/GOES-12		-	NOAA-16/NOAA-17
NOAA-17			NOAA-17/Aqua		NOAA-17/GOES-12		NOAA-17/NOAA-16	-

- MET-8 calibrations EUMETSAT MTG Prague May04
- <u>TWPICE calibrations</u> TWPICE IOP Jan06
- IR CENTRAL WAVELENGTHS
- NOAA AM/PM combinations: o N09/N10 o N10/N11 o N11/N12 o N12/N14 o N14/N15 o N15/N16 o N16/N17
- · Other combinations: o VIRS/GMS-5 o N-12/N-14 OLD o N-14/N-15 OLD

Deep Convective Calibration

	VIRS	Terra-MODIS	Aqua-MODIS	GOES-8	GOES-12	MET-8	NOAA-09	NOAA-11	NOAA-14	NOAA-16	NOAA-17
Gain	<u>Ver5 0.65</u> <u>Ver5 0.65 ascii</u> <u>Ver5 1.64</u> <u>Ver6 0.65</u> <u>Ver6 0.65 ascii</u> <u>Ver6 1.64</u>	0.65 0.65 ascii 0.47 0.55 1.24 1.64 2.12 1.37	0.65 0.65 ascii 0.47 0.55 1.24 2.12 1.37	I	ł	-	12	12	12	12	12

Satellite Channel Response Functions

- ASCII satellite response functions
 Normalized Response Functions

0.65um	0.86um	1.6um	3.7um	6um	11um	12um
X	X	X	X	X	X	X
Visible Chan	nel Normali	zed Respo	nse Funct	ions		

NOAA 7-16 GOES 6-11 MET 2-7 GMS 3-5

Archive Individual Pair Calibration SubPage

VIRS vs Terra-MODIS (version #4)

Individual Monthly JPEG Plot

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2000			$\begin{array}{r} 1 & 2 & 3d \\ 3n & 4d & 4n \\ \underline{5d} & 5n & 4 \\ \underline{5} \end{array}$		$\begin{array}{r} 1 & 2 & \underline{3d} \\ \underline{3n} & \underline{4d} & \underline{4n} \\ \underline{5d} & \underline{5n} & \underline{4} \\ \underline{5} \end{array}$		$\frac{1 \ 2 \ 3d}{3n \ 4d}$ $\frac{4n \ 5d}{5n \ 4 \ 5}$		$\frac{123d}{3n4d}$ $\frac{4n5d}{5n45}$		$\begin{array}{r} 1 & 2 & 3d \\ 3n & 4d & 4n \\ \underline{5d} & 5n & 4 \\ \underline{5} \end{array}$	
2001	$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{4n \ 5d}{5n \ 4 \ 5}$		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n}$ $\frac{3n}{5d} \frac{4d}{5n} \frac{4n}{4}$		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n} \frac{3n}{5d} \frac{4d}{5n} \frac{4n}{4} \frac{5d}{5n} \frac{4}{4}$		$\frac{1}{3n} \frac{2}{4d} \frac{3n}{4d} \frac{4n}{5d} \frac{5d}{5n} \frac{4}{45}$		$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{4n \ 5d}{5n \ 4 \ 5}$		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n}$ $\frac{3n}{5d} \frac{4d}{5n} \frac{4n}{4}$ $\frac{5}{5}$	
2002	<u>1 2 3d</u> <u>3n 4d</u> <u>4n 5d</u> <u>5n 4 5</u>		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n}$ $\frac{3d}{5d} \frac{5n}{5n} \frac{4}{5}$		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n} \frac{3n}{5d} \frac{4d}{5n} \frac{4n}{4} \frac{5d}{5} \frac{5n}{4} \frac{4}{5}$		$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{4n \ 5d}{5n \ 4 \ 5}$		<u>1 2 3d</u> <u>3n 4d</u> <u>4n 5d</u> <u>5n 4 5</u>		$\frac{1}{3n} \frac{2}{4d} \frac{3d}{4n}$ $\frac{3n}{5d} \frac{4d}{5n} \frac{4n}{4}$ $\frac{5}{5}$	
2003	$\frac{123d}{3n4d}$ $\frac{4n5d}{5n45}$		$\begin{array}{r} 1 & \underline{2} & \underline{3d} \\ \underline{3n} & \underline{4d} & \underline{4n} \\ \underline{5d} & \underline{5n} & \underline{4} \\ \underline{5} \end{array}$		$\begin{array}{r} \underline{1\ 2\ 3d}\\ \underline{3n\ 4d\ 4n}\\ \underline{5d\ 5n\ 4}\\ \underline{5}\end{array}$		$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{3n \ 4d}{4n \ 5d} \\ \frac{5n \ 4 \ 5}{5n \ 4 \ 5}$		$\frac{123d}{3n4d}$ $\frac{4n5d}{5n45}$		$\begin{array}{r} \underline{1\ 2\ 3d}\\ \underline{3n\ 4d\ 4n}\\ \underline{5d\ 5n\ 4}\\ \underline{5} \end{array}$	
2004	$\frac{123d}{3n4d}$ $\frac{4n5d}{5n45}$	$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{4n \ 5d}{5n \ 4 \ 5}$	$\begin{array}{r}1 & 2 & 3d\\3n & 4d & 4n\\5d & 5n & 4\\5\end{array}$	$\begin{array}{r}1 & 2 & 3d\\3n & 4d & 4n\\5d & 5n & 4\\ & 5\end{array}$	$\begin{array}{r} 1 & 2 & 3d \\ 3n & 4d & 4n \\ \underline{5d} & 5n & 4 \\ \underline{5} \end{array}$		$\frac{1\ 2\ 3d}{3n\ 4d}\\ \frac{4n\ 5d}{5n\ 4\ 5}$	$\begin{array}{r}1 & 2 & 3d\\3n & 4d & 4n\\5d & 5n & 4\\5\end{array}$	$\frac{1 \ 2 \ 3d}{3n \ 4d} \\ \frac{4n \ 5d}{5n \ 4 \ 5}$	$\frac{1\ 2\ 3d}{3n\ 4d}\\ \frac{4n\ 5d}{5n\ 4\ 5}$	$\begin{array}{r} 1 & 2 & 3d \\ 3n & 4d & 4n \\ \underline{5d} & 5n & 4 \\ \underline{5} \end{array}$	
2005	$\frac{1}{2} \frac{3d}{3n} \frac{4d}{4n} \frac{4n}{5d} \frac{5n}{5n} \frac{4}{5}$	$ \begin{array}{r} 1 & 2 & 3d \\ 3n & 4d \\ 4n & 5d \\ 5n & 4 & 5 \end{array} $	$\begin{array}{r}1 & \underline{2} & \underline{3d}\\\underline{3n} & \underline{4d} & \underline{4n}\\\underline{5d} & \underline{5n} & \underline{4}\\\underline{5}\end{array}$	$\begin{array}{r} 1 & 2 & 3d \\ 3n & 4d & 4n \\ 5d & 5n & 4 \\ \underline{5} \end{array}$	$\begin{array}{r} \underline{1\ 2\ 3d}\\ \underline{3n\ 4d\ 4n}\\ \underline{5d\ 5n\ 4}\\ \underline{5} \end{array}$	$\frac{1\ 2\ 3d}{3n\ 4d}\\ \frac{4n\ 5d}{5n\ 4\ 5}$						

CHANNELS STATS MATCHING DATA ASCII SPECTRAL RESPONSE FUNCTIONS: 0.65 1.6 3.7 11.0 12.0 Central wavelengths Corrk results

Timeline JPEG Plot

	Slope	Yoffset	R2	STDerr	#	Bias	RMS	RMS%	Mave	Vave	SLPpc	SLPyx	SLPfor
0.65um	X	X	X	X	X	X	X	X	X	X	X	X	X
1.6um	X	X	X	X	X	X	X	X	X	X	X	X	X
3.7um	X	X	X	X	X	X	X	X	X	X	X	X	X
11um	X	X	X	X	X	X	X	X	X	X	X	X	X
12um	X	X	X	X	X	X	X	X	X	X	X	X	X

Real-Time Calibration Page, Part 1

(started March 2006)

Latest Calibrations Coefficients

GEO-satellite	MET-8	MET-5	FY2C	MTSAT	GOES-10 GOES-11	GOES-12
AVHRR-satellite	NOAA-15	NOAA-16	NOAA-17	NOAA-18	[1

GEO to GEO Cross-Calibrations calibration domains

FY2C 0.75um Night Examples problem good FY2C 3.7um Night Examples problem good

	MET-8	MET-5	FY2C	MTSAT	GOES-10 GOES-11	GOES-12
MET-8	1.	MET8/MET5	MET8/FY2C			MET8/GOES12
MET-5	MET5/MET8		MET5/FY2C			
FY2C	FY2C/MET8	FY2C/MET5	-	FY2C/MTSAT		
MTSAT			MTSAT/FY2C		MTSAT/GOES10 MTSAT/GOES11	
GOES-10 GOES-11				GOES10/MTSAT GOES11/MTSAT	-	GOES10/GOES12 GOES11/GOES12
GOES-12	GOES12/MET8			GOES12/GOES10	GOES12/GOES11	

GEO to LEO Calibrations calibration domains

	MET-8	MET-5	FY2C	MTSAT	GOES-10 GOES-11	GOES-12
Terra-MODIS	Terra/MET8	Terra/MET5	Terra/FY2C	Terra/MTSAT	Terra/GOES10 Terra/GOES11	Terra/GOES12
Aqua-MODIS	Aqua/MET8	Aqua/MET5	Aqua/FY2C	Aqua/MTSAT	Aqua/GOES10 Aqua/GOES11	Aqua/GOES12
VIRS	VIRS/MET8	VIRS/MET5	VIRS/FY2C	VIRS/MTSAT	VIRS/GOES10 VIRS/GOES11	VIRS/GOES12
NOAA16-AVHRR	NOAA16/MET8					NOAA16/GOES12
NOAA17-AVHRR	NOAA17/MET8					NOAA17/GOES12
NOAA18-AVHRR	NOAA18/MET8				1	NOAA18/GOES12

Real-Time Calibration Page, Part 2

LEO to LEO Calibrations

	Terra	Aqua	VIRS	NOAA-16	NOAA-17	NOAA-18
Terra-MODIS	1	Terra/Aqua	Terra/VIRS	Terra/NOAA16	Terra/NOAA17	Terra/NOAA18
Aqua-MODIS	Aqua/Terra	•	Aqua/VIRS	Aqua/NOAA16	Aqua/NOAA17	Aqua/NOAA18
VIRS	VIRS/Terra	VIRS/Aqua		VIRS/NOAA16	VIRS/NOAA17	VIRS/NOAA18
NOAA16-AVHRR	NOAA16/Terra	NOAA16/Aqua	NOAA16/VIRS	-	NOAA16/NOAA17	NOAA16/NOAA18
NOAA17-AVHRR	NOAA17/Terra	NOAA17/Aqua	NOAA17/VIRS	NOAA17/NOAA16		NOAA17/NOAA18
NOAA18-AVHRR	NOAA18/Terra	NOAA18/Aqua	NOAA18/VIRS	NOAA18/NOAA16	NOAA18/NOAA17	-

Deep Convective Calibration

	MET-8	MET-5	FY2C	MTSAT	GOES-11	GOES-12
GEO-gain	0.65 ascii PDF 0.86 ascii PDF 1.64 ascii PDF	0.75 ascii Pl	DF 0.73 ascii PDF	0.73 ascii PDF	0.65 ascii PDF	0.65 ascii PDF
	Terra	Aqua	VIRS	NOAA-16	NOAA-17	NOAA-18
LEO-gain	$\begin{array}{c c} \underline{PDF} & \underline{P} \\ \underline{0.47} & \underline{ascii} & \underline{0} \\ \underline{PDF} & \underline{P} \\ \underline{0.55} & \underline{ascii} & \underline{0} \\ \underline{PDF} & \underline{P} \\ \underline{1.24} & \underline{ascii} & \underline{1} \\ \underline{PDF} & \underline{P} \\ \underline{1.64} & \underline{ascii} & \underline{1} \\ \underline{PDF} & \underline{P} \\ \underline{2.12} & \underline{ascii} & \underline{2} \\ \underline{PDF} & \underline{P} \\ \underline{1.37} & \underline{ascii} & \underline{1} \\ \end{array}$	DF P .55 ascii DF 1 .24 ascii DF 0 .64 ascii DF V 12 ascii	<u>.65 5A ascii 5A</u> <u>DF 5A</u> <u>.64 V6 ascii V6</u> <u>DF V6</u> <u>.65 V6 ascii V6</u> <u>DF V6</u> <u>ver6->Ver5A YYYY</u> <u>ver6->Ver5A DSL</u> <u>ver6->Ver5A Dec31-0</u>	PDF	0.65 ascii PDF 0.85 ascii PDF 1.64 ascii PDF	0.65 ascii PDF 0.85 ascii PDF 1.64 ascii PDF

NASA

Individual pair calibration web page

MET-8 vs Aqua-MODIS 9-channel

• Individual Monthly JPEG Plot

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2006								$\begin{array}{c} 1 & 2 & 3 & 4d & 4n \\ 5d & 5n & 5d & 6n \\ 6d & 7n & 8d & 8n \\ & 9d & 9n \end{array}$	<u>5d 5n 5d 6n</u>			

MONTHLY ASCII FILES

• VIS Timeline JPEG Plots

	Slope	Xoffset	R2	STDerr	#	M8ave	Tave	SLPpc	SLPyx	SLPfor
0.64um	X	X	X	<u>X</u>	<u>X</u>	X	X	X	X	<u>X</u>
0.81um	X	X	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	X	<u>X</u>
1.64um	X	X	X	<u>X</u>	<u>X</u>	X	<u>X</u>	X	X	<u>X</u>

• IR Timeline JPEG Plots

	Slope	Yoffset	R2	STDerr	#	Bias	RMS	RMS%	M8ave	Tave	SLPpc	SLPyx	SLPfor
3.92um	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	<u>X</u>	X	<u>X</u>	<u>X</u>	<u>X</u>	<u>X</u>
6.25um	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	<u>X</u>
10.8um	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	X
12.0um	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	<u>X</u>	X	<u>X</u>	X	X	X
8.7um	<u>X</u>	X	<u>X</u>	X	X	X	<u>X</u>	X	X	<u>X</u>	X	X	X
13.4um	<u>X</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	X	<u>X</u>	X	X	<u>X</u>	X	X	X

TIME LINE ASCII FILES

- Spectral Response Functions
 - 0.65 0.81 1.64 3.92 6.25 10.8 12.0 8.7 13.4 Central wavelengths Corrk results

Individual pair calibration web page

MET8 vs MET5

MET8 vs MET5

Individual Monthly JPEG Plot

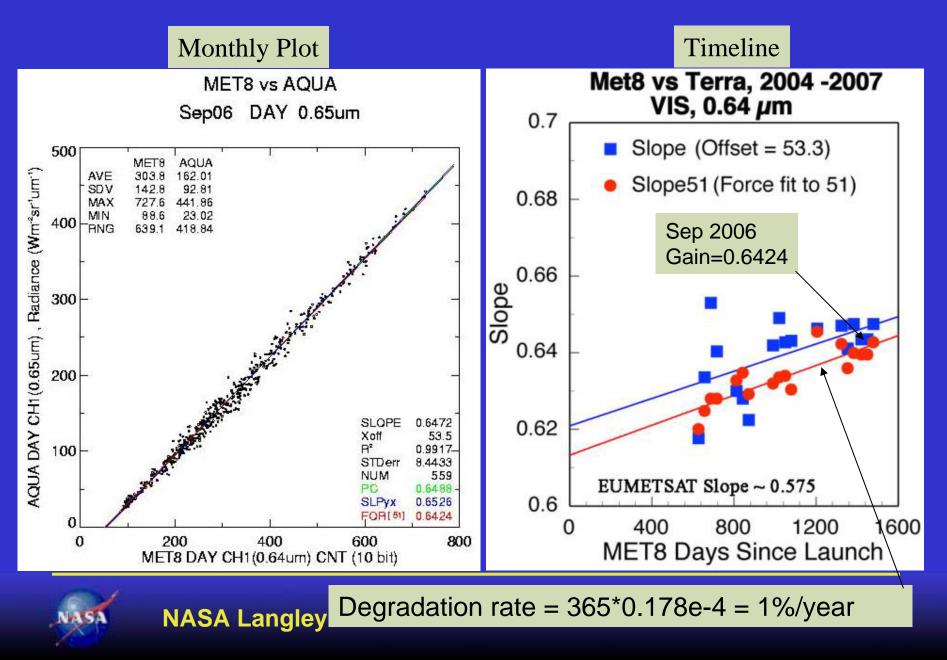
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
<mark>2006</mark>			$\frac{1}{\underline{3d}} \frac{3n}{\underline{4n}} \frac{4d}{\underline{4n}}$	<u>1 3d 3n 4d</u> <u>4n</u>								
2007												

VIS Timeline JPEG Plots

	Slope	Xoffset	R2	STDerr	#	MET8ave	MET5ave	SLPpc	SLPyx	SLPfor
0.65um	X	X	X	X	X	X	X	X	X	X

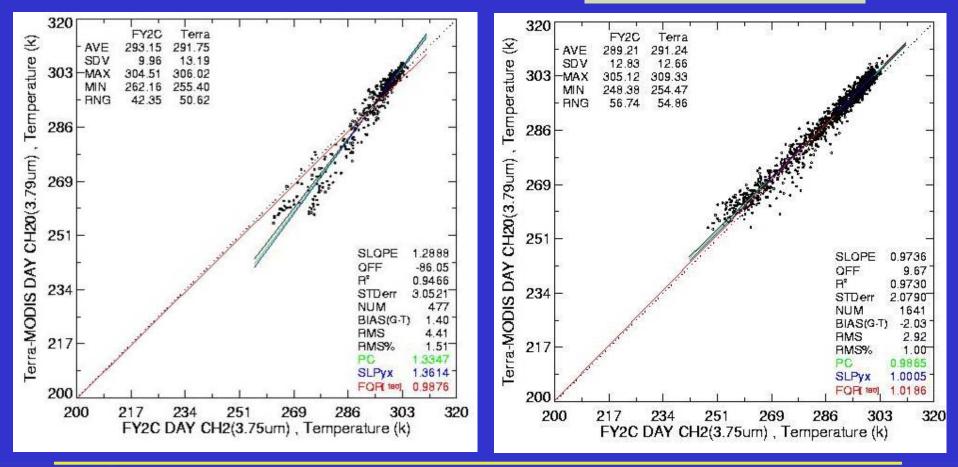
IR Timeline JPEG Plots

	Slope	Yoffset	R2	STDerr	#	Bias	RMS	RMS%	MET8ave	MET5ave	SLPpc	SLPyx	SLPfor
6.7um	X	X	X	X	X	X	X	X	X	X	X	X	X
10.8um	X	X	X	X	X	X	X	X	X	X	X	X	X


Spectral Response Functions

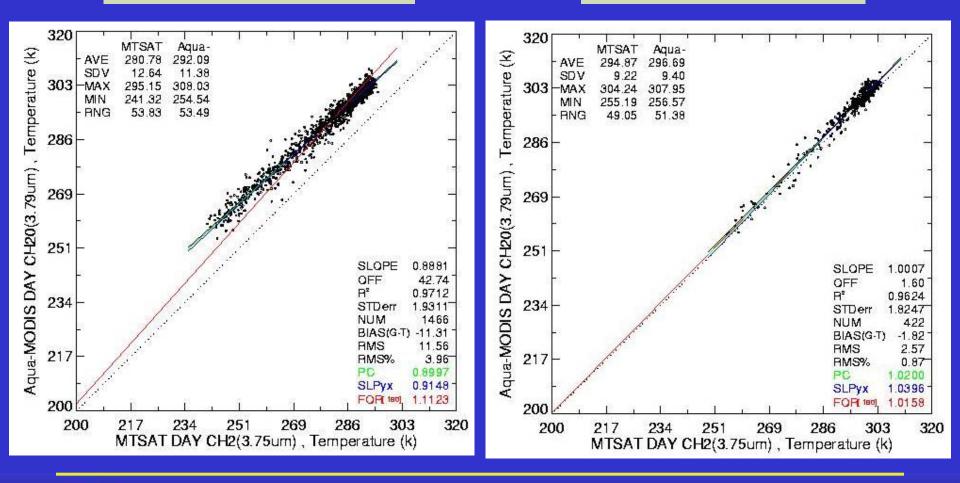
0.65 6.7 10.8 Central wavelengths Corrk results

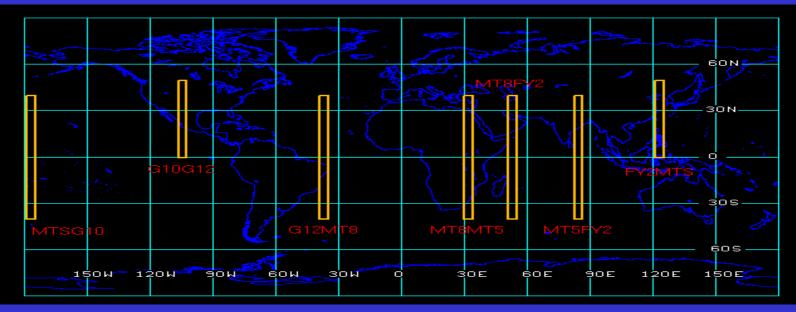
ReadMe Files
 <u>CHANNELdefinitions</u> <u>STAT definitions</u> <u>MATCHING</u>


MET-8 vs Aqua-MODIS

FY2C vs Terra-MODIS, 3.75µm

Before Jan 16, 2006

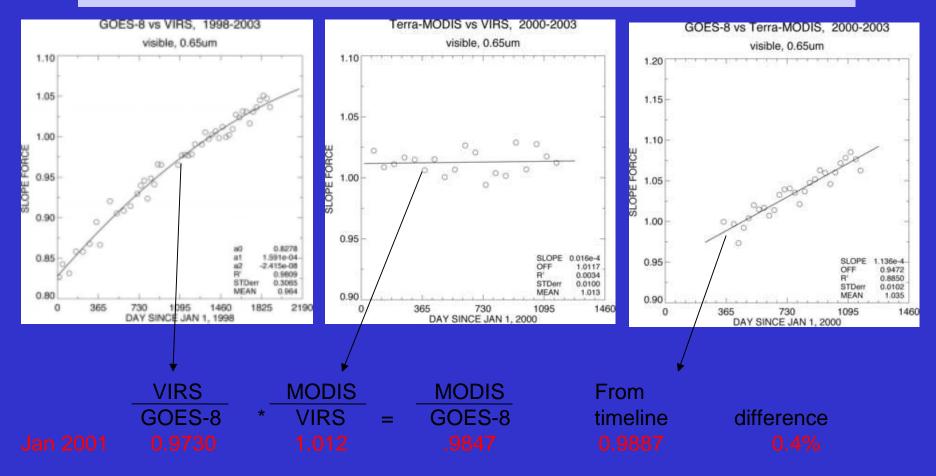

After Jan 17, 2006


MTSAT vs Aqua-MODIS, 3.75µm

Before Feb 14, 2006

After Feb 15, 2006

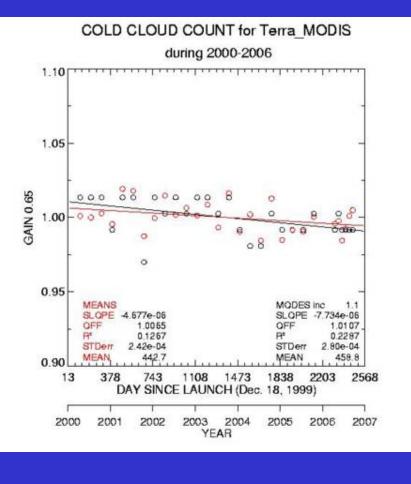
GEO to GEO domains and pairs


GEO to GEO Cross-Calibrations calibration domains FY2C 0.75um Night Examples problem good FY2C 3.7um Night Examples problem good

	MET-8	MET-5	FY2C	MTSAT	GOES-10 GOES-11	GOES-12
MET-8	-	MET8/MET5	MET8/FY2C			MET8/GOES12
MET-5	MET5/MET8	-	MET5/FY2C			
FY2C	FY2C/MET8	FY2C/MET5	-	FY2C/MTSAT		
MTSAT			MTSAT/FY2C	-	MTSAT/GOES10 MTSAT/GOES11	
GOES- 10 GOES- 11				GOES10/MTSAT GOES11/MTSAT	-	GOES10/GOES12 GOES11/GOES12
GOES- 12	GOES12/MET8			GOES12/GOES10	GOES12/GOES11	-

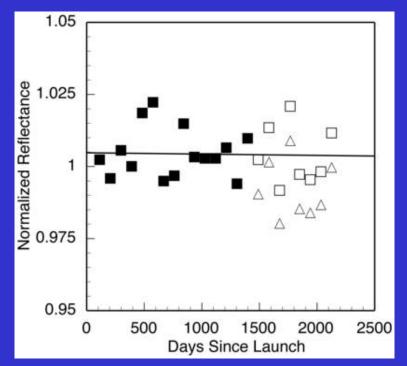
3 Way Cross-Calibration Validation

Consistency and Accuracy of GOES-8, VIRS, & TERRA-MODIS Calibration Trends


GEO and LEO DCC

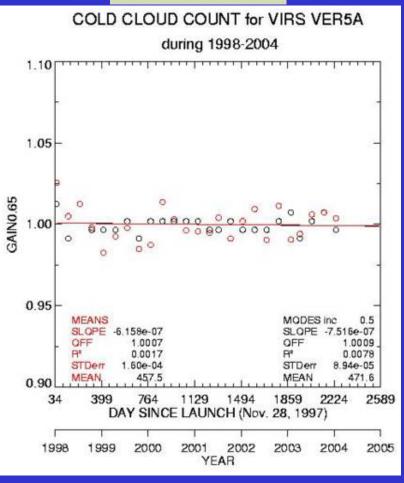
Deep Convective Calibration

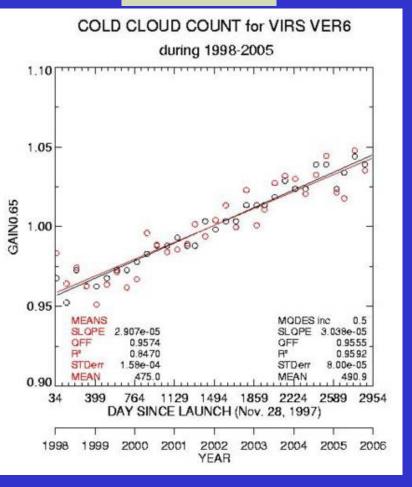
	MET-8	MET-5	FY2C	MTSAT	GOES-11	GOES-12
GEO-gain	0.65 ascii PD 0.86 ascii PD 1.64 ascii PD	F 0.75 ascii PI	DF 0.73 ascii PDF	0.73 ascii PDF	0.65 ascii PDF	0.65 ascii PDF
	Terra	Aqua	VIRS	NOAA-16	NOAA-17	NOAA-18
LEO- gain	PDF 0.47 ascii PDF 0.55 ascii PDF 1.24 ascii PDF 1.64 ascii PDF 2.12 ascii PDF 1.37 ascii	0.65 ascii PDF 0.47 ascii PDF 0.55 ascii PDF 1.24 ascii PDF 1.64 ascii PDF 2.12 ascii PDF 1.37 ascii PDF	0.65 ascii PDF 1.64 ascii PDF Ver6->Ver5A YYYY Ver6->Ver5A DSL Ver6->Ver5A Dec31 03	PDF	<u>0.65</u> <u>ascii</u> <u>PDF</u> <u>0.85</u> <u>ascii</u> <u>PDF</u> <u>1.64</u> <u>ascii</u> <u>PDF</u>	0.65 ascii PDF 0.85 ascii PDF 1.64 ascii PDF



Terra-MODIS DCC degradation

- Apparent trend due to gain jump in late 2003
- Correction needed after day 1419

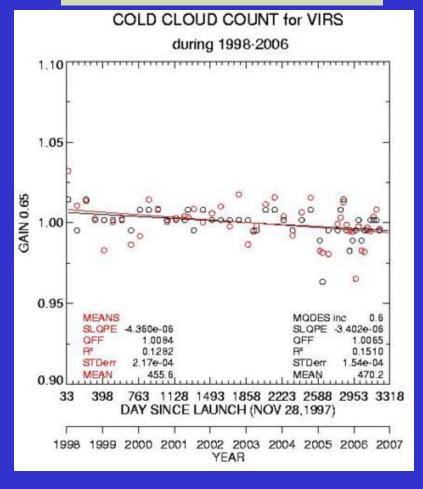

Open squares corrected for gain change

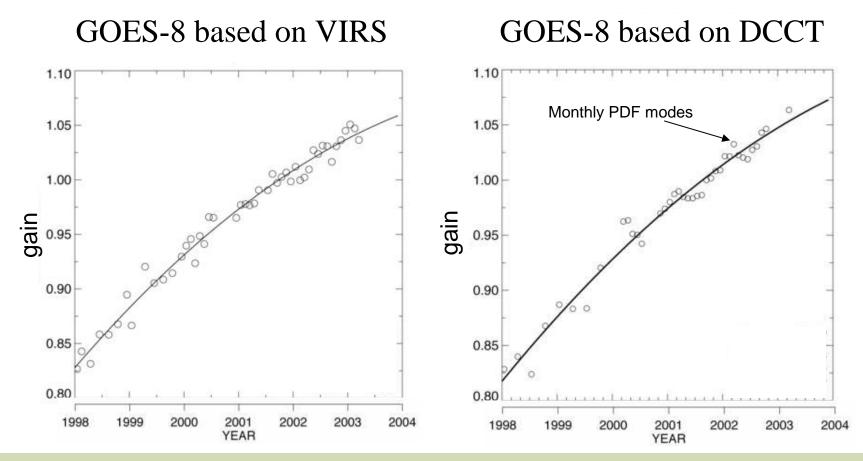


VIRS DCC degradation

Version 5A

Version 6

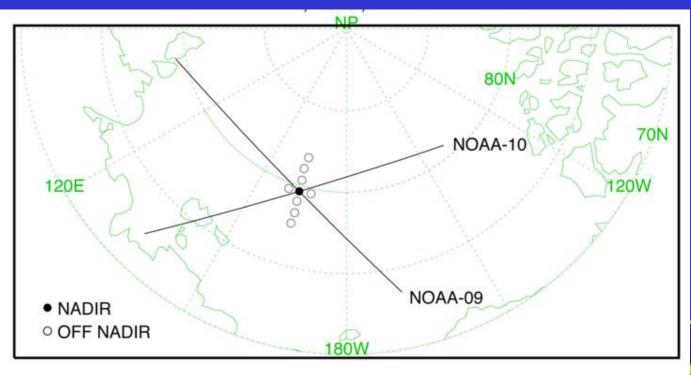



VIRS DCCT degradation correction

VIRS Ver6/Ver5A correction VIRS VIS ver6/ver5 ratio 1.075 1.050 Rad6/Rad5 1.025 1.000 0.975 0 500 1000 1500 2000 2500 DSL (Nov 28, 1997) Rad6/Rad5 = 3.33324e-05 * DSL + 0.991478

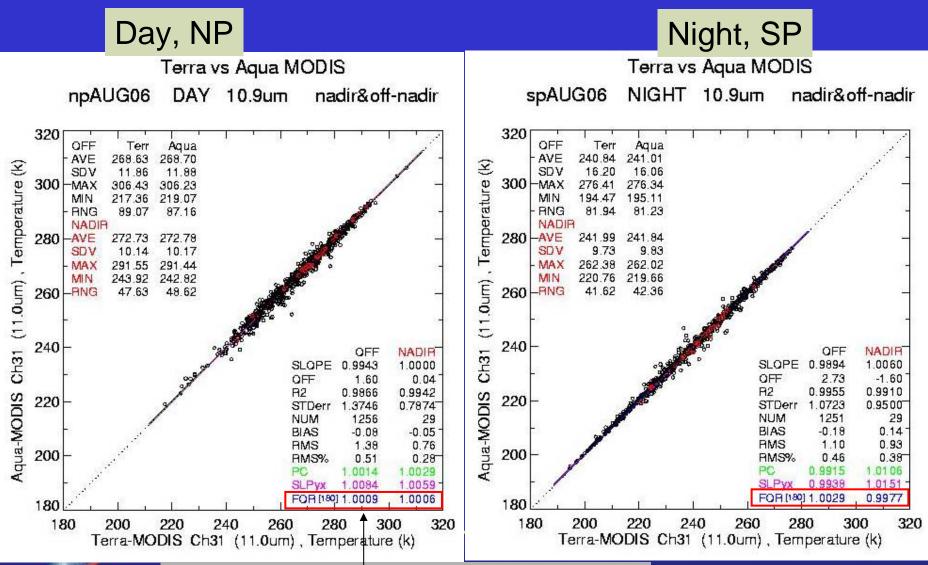
VIRS Ver6 corrected

Comparison of LEO-GEO and DCCT Trends


- Curves agree for bulk of period, but differ on extremes
- Need more DCC datapoints

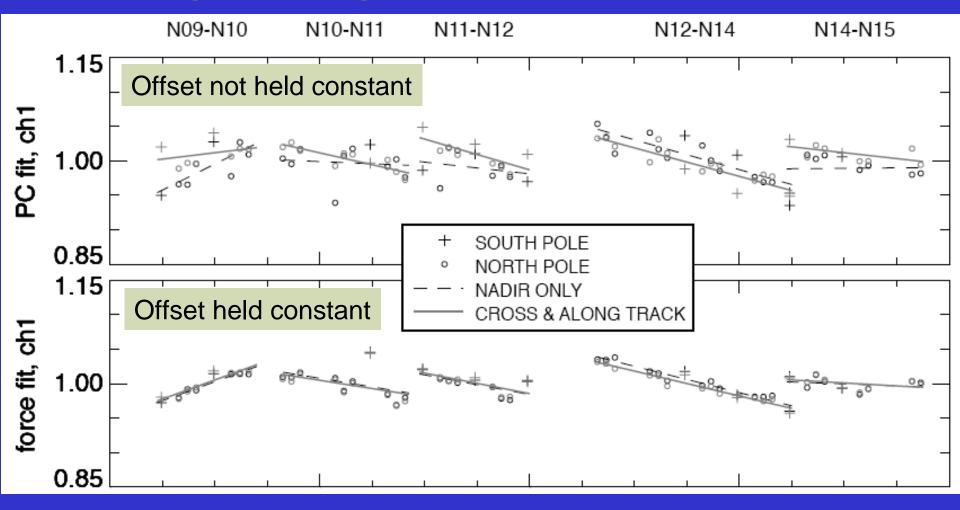
LEO to LEO Technique and Target

Collocate AM/PM Polar orbiters and average pixel radiances into 50km diameter regions at the ground intersect (Nadir method)


- Limited to polar latitudes (70° Aqua/Terra), (80° NOAA)

Off Nadir method uses 50km region with identical VZA limited to 7.5° VZA - increase the # of samples and dynamic range

Terra/Aqua MODIS, 10.9µm, Aug 2006



NASA

Nadir and off-nadir gains are nearly identical cier

ciences Branch

Calibration can then be transferred back in time given enough overlap - 0.65µm AVHRR

AVHRR DCCT degradation

Conclusions

• Well-calibrated GEO & LEO radiances necessary to produce accurate & cross-platform consistent cloud properties and fluxes

- Reference imager radiances necessary

- Cross-platform normalization can provide accurate calibrations

 NASA-Langley has developed a prototype end-to-end system linking the calibration of relevant channels on a host of satellites

- MODIS serves as reference
- Multiple approaches ensure redundancy & error checking
- Radiative transfer methods used to adjust normalized results
- Results to be made public in 2007 (NOAA9-NOAA18 + GEOs)

For references: http://www-pm.larc.nasa/calibration/calib-ref.html

Future Work

- Collaborate with calibration community
- Construct user-friendly web page
- Complete documentation & error analyses
- Continue real-time processing with QC
- Develop & test complete set of K-dependent normalization corrections
- Revise historical & real-time results as needed
- Add new satellites as needed
- Secure funding to complete the system

